& e

; s "\ {jbz>(_’ 62@\ ’4(4?“ E?Lh40 r&z‘la\ (4T’4f- 4 ‘ z 2‘i?§l‘&
London, 198i.

PROVIDING THE USER WITH A TAILOR-MADE INTERFACE

T

it —-.’ﬂ-—-/“f\f!"‘\,v\;“'\\

e

I.- Sommerville - &

Dent. of Computer Science, University of Stratheclyde, Glasgow, Scoetland

\ a
\ 2

2 This paper describes a system for generating user interfaces to
computing systems and an associated architecture which can
3 support many different interfaces ~Tumning simultaneously. By
1 using a pattern matching system, complex and/or informal user
i interfaces, tailored towards different classes of wuser can
easily be generated. The proposed architecture utilises
) programmable terminals and has the side effect of offering extra
system security features.

INTRODUCTION

; As computer hardware becomes cheaper, it 1is inevitable that computer applications
will become more diverse and that more and more people will directly interact with a
{ computer system as a normal part of their working life.

i In some cases, these interactions will-be with personal computer systems, in others, {
¥ the interaction will be with a dedicated transaction processing system and in yet
{ others, the interaction will be with a general purpose operating system or
i application system, offering a range of facilities to many diverse users. It is to
b this latter group of wusers, that is, those interacting with a general purpose
1 system, that our work is addressed.

{ Computer users interact with the computer via a human-computer interface which we
f term the user interface. In operating system terms, this is the job control
language but, nore generally, the user interface is made up of those commands which
allow the user to access and control system facilities irrespective of whether the
I system 1is an operating system, a database management system, an information
retrieval system or any other application system.

1 Existing computer interfaces which involve the user issuing system commands can be
classified into two broad categories:-

e

(1) Those interfaces tailored towards the user who has some computing
background and knowledge of computing terminology. An example of such an
interface is the interface to a time-sharing system such as Unix{l].

AL

4

(29 Transaction processing interfaces where the system 1is dedicated to a
single application. The system users are trained in that application and
in use of the computer. An =xample of such a system might be an airline
reservation system. Such transaction processing systems may run as
subsystens under a time sharing system - in this case the user does not
interact directly with the system but with the transaction processing
progran.

{
i
2
¢
:
ST

e ey b

.

Neither of these interfaces cater for the casual user who has no specialised
training yet it is almost certain that, as applications diversify, there will be
more and more users of this type. The computer system will become an everyday tool
in the same way as the pocket calculator has done in the past decade. We believe
that existing general purpose interfaces cannot satisfy the needs of the majority of
casual users because of their terseness, their specialised terminology and their
unsympathetic reaction to user error.

The range of users and their applications is so diverse that we do not believe that
any single user interface can satisfy all classes of user. An interface designed to
be verbose and satisfying to secretarial staff say, is irritating to programming
staff. A terse 'computer oriented" interface 1is confusing and frightening to
secretarial staff yet '"natural" for a programmer. Each user ought to be provided
with a system interface couched in familiar terminology rather than in machine
terminology. For example, a secretarial system should know about letters, memos,
reports and other documents commonly handled in the office. The secretaries should
not be forced to think in terms of workfiles, directories, file identifiers and
other terms derived from computing jargon.

Eason et al[2] have studied man-computer interfaces and have identified user
reactions to an unsatisfactory interface with the computer. Depending on the status
of the user, these reactions can be classified as follows:—

(15 The user refuses to make use of the computer system. After initial
"testing', he deems it inadequate for his needs.

(2) The user learns a few commands ''parrot fashion" and always uses these when
interacting with the computer system. Valuable facilities are not usad
because they are not understood.

(3) The user interacts with the computer system via an intermediary. This
mode of interaction was the only one possible with batch systems but it
hardly utilises the potential of interactive systems if individuals cannot
use the system directly to satisfy their requirements.

We believe that the only way to make computer systems acceptable to many diverse
users is to provide each user or class of user with their own system interface,
reflecting the work which they normally do. The provision of such a system with many
different user interfaces requires careful analysis of the needs of each class of
computer user and the implementation of a tailored interface suited to those needs.
If this analysis is not carried out, most users will react as described above.

We have not tackled the problem of interface design. Rather our work has involved
the construction of software tools to aid interface implementation. In the next
section of this paper we describe-a system which allows a large class of tailor—made
interfaces to be constructed at rz2asonable cost. This is followed by a description
of a systems architecture geared to supporting multiple interfaces and finally, we
draw some general conclusions about our system and associated architecture.

CONSTRUCTING TAILOR-MADE USER INTERFACES

A number of distinct types of user interface with a computer system can be
identified. These include interfaces built around terminals with special function
keys such as those used on many contemporary word processors, graphical interfaces
using a light pen or tablet, such as those used in CAD systems, and imperative
interfaces where the user types commands. These commands are interpreted by the
computer system. Our work is geared towards providing a system which will allow new
imperative interfaces to be generated for existing or proposed systems.

