
Construction by Configuration: Challenges for Software Engineering
Research and Practice

Ian Sommerville
School of Computer Science, University of St Andrews, St Andrews, Scotland

ifs@cs.st-andrews.ac.uk

Abstract

The past ten years have seen a radical shift in business
application software development. Rather than
developing software from scratch using a conventional
programming language, the majority of commercial
software is now developed through reuse – the
adaptation and configuration of existing software
systems to meet specific organizational requirements.
The most widespread form of reuse is through the use
of generic systems, such as ERP and COTS systems,
that are configured to meet specific organizational
requirements. In this paper, I discuss the implications
of software construction by configuration (CbC) for
software engineering. Based on our experience with
systems for medical records and university
administration, I highlight some of the issues and
problems that can arise in ‘construction by
configuration’. I discuss problems that arise in CbC
projects and identify a number of challenges for
research and practice to improve this approach to
software engineering.

1. Introduction

Software engineering in industry has changed
dramatically since the mid-1990s. Prompted by factors
such as the need to upgrade legacy systems to cope
with the Year 2000 problem, business pressures for
faster system deployment and dissatisfaction with
existing business processes, many companies and
government organizations have switched their primary
systems development strategy from ‘specify and
construct’ to ‘buy and configure’.

Rather than defining the requirements for a new
systems and then developing that system using a
conventional programming language such as Java or
C#, systems are developed by buying an off-the-shelf
generic application system and configuring this system
to create a specific organizational application. This
may involve buying a general-purpose ERP system and

configuring appropriate modules. Alternatively, a
generic application (COTS) designed for a specific
application area (such as library management) may be
bought and adapted to the customer’s business.

We know that this approach to application
development has had a major impact over the past 10
years. While specific figures are hard to come by, a
Gartner report suggested that 95% of the top 2000 US
companies use ERP systems. In a study published in
2000, Everdingen et al. [1] predicted that more than
50% of European midsize companies would use ERP
systems by 2000 and the figure is almost certainly
much higher now. Penetration is significantly less in
smaller organizations because of the high initial costs
of these systems but, in these organizations, COTS
systems have had a significant effect. My own
experience suggests that the preferred procurement
strategy for information systems in most organizations
is now to ‘buy and configure’ rather than ‘specify and
program’.

 Academic research has reflected this change in a
limited way. There is an international conference series
on COTS-based software (ICCBSS) but the majority of
software engineering research remains focused on
‘specify and construct’ development. For example, in
the proceedings of the 2007 International Conference
on Software Engineering (ICSE), there was a single
paper on COTS-based systems. In ASWEC 2007, there
were 2 papers on COTS-based development.

I believe that this is an area where there is a
pressing need for research. The initial promise of rapid
system deployment for a relatively low cost is often
unfulfilled. There are horror stories of problems with
ERP systems development. It seems that delays in
delivery and problems in use are as common as with
systems developed using a ‘specify and construct’
approach. Deployed systems often fail to deliver the
cost reductions expected and users are frequently
unhappy with the system performance and
functionality.

In this paper, I will focus on the problems of
‘programming’ COTS systems where ‘programming’
means configuring generic modules using the support
provided by the system. I call this ‘construction by
configuration’ (CbC). I will discuss some of the
problems that we observed during long-term, detailed
studies of configuration and deployment of 2 large-
scale information systems, as well less detailed
analyses of several other systems. I propose a research
agenda to extend our understanding of and support for
this mode of systems development. I draw on examples
from a patient information system for mental health
care installed in a large hospital and on a university-
wide student administration system being deployed in
a large UK university with more than 20, 000 students.

2. Configurable systems

While all systems require some configuration when
they are deployed, I am concerned here with software
that is designed to be generic but which can be tailored
and adapted to specific organizational requirements.
The configurable generic systems that are intended to
be the basis for business-specific applications are of
three kinds:
1. Single PC-based applications with built-in

programming capability. The best-known example
of such an application is probably MS Excel.
Starting with basic spreadsheet functionality, Excel
can be extensively reprogrammed to create specific
applications. Applications that can be extended
using plug-in capabilities (e.g. the Firefox browser)
can also be thought of as configurable systems.

