
Information a d Sofwarc TechnoLost 1995 37 (4) 203-21|

MGA: Rule-based specification of
active object-oriented database
applications

Pete Sawyer and Ian Sommerville
Computing Department, lancaster University, Lan aster LAI |YR, UK
e-mail:sawyer@uk.ac. lancs.comp

This paper describes a model for developing applications of active object-oriented databases
based on three orthogonal concepts; methods, guards and actions and a tool which implements
these ideas called MGA. MGA objects are active; they have guards which constrain the object,s
stat€, actions which maintain databas€ int€grity when the obj€ct,s state changes, and methods
through which the obj€ct proyides other services. These active components are implemented as
(collections ol) rules and rules are in turn modell€d as objects.

Keywords: active dalabases, object-oriented databases, rule-based, forms

This paper describes MGA (Methods, Guards and
Actions); a tool for the declarative specification of
applications of an active object-oriented database (OODB).
In MGA, an application is defined as an object class
encapsulating attributes and methods. Application classes
are active in the sense that they embody procedural
semantics through methods and through actions t ggered
by write operations on attributes. In addition, guards
constrain the conditions under which attributes can be
accessed. Methods, guards and actions are all rule based
and MGA allows an application class, including its
behavioural semantics to be defined by form-filling.

Methods, guards and actions, along with the notion of
inheritance, are the major concepts which a user of MGA
needs to know. MGA conceals the lowlevel details of the
data model. It contains libraries of method, guard and
action classes which can be instantiated and composed to
form applications. Because applications are modelled as
classes, and because classes are themselves objects
(instances of meta-classes) they are stored in the database,
making them easily retrievable and tractable to reasoning.

In the remainder of this paper we present a brief
overview of active OODBs, followed by an introduction to
the MGA programrning model and a detailed examination
of a small application's implementation. We conclude with
a brief discussion of some of the issues surroundine the
integration of rules and OODBs.

Deductive OODBs

Deductive databases are those in which data has the

0950-5849/95/$09.50 O 1995 Elsevier Science B.V. A1l rishts feserved

ability to react to stimuli. One of the most useful features
of deductive databases is the ability to define integrity
constraints for entities and to have these maintained
dynamically in response to changes to the data. Such a
mechanism can be used to augment typing schemes
(perhaps by defining a constraint which imposes a subrange
on an entity's type) and is also capable of expressing
relationships such as one-to,marly mappings between
entitiesr. Active'� databases provide the additional capacity
to denne arbitrary dynamic behaviour triggered by events
such as state changes.

This reactive behaviour is often encoded as rules of the
form <predicate, body) where the predicate represents
some event and the body specifies some action to be taken
in response to (triggered by) that event. For example, a
change to one item of data may automatically propagate
changes to other items of data to maintain a specified
relationship between them. Another example might be
where an attempted write operation is aborted if the
condition specified by the predicate is not satisf,ed.

An attractive feature of deductive and active databases
is that the semantics governing evolution of data are part
of the data. This contrasts with passive databases where
access rights to data are mediated only through the
standard application intedace of the DBMS with any
additional semantics having to be defined in all the applic-
ations which access the data. As such applications are
necessarily external to the DBMS, change to the data
model and/or the application(s) can easily lead to mutual
inconsistency.

The general problem of capturing data semantics within

203

Actit)e object-oriented datltbase applicatiotrs: P Sawyer and I Sommerville

the database is one of the motivations behind the
de\eloDment ol OODtss . Here. dala ir modelled as
objects with access to objects and their components strictly
prescribed by the interface offered by that object. Object-
orientation is promoted as the answer to many of the
problems in 'traditional' DBMSs such as the impedence
mismatch between application and database data models.
However, the maintenance of relationships between objects
or between object properties is supported in a quite
different way than through database integrity rules.

Access to objects' state, to read or write an attribute, is
provided in most OODBs by attribute access methods. In
those systems which emphasize information hiding (such as
Vbaseo and its successor, Ontos), the mechanism used to
constrain an attribute's access is to overload the standard
attribute access method by writing a new method specilic
to that class (and its subclasses). This is a low-level
mechanism which contrasts with the philosophy of
declaratively specilied database rules monitoring database
events and being fired whenever their predicate parts
become true.

Consider the case of a derived value method5 which
returns a result calculated from the value(s) of an object's
attribute(s). The method will calculate and return this value
on receipt of the appropriate message. What is lacking in
most OODBS is a mechanism for generating that message
internally as a result of a change to one of the attributes
from which its value is derived. The integrity relationship
is one-way only; the attributes are unaware of any
dependency upon them. This poses problems for OODB
applications which access data through fine-grained
transactions but which nevertheless require their copy of
the data held in memory to be consistent with the data in
the database at all times.

For example, an application which displays an object of
the type just described and allows users to interact with it
may, on receipt of a user-generated event, forward a
message to the object resulting in a change to the state of
an attribute upon which the derived value method depends.
The application's problem is that it does not know that the
change to the attribute renders the user's representation of
the object inconsistent because the value returned by the
method when it was invoked before the change to the
attribute is now wrong.

Part of the problem is the perceived mismatch between
the object-oriented and rule-based or declarative
programrning paradigms. There are, however, OODBs
which provide declarative database programming
languages, for example Adam6, Kiwi78 and Mokume.
Each one of these systems is deductive in that they have the
notion of rules and internal events. In addition. Medeirosr0
has implemented integrity rules in O""; an OODB whose
database programming language i5 procedural (a flavour of
C). It can be seen therefore that active rules can co-exist
with object-orientation in database systems. In addition,
Adam and Medeiros's work demonstrate that the object
model can be exploited by modelling rules as objects.

This is the approach taken by MGA where we also
distinguish between attribute access methods and other,
general methods. General methods are define as collections

204

of rule objects and are invoked by the receipt of the
appropriate message. Attribute access methods are fixed
but may be augmented by rules acting as pre and post
conditions; guards to filter out illegal update attempts, and
actions propagate consistency updates on the successful
completion of an update.

The MGA programming model
An MGA application is an object which the user
parameterizes by assigning values to its attributes and
invokes by sending it messages. The programmer specified
the application as an object class which encapsulates a set
of services (methods invoked on receipt of a message) and
a state space (attributes). Write access to attributes is
constrained by guards which intercept requests to assign or
delete values and disallow the update if some specified
condition is not satisfied. Actions are methods triggered
by the successful assignment or deletion of attribute
values. Methods, guards and actions specifled for an object
class are inherited by subclasses but may be overloaded.
MGA applications are flrst-class objects and are therefore
persistent so application states can be stored in the
database.

An example MGA application: bDe

Before describing methods, guards and actions in more
detail, we illustrate MGA by describing how an interactive
application called bbe (browse-by-example) has been
implemented. Bbe is at object class which mimics, in an
object-oriented manner, by-example tools of the QBEr'�.13
family. Bbe allows users to retrieve and manipulate
database objects. The user supplies the name of the class in
which they are interested and ,be returns the set of all the
instances of that class. The user can then further constrain
this set by filling in a template of the class and bbe will find
all the objects which match the template. For example, bbe
allows a user to find all objects of the erpenses class whose
pdyee attrlb\tes have the value 'F.Smith'.

Our MGA implementation uses a dynamic forms user
interface metaphor (described in Sawyer and Sommer-
ville'") in which objects are represented as graphical
forms. Attribute update messages are invoked by typing
values into lields labelled with attribute names, and other
methods are invoked by 'pressing' buttons labelled with
method selectors. 'Set' attributes (those which acceot
multiple values.l are inde\ed with Lhe tota I number of r aluis
and the index of that currently displayed, indicated
numerically beneath the attribute name. Additionally, a set
of values may be viewed in a scrollable pop up window
(invoked from a pull down menu attached to the attdbute
name).