2. Modular generic systems. These are systems, such
as ERP systems, where the supplier has a range of
functional modules (manufacturing, CRM, etc.) and
the purchaser decides which modules they will
include in their system. These individual modules
are then integrated and configured.

3. COTS assemblies. In this case, the application is
constructed by integrating several off-the-shelf
systems. For example, we have studied a bank’s e-
procurement system, which was created by
integrating an invoicing system and a web-based e-
commerce system.
In all cases, the developed system may also make

use of other desktop applications such as MS Word or
MS Excel to provide additional functionality.

2.1 System architecture

Our work on configurable systems has been mostly
concerned with organizational information systems,
with a shared database and multiple users from

different backgrounds. These systems may be
constructed using either modular generic systems or
COTS assemblies. They may be organised as ‘thin
client’ systems where all processing takes place on
servers and access to applications is through a web
browser. Alternatively, a ‘thick client’ approach may
be used where applications are installed on client
computers and communicate with a server-based
database. Each of these architectures results in
different types of problem.

Thin-client systems, where all functionality is
implemented as services running on a server, simplifies
system management. The system servers are
responsible for all processing, with functionality
accessed through a web browser. This approach avoids
the problems of user re-configuration discussed below
and reduces installation costs. However, it brings with
it its own set of problems:
1. Significant investment in the server infrastructure

may be required to cope with periods of peak
loading and to provide redundancy in the event of
server failure. This is a particular problem when
periods of peak loading are relatively short but
critical.

2. There has to be close cooperation between staff
responsible for configuration and staff responsible
for infrastructure management. Large organizations
often have heterogeneous computing infrastructures
with different operating systems and browsers in
use in different parts of the organization. Changes
to the infrastructure (browers and operating
systems) may lead to problems and
incompatibilities.

3. Security problems with browsers are well-known.
Where the information maintained is critical (e.g.
medical records), the risks involved in using a
brower-based systems may be considered to be too
high.

4. The system is inflexible. The server-based system
cannot easily be tailored to groups of users within
an organization who have non-standard needs, such
as emergency care or maternity in a hospital.
The thick-client approach avoids some of these

problems. In this approach, the server is solely
responsible for data management and a special-purpose
application which is responsible for local processing is
installed on each client. The benefits of this approach
are that server load and network traffic are
significantly reduced and that off-line operation is
possible when servers or network access are not
available. This approach, of course, has its own
problems:
1. Higher management overhead as the applications

deployed on each client have to be updated to
reflect changing requirements.

2. Excessive flexibility allowing individuals and
groups to reconfigure the system locally thus
increasing the costs and problems of system
evolution.

3. Security problems as sensitive data is cached on
local machines with possible access to that data
without conformance to the system security
procedures.
Of course, the architecture of the system will

largely depend on design decisions made by the
developers of the COTS system that is being
configured. If a different architecture is required,
serious problems can arise. We observed this in the
university administrative system where, to force
process conformance, it was required that a thin-client
architecture should be used.

However, there were no COTS systems available
with this architecture so, after a decision was made on
a system, the system provider was paid to implement a
web-based interface. After these changes were made
and the browser interface implemented, it was
discovered that the performance of the delivered
system was so poor that critical organizational
deadlines could not be met.