As shown in Figure l, bbe consists of the following
components:

Attributes

Bbe has three attributes which allow the user to supply the
required class name and which return references to
instances of the class:

lnlotnation and Sofwarc Technolo$ 1995 yotune 37 Nunber 4

al
I-l .rat€

1l
{ l p a y € s : ' F . S ' n l ! h .

|t
t " , " . J s u h - c r a r i s
object I : A

al
l l tote I

c@
rE;tGi;-)

c la6s : ENpenses

a)
t " . " J i ns tances : o f ys57_91
oblect 1 1

[" , . J ha rch . s : c s .] 4 -e r
obJect 2 : I

Figure I interactrng wirh bb?

. c/aJJr Accepts the name of an object class. The user has
write access to this aftribute but a guard rejects values
which are not class names. When a valid class name is
assigned an action automatically generates values of
instances.

. instances: Accepts referencas to every object which is an
instance of the class represented by the yalue of class.
Guards restrict external access to be read only and
constrain values to be references to instances of the class
specified in c/a.s.s. The action attached to clas.r finds all
the instances of the class and assigns the set of
(references to) the\e to inyanr'e.,.

. matches: Accepts references to instancas of the class
represented by the value of the c/ass attribute but which
also match a 'template' object of the same class (created
by the templqte method). The set of values is a subset of
those of the instances attribrte. Again, write access is
strictly local. Values are assigned by the match method,.

Methods

Bbe has six methods which are used for browsing and
manipulating the objects referenced by the attributes. The
first three methods listed below are common to all objects
with which the user may interact directly;

. die. Defetes the instance of bbe from the database.

. o2er: Displays the bbe object at the user interface.

. sft,rt. Removes the bbe object from the user interface.
The object persists within the database.

Informtttion and Sot'warc Technolosy 1995 Valume 37 Nu/nber 4

Active obiect oriented database applications: P Sawyer and I Sommerville

. template: Creates an instance ofthe object class specified
in the class attribute. For example, if class contains the
yalve expenses, then template will create a new instance
of exper?seJ to which the name 'template' is assigned and
whose attributes contain default values.

. match: Once a template object has been created by the
template method, the user can use it to supply 'example'

values to its attributes in order to select the set of objects
which have identical values. An unassigned attribute in
the template is taken as a 'don't care' condition. The
match method performs the comparison between the
template and its sibling objects, assigning references to
matching objects to the matches attribute in DDe. For
example, if the user is interested in all expenses claims
from F.Smith, then match will return references to all
instances of expenses whose pcyee attribute contains the
va lue 'F .Smi th ' .

. vlew. Sends an opeD message to a selected object
referenced by the aatcre,r attribute.

Using ,D? typically entails the following order of actions:
A class name is typed into the class field and references to
all its instances are returned yia the instances field. The
templqte method is invoked and a template object is
created. The user types example values into this object's
fields and invokes bbe's match method. The subset of
objects which match the template are returned via the
matches field and these can be opened ustng bbe view
method as required.

to<

Actitje object-o ented database applications: P Sawyer and I Sommenille

message x

Figure 2 General form of method and rule invocation

Figure lx illustrates an instantiation of Dbe (forms are
labelled with the corresponding object's id, in this case
bbe:bbe1) being used to browse experises objects. A
template for erper?ses objects (labelled expenses :template)
has been parameterized ard bbe's m.rtch method has been
invoked to select the two instances of expenses (cs34_91
and cs36_91) whose payee attribute contains the value
'F.Smith' from a total of seven €rp€r,re.r objects.

Having illustrated bbe's implementation, we now
describe the three main components of MGA's pro-
gramming model.

Methods

MGA adopts a convsntional view ofmethods but its method
implementation mechanisms are novel. In most object-
oriented languages, methods are indivisible sequences of
instructions executed on receipt of a message. Methods in
MGA are composed of discrete, individually executable
components. They allow applications to be prototyped
using a small set of highlevel building blocks.

MGA views methods as sets of <predicate,action> pairs
called rules. The set of a method's rules is ordered in a
scripl. The first rule's predicate is a message requesting the
method's invocation. Subsequent rules' predicates are
defined as the successful termination of the preceding rule's
execution. Because rules are modelled as objects, they are
typed (as classes); the prograrnmer builds a rule script by
parameterizing instances of rule classes and appending
them to the script. When a message is received by an
object, the appropriate method script is executed, each rule
being evaluated in order. Figure 2 illustrates the general
form of a method invocation where arrows represent
messag9s.