3. System configuration

The deployment phase for all software systems
inevitably involves some system configuration. This
may simply involve providing some data about the
operating environment or its users. However, for
generic COTS systems, this configuration is much
more extensive and may involve adapting the system to
reflect some or all of the following:

1. The specific needs of a customer (e.g. a
hospital).

2. The requirements of a group of users within the
organization (e.g. a maternity unit).

3. The required interactions with other systems in
its environment.

4. The characteristics of the platform on which the
system operates.

To meet these needs, many different configuration
activities may be involved in adapting a COTS system
to its environment. These include:

• Selecting the required system modules
• Defining a data model
• Defining business rules
• Defining workflows
• Defining external interactions
• Defining the user interface
• Defining the reports to be produced
• Setting platform parameters
• Re-defining business processes

Business process configuration is particularly
important. All ERP systems and COTS embed their
own generic model of business processes. For these
systems to work effectively, it is essential that business
processes are adapted to conform to this model [2].
Otherwise, it is extremely difficult to make effective
use of these systems.

While the requirement to change process might be
seen as a barrier to the adoption of these systems, the
opportunity for change is actually welcomed by many
organizations. They see this is a way of standardizing
processes across the organization. Control of the
process is removed from individual units and retained
by central management. I discuss some of the
difficulties that this can cause later in the paper.

3. The CbC process

The CbC process obviously varies depending on the
type of system being developed and the facilities
offered by the COTS system that is being configured.
In the systems that we have observed, the following
process activities have been common:
1. System selection. A system is procured based on

high-level business rather than operational
requirements.

2. Requirements analysis. Existing business process
stakeholders are consulted and their ‘requirements’
are elicited. However, these are seen as providing
advice to the development team rather than real
system requirements.

3. Business process redesign. The business processes
are redesigned to fit the processes assumed by the
COTS or ERP system.

4. System configuration. The system is configured to
reflect the new business processes and, as far as
possible, the user requirements.

5. System testing. The configured system is tested to
some extent although, as I discuss below, this is a
particularly problematic stage of the process.

6. Deployment and evolution. The system is deployed,
put into use and evolved rapidly to reflect user
problems and difficulties.
In the system developments that we observed, there

were several process issues that led to problems with
the deployed system:
1. A 2-stage requirements process. In the first stage,

there was minimal user involvement and
management defined the requirements that were
used to select the COTS product to be purchased.
The 2nd stage took place after the procurement
decision had been made and the requirements were
constrained by the facilities available in the
purchased system.

2. Co-design of software and process. The ability of
rapidly reconfigure the system meant there was
scope for user involvement in the development of
both the process and the software. Therefore, the
requirements evolved during the development and
the system at any one time reflected the
requirements of the most influential group of
system users.

3. Ad hoc testing. There were no systematic
approaches adopted to testing, partly because the
system rarely ‘failed’. Each configuration setting
led to a working system. However, the lack of
detailed requirements made it very difficult to test
the system for suitability before deployment.

4. Lack of supporting processes. Conventional
software engineering includes supporting processes
such as configuration and quality management. It
was found to be impossible to import these
processes into a CbC development process.
Morisio et al. [3] found comparable problems in

studies of COTS-based development processes in
NASA.

The 2-stage requirements process led to the
selection of a system based on the high-level
requirements of managers who did not have sufficient
knowledge of current processes in their organization.
While a systematic approach was used for software
selection, the systems that were ultimately procured
were found to be lacking in a number of important
respects when a more detailed understanding of the
requirements emerged.

These problems largely arose because the system
providers had ‘hard-wired’ assumptions into their
generic software, with limited ability to reconfigure
these assumptions. The buyers of the system did not
question these assumptions and only discovered
problems when the system was being configured.

An example of an area where this can arise is in
assumptions about the legal and regulatory framework
in which the system will be used. Many systems have
to conform to regulatory requirements (e.g. in the US
the Sarbanes-Oxley accounting rules). Typically, a
system will first be developed and sold in a home
market and the regulations that apply to that market
will be implemented in the generic system. However,
when these systems are sold in another country with
different laws and regulations, it may be difficult to
reconfigure the system to conform to these regulations.

When one important reason for procuring a system
is to reduce the costs of compliance, this can be
particularly problematic. The patient information
system we observed was used to manage the
information about patients with mental health
problems. It is sometimes necessary to detain such
patients against their will because they constitute a

danger to themselves and others. However, there are
strict legal safeguards associated with such detention
and often time limits as to when assessments are
carried out. It was observed that the purchased system
was being used effectively to support this process
elsewhere and this was an important factor in the
procurement decision.