For example, bbe's template method contains two rules.
The first rule is of a type which creates a new object (by
sending a new message) and the second is of a type which
sends a programmer-specified message. These rules are
parameterized by the programmer to specify the class and
name of the object to create, and the selector and 'target'

object of the message to send, respectiyely. When template

is executed a new 'template' object is created which is then
sent an oper? message.

Method rules and their effects currently defined in MGA
are as follows. Where:

c:i represents an object id of the form
(class);(instance).

class:c means the object representing the class c; an
instance of the c/4Js meta-class.

The syntax

<target object id).(message selector>(parameters*)

is used for MGA messages.

create_instance_rule(c,i))class:c.new(i)
create a nev) instance i of class c

delete instance_rule(c,i)-)c:i.die0
delete the object c:i

assign_value_rule(c,i,a,v)-)c; i.value(a,v)
asstgn value v to attribute a in object c:i

delete value_rule(c,i,a,v)-)c:i.delete(a,v)
delete value y from attribute a in object c:i

send message_rule(c,i,s)-)c:i.s0
send message s to object c:i

Methods are represented as objects of class method
detail, orrc multi-valued attribute of which (called rzler)
represents the rule script. Rules are also objects whose
attributes act as formal parameters. .Rules' formal
parameter attributes encode the literal value or the source
of the actual parameters. Where parameters are not
specified by literals, the actual parameter value is given by
a reference to an attribute from which it is evaluated at run
time. Hence method parameters may be primitive values or
object identifiers.

For example, the creqte _instance_rurle (described
befow) belonging to bbe's template method creates a new
object of a class specified by bDe's class attribute. The fact
that this is the source of the actual parameter value is
encoded by the value ofthe rule's class_domqin attrrbute.

The effect of executing a rule is to generate a message.
In most cases, the generated message is fixed and bound to
the rule type - a create_instqnce_rule gerrcrates a new
message, for example. Send message rules differ
because the name of the message to send is supplied by the
programmer as a parameter.

Figure 3 shows the message template being received by
the obJect bbe:bbe[. The cldrs attribute contains the name
of the e:cpenses class and the instances field contains
references (indicated by the arrow) to all extant instances
of expenses. On receipt of the template message, the
template method is invoked. Figure 4 illustrates how the
method rules are evaluat€d and executed.

The template method's rule script contains the two rules
mentioned above. The first rule is the create_instance_
rule, and the second is a send_message _rule.

Execution of the method results in the evaluation of the
rules as follows:

Infomation and Sofware Technology 1995 Volume 37 Number 4

xNote that a button for lhe open method is absent - ,pen is an idempotent
operation so an object which is already 'open' cannor be re opened.

206

bbe: bbel.template0

Figure 3 An example method invocation

Figure 4 Method rule evaluation

Rule 1: create_instance_rule
The rule's two parameter attributes, class _domain and,
instance _domain speciff the class of the new object to
create and the name to be assigned to the new object. Their
actual parameters are derived as follows:

class_domain parameter: The actual parameter value is
derived from the formal parameter yalu,e VALIJE
OF.bbe.class. This specifies that the actual pammeter is the
value ofbbe's c/dJJ attribute, expenses (the syntax of rule
parameters includes tests for equality, set and subrange
membership and basic arithmetic relationships).

Information arul Sofiware Tethnology 1995 Volume 37 Number 4

Active object-oriented database applications: P Sawjer and I Sommerville

instance_domain parameter: The formal parameter value,
template, i.s the literal value of the actual parameter.

Following evaluation of the rule's actual parameters, the
new object expenses:tenq)late is created by sending a rew
message to the expenses class object (an instance of the
meta-type class). Here the class _(lonain parameter
specifies the target of the message and the instqnce_
domain parameter is the single parameter required by the
n€rr message.

Rule 2: send_rnessage_rule
The rule's three parameter attributes speciry the message to
generate and the object which is to be the message's
recrplent.

class_domain parameter: Again, the actual parameter is
expenses dewed from bbe's class attribute.
instanc€_domain parameter: As with the crsate
inslance _rule, the formal paramete r yalue, template, is the
literal value of the actual parameter.

Taken together the class domain a\d instance _domain
specify the target of the message; the newly created object
expenses:template .
message_selector parameter: The formal parameter
value, open, is the literal value of the actual parameter and
represents the selector of the message to be generated.

()nce the send message-rule has been evaluated, the
message ope, is sent to the nevr etpenses:template object.

Guards

Write access to objects' state is provided by two attribute
access methods yalue and delete. Guards are a mechanism
for filtering and constraining value and delete messages on
a per-attribute basis. Guards range from blanket protection
from deletion or assignment, through statically defined sets
of acceptable values, to specifications of the context,
relative to the state of other attributes and objects, under
which an update may or may not occur.

Guards are boolean predicates which act as filters on
attribute update messages. As with method rules, guards

class_domain: VALUE OF.bbe.class
instance_domain: template

class_domain: VALUE OF.bbe.class
instance_domain: template
rnessage_selector: open

207

Active objectoriented database Qpplications: p Sawler and I Sommerville

number: value(number,2)

value(number,l)
value(number,7)

domain_membe r(1,3,5,7,9 |)

fits_template(c:i)

rnaccessible0

val_member(c,i,a,v)

Write access to the attribute is
stflctly local, being performed
onry by one of the obiect,s
methods or by an action attached
to a sibling attribute.

domain_member(iv*}) The value (which may be of anv
type) must be a member of the
given set of values {v*}. If the
attribute is of a numeric tVDe.
one ofthe arithmeti" .^p.arrion,
: ' > ' > : ' < ' o r < = m a ' b e

used to specify the set.
class_member({c,r}) rle value must be a member of

the giyen set of class names.
instance_member(c,{i*}) The value (of fbrm c:i) must be

an object of class c whose
lnstance id is in the give set of
lnstance names.

The value must be a member of
the set of values held by the
g 'ven ob jec t ' s (c : i) a t t r ibu te (a) .
If borh the attribute beins
guarded and the attribute a are oi
numeric type, the parameter v
may be an arithmetic erpres_
sron. If v is left undefinei the
expression defaults to =.

domain_member({<= 5})

Figure 5 Guards as filters

are modelled as objects with one otro each suard,yp. e,i,ii".,Jiil:ii:::ffiff#ti
Y^.oj,':^Tl

pfeffer 0 in rheir consrrajni ;;;;il, ;1
:-

". """: I ne) atso modcl conslrainls as objects but
lnerr

processing of conslraint specifi cations differ",;;.;;r l
, includes

an analysis phase uhich ".nr.f,.. , i ,. auiuiir.sciema, identifies all methods which update the attribute inguesrton and^generates a \eparale conslrarnl objecr for each

::::it,i ;l,':H:f: l":;ff ji1",. 1'j;:.,:;
:5Tl*9

updates. Messages are routed via rhe guard

;ffilT,1,?;lJrds the messase ir it oo"s not co-nii.i
Guard types implemented in MGA are:

rnsrance_dependent(c,i) Wrik
" ";" ::,'::,:'J.permirted

ir

value_dependent(c,i,a,v) Write access ls only permitted if
the arrribure a Uetonging ro
object c:i has rhe value vl I iboth
the aftribute being guarded and
the aftribute a are of numeric
type, the parameter v may be an
arithmetic expression. If v is left
undefined the expression de_
faults to :.

th" t,otT:t parameters for guards are represented by theguard objects, attributes. S-omeunassisned wrrich specines a ,tlTlT:j:':,fr11,:: i:Xexample, &be's class attribute haltypectass_�membe;;il;#:,Xlli'"':1,ffi ll.-f T"ij
1,.:-.1, .1n.

name of a class from ,f,. ,", ,p..iii"i.ir,",f,icrass-�member guard.s single oarrtarioi ot bbe.;;;;#'; i;JH'::,j: T:,,;::iTI
:.11:n

r*} lhar any class name rs a vatrd value. Theexrstence of a class,member guard is suffcient to c^#
:lrln

rhg ser of valid values to"be ,f," ,", of "^,unt "fi$names, lts parameter serves to furtfr". "onri.uin ,iuiset,

_I:::r.-tlrlO
can be neeareo. so ror erample, a- ctass _menber guard constrains updales to ".a"1,""ry

I..th:,
value.s fall ourside the given sel ot class names.