However, the systems that were demonstrated were
in use in England, which has a different legal system
from Scotland where the system was to be deployed. In
particular, there was a more recent mental Health Act
in Scotland with quite different processes for assessing
patients for involuntary hospitalisation. It proved to be
impossible to reconfigure the system to reflect these
processes. Thus, the system did not meet one of its
principal requirements – the existing manual systems
had to be retained and there were no cost savings from
introducing the new system.

In reality, it is not always possible to ‘do it the
system’s way’. Existing business processes have
evolved for good reasons to ensure that work is done
effectively and efficiently. In complex organizations,
such as a hospital, where different parts of the
organization work in different ways (e.g. maternity and
emergency medicine), standardized processes imposed
by management who do not understand operational
systems use may simply not be good enough.

The co-design of requirements, software and
process is, in many respects, a good thing. Users were
actively involved in the process and their comments
were fed back quickly to the development team.
However, the process did not properly recognise the
important differences between processes in different
parts of the organization and, critically, that there is no
real benefit for users in spending time communicating
with other users in different departments. Of course,
this is not just a problem for CbC – it is also a serious
problem for agile development processes.

During the system development, the major problem
that this caused was the impossibility of maintaining a
stable system specification – it changed daily. When
this was combined with the fact that the system users
and other stakeholders did not communicate
effectively, it was practically impossible for anyone to
understand the actually delivery schedule for the
features in the system.

This co-design activity did not stop when the initial
version of the system was deployed. It continued
throughout the ‘bedding in’ period where the new
processes and the new system was brought into
operational use. Here, we observed a new problem.
The stakeholder group with the greatest political
influence drove the changes to the system, without due
regard for the requirements of other stakeholders. For
example, in the hospital system, this manifested itself

as changes to the user interface influenced by the
hospital management and senior doctors. Nurses and
junior administrators using the systems were not
consulted.

Testing was observed to be a serious problem.
System failures did not, by and large, manifest
themselves in ways that were obvious to developers
because the lack of a detailed specification meant that
they did not really know what the system was
supposed to do. Systems rarely failed in the sense that
they crashed or produced clearly incorrect output.
Rather, the failures could only be detected by users
who understood their local processes and who could
identify where system support was inadequate. In
addition, regression testing was found to be impossible
as the COTS systems were not designed to run
automated test suites.

While a period of user testing was scheduled before
the system was deployed, schedule slippage meant that
the time for this was compressed. This meant that,
rather than spending a few hours per week on testing,
the developers expected the users to be available for
several days before deployment. As the users were
very busy people, this was practically impossible so
there was very little testing carried out. The systems
were deployed so that testing and usage were one and
the same thing.

By and large, good change and configuration
management practice has evolved in development
environments where an important requirement was
source code control. Existing source code control
systems cannot be used alongside the COTS systems to
manage the evolving configuration data, because the
configuration is done using specialized support built
into the system. The configuration data cannot be
separated from this system itself. This made it
practically impossible to revert to previous system
versions when problems were discovered. In general,
quality management was a serious issue as there was
no shared perception of what was meant by a ‘high
quality system’. Good practice, such as inspections and
reviews, were not carried out partly because of the
problems of configuration visibility that I discuss in the
next section of the paper.

4. Configuration problems

Large-scale ERP systems are so complex to
configure that development is usually the responsibility
of the system supplier. User-configuration is
practically impossible because the learning time for the
system is so long. However, for smaller-scale ERP
developments (e.g. using open source ERP [4]) or for
COTS-based development, the system owners are more

likely to be involved in the configuration process. This
was the case in the systems that we observed where the
system owners set up an internal project team to
develop and deploy the systems.

We discovered that there were three principal
sources of difficulty faced by CbC developers:
• Understanding the configuration options
• Understanding the configuration semantics
• Understanding how a system is configured

Most configurable systems offer a range of different
configuration options with, sometimes, subtle and
difficult to understand interactions between these
options. Sometimes, these options are obscure and
poorly documented and there is rarely information
available about how different options may interact.

For confidentiality reasons, we cannot discuss the
specifics of the applications that we have studied but
the same problems also arise in PC software. For
example, my version of MS Word offers at least 8
different ways to configure the system:
• Preferences screen
• Customisation screen
• Organiser screen
• Definition of templates
• Definition of styles
• Definition of macros
• Inclusion of add-ins (e.g. Endnote)

Even with 20 years experience of using Word in
many different versions, I would find it hard to explain
what each of these does and how they interact.

Once a developer has discovered the different ways
to configure an application, he or she is then faced with
the problem of deciding which options to use.
However, the semantics of the configuration options
are rarely explicitly defined and developers have to
rely on (often minimal) documentation and examples
to try to understand them. The configuration options
may reflect the underlying semantics of the system
being configured and so developers have to infer these
to understand the configuration possibilities.

When you are developing a software system, it is
useful to be able to predict the consequences of
changes to that system. Unlike a conventional
programming language where the programmers
understanding of the language semantics is used to
decide how to implement changes, changes to
configurations are typically experimental. The meaning
of the configuration is defined by the underlying
system, which is a black-box. Over time, gurus emerge
who can make things happen with a system but cannot
explain why these happen and cannot effectively
transmit their knowledge to others.

The problem of understanding the current
configuration of a system is a critical one for the

development and maintenance of a system. We have
never yet seen any configurable system where there is
a simple way of displaying the current configuration.
This means that building an overall picture of a
configuration is very difficult. This situation is made
worse by the fact that configurations cannot be
maintained in a version management system. There is
therefore no single description of a configuration
available.

This causes problems where changes to the system
are proposed and have to be costed and implemented.
Assessing the impact of a change is generally very
difficult, even when system design documentation and
the code of the system programs is available. It is even
more difficult in configurable systems for two reasons:
1. The co-design process where system requirements

are developed alongside the implementation means
there is no specification of the system. This, of
course, is also a problem with some agile
development approaches but there, at least, the
code is available to define the system. In
configurable systems, there is no single description
of either what should be implemented and what has
actually been implemented.

2. It is not enough simply to understand the
configuration to assess the impact of a change. It is
also necessary to understand the underlying COTS
system. During development, where consultants
from the system supplier are available, this is less
of a problem. However, after the system is handed
over, gaining access to system information may be
much more difficult.
The consequences of this are that the change costs

may be much higher than expected and may take much
longer than expected. For example, in the patient
information systems that we observed, a small change
to the user interface that was originally predicted to
take 2 or 3 days ended up taking 6 weeks to
implement.

4.1 Process configuration

As I have discussed, it is generally accepted that

ERP and COTS system developments can only be
successful if the business processes are configured to
match the process model that is assumed by the
software. Typically, therefore, the deployment of a
new system involves process change. This is often
welcomed by the organizational management who see
it as an opportunity to improve and control of business
processes and to ensure these are standardized across
the organization. New processes may allow more
effective use of new IT systems.

However, things are rarely so simple. In almost 20
years of studies with end-user organizations, we have
never seen a process that has not been adapted to suit
the local circumstances. The individuals involved in
enacting processes always modify these processes to
make them more suitable for the way in which they
work. If they are forced to work with a standardized
system, they will simply add on activities outside that
system. For example, in a system that generated PDF
reports, we observed users making use of an MS Word
add-in that converted PDF to Word because they
needed to add additional information to the report.

However, if they have a configurable system,
enterprising users will discover how to do the
configuration and will make local changes to suit their
own requirements. We observed this in the patient
information system that was deployed across a number
of geographically dispersed clinics. The doctors in
charge of these clinics had evolved their own way of
working and of keeping patient records and they asked
local IT staff to modify the deployed system to reflect
this. Of course, this caused problems when the
information from different clinics was integrated to
create management reports.