:uur:.
,r: invoked on a"signmenr or delerion. Attributestherefbre have two guard scriots:

;f rcfr trer u,,ign;;,*,"";'#';::il:li1iTt"i:1:;
lr[errng delel,ions tdelete messagesl.

",,: i9.f.r:
t i ustrares auempls to assrgn a vatue lo anarrrlbute number being filtered b,

!::::,.=^ ", 1", -;l;; :;;;;,ol.,t',n:"3;J'";1.irtt
wnrch the attribute may acceDt. Wl

:i,ll,ibij. i,,"";;i";1.;i.i""',fiH"::t,'.l..l.llJl,;
:_n:'n.,,

, l : requesl js ro add or delele a vatue) is evaluaredandonly if all are satisfied may the update occur.rne as\rgnment guards altached ro bbe.s marches al_

Infornaion end Software Technotog) Jggs Votune 37 Nunber 4

The value must be an obiect
whose state subsumes that oithe
grven obJect c:i.

208

action rule 2
action rule 3

number:

Figure 6 Actions firing on assignment of an attribute value

tribute illustrate the implementation of MGA guards. There
are two guards, an instance member and a fts template
guard. These provide the bulk of the functionality for
the match method. Recall that this method's job is to
copy (references to) all the objects in the ir,rrar?ce,r attribute
to the matches attribute excluding those which do not
match the template object. In fact the job performed by
the match method is much simpler, it simply attempts
to copy every value in in.rlanceJ to matches by generating
a urzlae message for each. The filtering of objects against
the template is performed by the Its template guard
a\d the instance_member gtard guarantees that no
objects which do not appear in the instances attribute are
copied.

Actions

The objects involved in the execution ofan application must
remain mutually consistent. Actions are a trigger mechanism
which permit dependencies between attributes to be
specified. They are simply scripts of method rules, but
unlike the methods described earlier actions are invoked
only by the attribute update messages valae and. delete.
Actions may invoke methods of any kind.

One uselul function oI actions i\ to mainlain consisrency
where values are derived from attributes whose states may
be subject to change. As discussed above, the use of a
method which needs to be explicitly invoked in order to
calculate such a derived value fails to ensure that such
consistency is maintained- This is because an external
stimulus is needed to invoke the method while the change
of attribute value is an internal event. Instead, an action
can be attached to the attribute which, on the occurrence
of a value or delete message, automatically causes the
derived value to be recalculated. This is analogous to value
changes propagating from a change to a cell in a spread-
sheet. Here, the user does not need to laboriously discover
and recalculate the values of all affected cells when one
cell's value changes because an 'action' embodies the
relationship(s) and automatically recalculates related cells'
values.

Action rule types in MGA are the same as those for
methods and hence also implemented as objects. As with
guards, action scripts may be specified for both attribute
assignment and deletion. An action script is executed
after the successful evaluation of an attribute's guards
and the value assignment/deletion has taken place. Fol-
lowing the assignment of the value I to atfJib:ute number
in Figure 5, for example, the actions in the assignment
rule script for number are invoked in order of definition
(Figure 6).

Injormation awl Sofiware Technalog! 1995 yolune 37 Nunber 1

Actiw objecForiented database applicqtio,ls: P Sawyer and I Sommenille

An example action is the one bound to bbe's class
attribute which assigns values to the ifstalces attribute. On
assignment of a valid class name to c/as.r, references to all
the instances of that class are automatically assigned to the
instqnces atftibute. Because the action is bound to c/aJJ, it
is only invoked following a successful assignment, so the
class name must have satisfied all of the guards bound to
c/ass before the action is invoked.

Implementation

The current implementation of MGA includes a tool called
the form editor in which folms are the direct visual
mappings of the objects comprising a class definition.