It might be argued that this was a management
failure and that system managers should have retained
control over the changes to the system. However, there
are real practical difficulties here because of the
distribution of power and influence in an organization.
If a senior manager (or in this case, a senior doctor)
asks a relatively junior member of the IT staff to make
changes to a system, it is very difficult for them to
refuse to do so, whatever the organizational policy.

The possibility of relatively simple re-configuration
can also lead to situations where configuration
decisions are challenged and changed to reflect
changing political power and influence in an
organization. The patient information system that we
observed was originally chosen and deployed because
it had the capabilities to produce a set of reports that
were required by the healthcare management board.
These reported patient statistics under a number of
different headings which the managers assumed were
consistent with clinical record keeping.

However, the initial trial deployment of the system
caused major problems because the categories under
which the clinicians recorded patient information were
quite different from those used by the management
reports. They then insisted that the system be
reconfigured so that clinical categories where used and
that additional software was developed to convert these
to the management categories. This proved to be
impossible as the clinicians themselves did not have a
standard method of recording patient information.

Some compromise was therefore sought where
some management information was added to normal
clinical recording. The amount of this information
varied over time as different individuals were involved
in the development of the system and as political
power and influence changed. What should have been
a 6-week process of configuring the user interface for
the system, ended up taking almost a year before a
stable interface was agreed.

The adoption of a thin-client approach where all
interaction is with a central system makes end-user re-
configuration impossible. However, it does not change
the political realities where senior managers or
professionals argue that (sometimes rightly) that their
requirements are different from the rest of the
organization and they need special support. In such
situations, parts of the organization may simply play
lip service to the new system but will actually develop
their own parallel system to carry out their work.

We observed this in the university administrative
system where the system assumed that all departments
sent standard letters to students. In fact, departments
which had problems in meeting their student
recruitment targets (such as engineering and computer
science) sent personalized letters because they believed
this would attract students to them. As personalization
was impossible in the university system, they simply
maintained a parallel system to meet their real
requirements.

5. Research challenges

Construction by configuration is a well-established
development method for organizational systems.
However, as I have discussed, this approach can be as
problematic as other approaches to software
development yet it has received very little attention
from the software engineering research community.
This has occurred for two reasons:
1. Many software engineering researchers are simply

unaware of the scale of the change that has taken
place. The changes to development practice have
been driven by business rather than technical
considerations and have had very little publicity in
technical literature such as the Communications of
the ACM, IEEE Software, etc.

2. Application systems are difficult to study in a
university environment. These systems are
expensive to procure and can only be used with
business knowledge which is lacking in a
university. However, open source middleware is
widely available (e.g. Apache Axis) and this often
has the same configuration problems.

This lack of involvement does, of course, cause
credibility problems as it makes it much more difficult
to explain the value of software engineering research.
It also means that those involved in the CbC process
find it impossible to relate their work to good software
engineering practice. Methods and tools are reinvented
and mistakes are repeated.

I believe that there are intellectually challenging
software engineering problems in this mode of
software engineering that the SE research community
should tackle. These relate to both the COTS systems
that are being configured and the configuration
engineering processes.

5.1 Design for configuration

In the configurable systems that we have observed,

it seems that little attention has been paid to the
problem of design for configuration. What I mean by
this is that the designers of COTS systems should
recognize that configuring a system is time-consuming
and expensive and that the generic system should be
designed to simplify the configuration process and to
reduce the probability of configuration errors. As
researchers, we need to explore the notion of
configurability and to establish design principles and
guidelines for developers of configurable systems.

There are at least 3 areas where research is required:
• Design principles for configurability. What

principles should be applied when designing the
configuration options in a system?

• Configuration visibility. What do users require
when trying to understand a configuration and how
is configuration information best presented to
them?

• Configuration description. How can we move away
from low-level configuration to configurations that
are a better reflection of business policies?
Good software design principles (such as

information hiding, low coupling, etc.) have been
established over many years but it is not clear how
these apply to configurable systems. I believe that there
is scope for research examining how these fundamental
design principles can be applied in configurable
systems and reflected in the configuration support
tools. Examples of design principles that might apply
to configurable systems are:
1. Manageability. In every system we have observed,

it has been impossible to get an overview of the
configuration then drill down through this overview
to configuration details. In fact, it has usually been
impossible to generate a complete view of the
whole configuration. I believe that COTS systems
should be structured so that the configuration is

maintained as a separate, structured entity that can
be managed as a unit. As I discuss below, facilities
should be provided to allow the configuration to be
viewed and navigated by configuration engineers.

2. Minimisation. A serious problem with configurable
systems is that there are often several ways to
implement a configuration. It is difficult for
designers to understand which of these is best and
how they interact. The principle of minimization is
that the number of configuration options that allow
the same feature to be implemented should be
minimized. Ideally, there should be only one way
to implement a feature of a system.

3. Separation. Problems sometimes arise because
configurable systems may not separate the
configuration of the system for platform
characteristics from the configuration of
functionality? There is a need to identify distinct
types of configuration and examine how these
should be supported.

4. Independence. Following the general design
principle of low coupling, the interactions between
the different parts of the configuration should be
minimized. Required interactions should be explicit
and clearly documented.
As I have already discussed, configurable systems

do not usually make it possible for developers to view
the configuration ‘as a whole’. Rather, they must use
the different configuration options in turn to examine
what has been configured. Relationships that exist
between different parts of the configuration are not
usually made explicit in these views.

There is a need for tools that allow engineers to see
the ‘configuration state’ of a system and to explore
dependencies across that state. Software visualization
research has focused on viewing program entities and
their relationships [5]. Perhaps this can be developed
and extended to cover configurations and the
relationships between configurations and the
underlying system components?

Configuration of systems is an error-prone and ad-
hoc process because the configuration is defined in
terms of the underlying system entities rather than the
organizational requirements and policies that must be
supported by the system. We can see an example of
this in security configuration where high-level security
policies have to be translated into detailed commands
to manage access control lists, etc.

One area of possible research, which is linked to the
issue of configuration modelling, discussed in the
following section, is to explore whether or not higher-
level policy languages can be used as a basis for
defining configurations. That is, the organization sets
out what it wants to do in some policy language and an
automated translator creates the configuration

commands from this. Of course, this relies on
configurations being separate from the application
being configured

5.2 Configuration engineering

As well as research focusing on design for
configuration, I believe that there is also scope for
research concerned with ‘configuration engineering’.
This should focus on the process differences between
code-based development and construction by
configuration. Possible research areas include:

• Knowledge management
• Configuration modelling
• System testing
• Supporting processes

Most of the problems that arose when configuring
and deploying configurable systems were a
consequence of poor knowledge management. In all
cases, someone in the organization knew of and
understood the problem but this knowledge was simply
not transmitted to managers, the development team
members or other users. All to often, we heard remarks
like ‘I knew this would be a problem’ and ‘we have
that problem too’. Users, in particular, were very poor
at sharing their knowledge.

I believe that the most effective way to tackle this
problem is to develop more effective systems for
knowledge management that makes it easier to capture,
classify and share knowledge about assumptions, the
organization and the system itself. Such a system could
also help integrate supporting processes such as change
and quality management.

The modelling of software systems to remove
inessential detail is accepted as good software
engineering practice [6]. While system configuration
makes use of business process models, we do not have
methods and techniques for modelling other aspects of
the configuration. Starting with a model of the generic
system to be configured, is it possible to add detail to
this to define the specific configuration. The extent to
which this is possible with closed soruce systems is an
open question but it is an area that I believe is worthy
of further research.