Figure 7 shows part of bDe's definition. The fotm_
editor :form _editor_5 form contains the declaration of bbe
and includes fields containing rre's attribute names and
method signatures (these include attributes and methods
inherited from the class declared in the szperclass field).
To the top right of this, the method_detaiL:'bbe.template'
fbrm contains the method's rule script in the 'set' attribute
rzle.r (there are three rules; the create instance nlJe and
send message rule as described earlier, and a delimiting
rule which simply marks the end of the script), and the
create instance_rule: 12 form below contains the
create _instance _rule's formal parameters.

The use of a one-to-one mapping between forms and the
underlying MGA objects enables the user interface to
exploit the use of methods, guards and actions to guide the
programmer. For example, a new method is declared
simply by typing its selector into the form editor's method.s
field. An action attached to this field instantiates a
method detaiL object and displays it to the user, prompting
definition of the rule script.

Another feature is dynamic help obtained by selecting the
label of a field with the mouse cursor; a pop-up menu of
possible values derived at run-time from the field's type
and its assignment guards is presented from which the user
selects a value to assign to the field. For example, consider
the parameterization of the rrsslgn_va lue _rule object for
the assignment action bound to bbe's cLrss attribute. The
help system is able to infer that INSTANCES OF.bbe.class
is a possible value for the yalue tlomain parameter from
the facts that:

(a) the claJs attribute has a guard constraining its value to
be a class name; and

(b) the target of the action (bbe's instances attribute) has
a guard constraining it to accept only instances of the
class in the c/ass attribute.

A list of such possible values is presented to rhe
programmer in a dialogue box. The programmer can either
select one ofthese 'suggestions'or assign a different value
to the field.

Discussion

We use the terms guards and actions rather than constraints

209

3olocto. : t4plat€

rs les : 'create_lnsrancs_ruls.12'

3 : 1

g

I
{ " , . . .)(a

t l crass_naio : bbe

el
l l | accass_sta rus : unrocred

<-1
J ! sups rc r ssc : v , s i b r s - ob

t " , b . . J . t t r i bu tos : ma tches
a t t r i b 3 | 3

r ')
t " . " J rsthods : rs ip l l re_
method 0 5

fl

fl

$

-s.
ft

6. lsc to r : t snp la !€

cla8a_do.al n : 'VALUE 0F.bbs.ctass,

In i tencs_dor. l t | : t4plate

Active objecForiented database applications: P Sawyer and I Sommervillc

Figure 7 The form editor programming tool

and triggers because they are special cases of constraints
and triggers as defined by Bloom and Zdonikr5. A trigger
is a predicate and a body; given some event execute the
body. A constraint is defined as a special case of a trigger
where the body is an exception to raise. In MGA, an
action is always triggered by one of two events; the
assignment to or deletion from a given attribute of a value.
An MGA action is therefore a trigger with only two
possible predicates. With an MGA guard, the guard types
permit a wide range of possible predicates (for example
the yal_member type is a filter expressed as the con-
junction of an update event with a set of acceptable values)
but a default exception is enforced-the update is simply
disallowed.

Bloom and Zdonik identify two issues raised by con-
straints and triggers in OODB programming languages
which need to be addressed by a system like MGA. The
lssues afe:

. Implemetxtation, Triggering an action from some event
can be viewed as a side-effect. They argue that this
potentially makes application programming error-prone
because an assumption that a trigger exists may proye
to be false, or conversely, a trigger may be imple-
mented twice under the mistaken assumption that none
exlsts.

. Exception handling. The desirable propeny ofbeing able
to declaratively define exception handling once for an
attribute through a constraint causes potential conflicts
when individual operations require specific exception
handling.

210

We do not claim that MGA completely resolves either
problem, but the fact that guards and actions in MGA are
restdcted forms ofconstraints and triggers does localize the
programmer's problems. The principle virtue of MGA's
guard and action mechanisms is simplicity. Decoupling
guards from actions by making the execution of the latter
dependent on the satisfaction of the former restricts the set
of operations which can have side-effects and makes
excaption handling more predictable. In so doing we have
restricted the implications of the mismatch between good
practice in database and programming language design
identified by Bloom and Zdonik.