System testing during CbC is a major problem
because tests are to validate the system rather than
verify it against a defined specification. This validation
is difficult because of the new processes that are
introduced alongside the system. Problems may be
process rather than software related.

There is scope here, perhaps to explore test-first
development as practiced in some agile methods [6]
and to investigate whether the requirements
engineering processes should be oriented towards the

definition of tests that can be applied by a development
team. Other research issues in testing include the
problems of providing test coverage and automated
regression testing tools.

Finally, the supporting processes of configuration,
change and quality management are different. We need
to understand what are the quality attributes that should
apply to a configuration. User-led change will remain
an issue for many configurable systems and there is a
need for change and configuration management
support that is user-accessible and that can be
integrated with more general knowledge management
support.

6. Conclusions

Construction by configuration is now perhaps the
most widely used development technique for large-
scale organizational information systems. However,
problems with this approach are well-known. Delays in
delivery, unmet organizational expectations and user
dissatisfaction are common. However, academic
research into these problems and possible solutions is
relatively limited and few researchers have explored
how good software engineering practices can be
adapted to support construction by configuration.

To research effectively in this area, we need to
come out of the laboratory environment and interact
directly with the businesses and organizations
developing these systems. Approaches such as
ethnographic studies [7] and action research [8] are
required to develop an understanding of the problems
and issues faced by CbC developers and to investigate
the real utility of new tools and technologies.

Of course, there are very real difficulties in
interacting with industry and studying systems as they
are, rather than as researchers might like them to be.
Industrial interaction takes a lot of time and
confidentiality issues may limit the possibilities for
research dissemination.

It is always tempting to use more manageable
laboratory examples and to test new techniques on
simplified systems. However, as we have seen from 30
years of software engineering research, this approach is
often unsuccessful. The complex reality of systems in
use makes it impossible to use techniques that may be
technically superior but which, for practical reasons,

are unusable in most industrial settings (e.g. formal
methods).

Construction by configuration has immense
economic significance. As a research area, it offers
new challenges and opportunities to the software
engineering research community. I believe that it is
now time to embrace these challenges and to
demonstrate the relevance of software engineering
research to modern software development.

10. References

[1] Everdingen, Y.V., Hillegersberg, J.V., Waarts, E. ‘ERP
adoption by European midsize companies’, Communication
of the ACM, Vol. 43 No.4, April 2000, pp. 27-31.

[2] Law, C.C.H. and Ngai, E.W.T. ‘ERP systems adoption:
An exploratory study of the organizational factors and
impacts of ERP success’. Information & Management.
Volume 44, Issue 4, June 2007, pp 418-432.

[3] Morisio M., Seaman C.B., Basili V.R., Parr, A.T., Kraft
S.E., Condon S.E. ‘COTS-based software development:
Processes and open issues’. J. of Systems and Software,
Volume 61, Number 3, 1 April 2002 , pp. 189-199.

[4] Serrano, N.; Sarriei, J.M. ‘Open source software ERPs: a
new alternative for an old need’,� �IEEE
Software,�Volume 23, Issue 3, May-June 2006 pp 94 – 97.

[5] Gracanin, D., Matkovic, K., and Eltoweissy, M.
‘Software visualization’, Innovations in Systems and
Software Engineering: A NASA Journal, Volume 1, 2005, pp
221-230.

[5] ‘Model driven engineering’. IEEE Computer, Special
Issue, Volume 39, Issue 2, February 2006.

[6] Beck, K. Extreme Programming Explained: Embrace
Change, 2nd Edition, 2004. Addison-Wesley.

[7] Hughes, J.A. and Shapiro, D. ‘From Ethnographic record
to system design: some experiences in the field’. Computer
Supported Collaborative Work Volume 1 Issue 3, June 1993,
pp 123-147.

[8] Avison, D.F., Myers, M. D. and Peter Axel Nielson,
P.A.. ‘Action Research’, Communications of the ACM, Vol.
42, No. 1, January 1999, pp. 94-97.