As described, guards in MGA implement static constraints
(those expressed on the state of the data at a given time).
Because we model guards as objects we could trivially add
new predicate classes providing two-stage constraints (a
restricted class of dynamic constraint) on single attributes.
Evaluating a two stage constraint requires that the state
befbre and after a transaction be compared, for example to
ensure that a new attribute value is greater than its existing
value. Guards simply intercept a request to update an
attribute so a two-stage constraint greater_than wo]uld
have both the existing value and intended value available to
carry out the comparison. The more general class of
dynamic constraint, where a sequence of updates is
described, is far more dimcult as it requires a history
mechanism and we have no plans to support them.

Conclusions
MGA is a prototype system designed to explore the poten-

Information and So|iware Technology 1995 Volune 37 Nunber 4

tial ofrules to embody object-oriented databases with active
properties. We have adopted an o hogonal programming
model where all objects' functional properties are modelled
as rules and rules are modelled as objects. This both augments
OODBs with an active capacity and exploits the object
model for the rule mechanisms' implementation. In addition,
graphical or form-based browsing tools can be used to
browse not only data but also objects' active components.

Methods and actions are implemented as scripts of rules
while guards are implemented as boolean predicates con-
straining write access to objects' attdbutes. Method/action
rules and guard predicates are modelled as objects whose
attdbutes represent parameters. New object classes are speci-
fied as named collections of methods and attdbutes with
appropriately instantiated rule and predicate objects deflning
the object class's functionality. Rules/predicates are typed
and the set oftypes is extensible by adding appropdate new
rule/predicate object classes to the system. This is not an
application programming task, however, but one which may
be used to tailor MGA to a particular application domain.

References
I Orman, I 'Constraint maintenance as a data model design criterion'

Computer J. Vol 34 No I (1991) pp13-79

Actire object-oiented database applications: P Sawyer and I Sommemille

2 Dayal. U 'Active dalabase management sysrcms' SIGMOD Record
Vol 18 No 3 (1989) pp 150 169

3 Zdonik, S B and Maier, D (eds) ReadinSs i'l objectoriented database
s]Jr?,nr, Morgan Kaufmann (1990)

4 Andrews, T and Harris, C 'Combining language and databas€
advances in an object-oriented development environment' Prdc.
OOPSLA 87 (Ocrobet 198?) pp 430-440

5 Kinm, W Introduction to object-oriented ddldbdsss MIT Press
(1990)

6 Diaz, O and Paton, N 'Sharing behaviour in an object oriented
database using a rule-based mechanism' Proc. 9th BNCOD,
Butterworth-H€inemann (1991) pp 11 -37

7 The Kiwi team 'A syslem for managing data and knowledge bases'
Proc. 1988 Esptit Technical Week (1988) pp 594 503

8 lnenens, E, Staes, F and Vermeir, D 'Browsing e h carte in object-
oriented databases' Conputer J. Vol 32 No 4 (1989) pp 333 340

9 van de Riet, R 'MOKUM: An object oriented active knowledge base
system' Data and Knowl. Ene. yol 4 (1989) pp 21 42

l0 Medeiros, C B and Pfeffer, P'Object integrity using rules'Proc.
ECOOP '91 Geneva (July 1991) pp 219 230

l1 Deux, O €t dl. 'The O, system' Conm. ACM Yol34 No l0 (October
1991) pp 34 48

-

12 Zloof, M M 'Query-by-example: a database language' IBM Sjstems J.
Vol 2l No 3 (197'7\ pp 324-343

13 Ozsoyoglu, G and Wang, H 'Example-based graphical database
query languages' IEEE Conputer Vol26 No 5 (May 1993) pp 5
38

14 Sawyer, P and Somerville. I 'Direct manipulation of an object store'
Sof. Ens. J. vol 3 No 6 (1988) pp 214-222

15 Bloom, T and Zdonik, S 'Issues in the design of object-oriented
database programming languages' Proc. OOPSLA '87 Orlando
(October 1987) pp 441-451

Information and Sofware Technology 1995 Volune 37 Nunber I 2ll