)

LR8 v on n i o el & galt hatel o i o el Jid

.

e

1

i)
2Rk

o s Ko

o =M,

bt e B Ay e A}

hiakd

e

i

>

TN Y N T B Sy W v g et e e

~

7 00 T S0 e B DT

s N

N

SO T e T R O S N)

g I T T

We make the assumption that there exists some general purpose for some particular
system which allows access to the full range of system facilities. Typically, this
interface allows access to facilities without safeguards, it 1is terse, oriented
towards the computer specialist, and frequently unreadable. Error messages are
couched in system terms.

To use a programning language analogy, forcing users to work with this general
purpose interface 1is comparable to forcing programmers to work exclusively in
assembly code. Our proposal is for "high-level" user interfaces which conceal much
of the details of the system and allow the user to expréss his demands easily. Each
different user interface is comparable to‘a high-level language and it is translated

into the low level interface before being interpreted.

Implementing the user interface as a 'high-level language" offers the same
advantages as do high level languages over assembly code. Systems are easier to
use, more understandable and more portable. If the underlying system changes, the
user interface compiler can be rewritten so that the user is not presented with a
new set of commands to learn. Obviously this is only true if comparable systems have
comparable facilities and we see a need for low—level interface standardisation for
each class of system such as relational data base systems, operating systems,
reservation systems etc etc.

Clearly each user interface requires its own separate "compiler" and we have
developed a software tool which is effectively a "compiler—compiler" permitting
low-cost generation of user interface translators. This interface generator allows
the user to speciiy a user interface along with associated system commands. The
casual user can then use this interface and a general purpose translation program
converts his commands to the appropriate system commands. As well as this, the
{nterface translator can coavert system replies to a form which is more sympathetic

to the user.

Briefly, our system operates as follows. The system designer specifies the user
interface in the formal notatiom illustrated, by example, below. This interface
specification 1s input to 2 table generator program which outputs a set of tables
representing the user commands along with associated system commands and replies.
These tables are input to a generalisad terminal processor program which accepts
user commands, looks up the appropriata table and generates the associated system
command. This is immediately passed to the operating system or application program.
The reply generated from the user commands can also be detected by the terminal
processor, looked up in a table of possible replies and translated into a form
understandable to the user.

The distinguishing feature of our system which makes it possible to specify complex
and informal user interfaces is the incorporation of a pattern matching system which
is used to identify user commands{3]. This pattern matching system has been
implemented om PDP-11, VAX and Z80 computers and offers significantly more power
than that available via regular expression matching or even SNOBOL4[4], a widely
used pattern matching language. The pattern matching facilicies make it easy to
specify flexible user interfaces where synonomous commands can be defined as having
exactly the same meaning. We can also build interfaces where the meaning of a word
within a command is dependent om its coatext = there is no requirement for continual
uniqueness - a frequently aggravating feature of computer systems. These facilities
are of immense value to the casual user who, if the interface is properly designed,
can type anything sensible into the system and it will respond with a sensible
reply. There is no need for memorisation of exact command syntax or formats.

The interface definition is specified as a sequence of patterns, ome pattern for
each user command. These patterns are translated into the low level form used by
the pattern matcher and output as a set of tables. The terminal processor resads in
these tables and, when a user command is input, calls the pattern matcher to
{dentify the command in the rable of patternms. If the user command is found, the
appropriate system command is then selea}qﬁd{ from a corresponding table and issued.

Similarly, when the terminal processor receives a reply from the system, that reply

can be looked up in a table of possible replies and the user reply detected and
issued.

In a paper of this length, it is not appropriate to provide a full formal
specification of the notation used t6 define the user interface. Rather, we present
a number of examples which illustrate the power provided by the pattern definition
facilities. L) '

An interface definition has three distinct parts:-—

1) The definition of pattern names and specifications. This is accomplished
using a let declaration.

€2) The definition of action procedures. These are procedures, coded in the
language of the interface translator which carry out run—time actions in
the interface translation. Within these procedures, reference may be made
to pattern names defined using a let declaration. Action procedures may

return a pattern, and this pattern can be associated with 2 name defined
in a let declaration.

(3) The definition of the user commands, the asscciated system commands, and
system replies and associated user replies. These commands are defined
using a define declaration and within this declaration reference may be
made to pattern names and action procedures.

An example of a let command might be the definition of a pattern representing a file
name:-—

let file = [a-z]#0-13

This specifies a pattern which must start with a letter and which may consist of a
letter plus any number of characters up to-13. The pattern [a-z] matches any single
character in the range a to z, the pattern #0-13 matches any string of characters
from length 0 to 13, naturally always matching the longest possible string. Valid
file names therefore might be x, myfile, interface.fil, and this.document.

0f course, the patterns declared in a let declaration may simply be character
strings:—

let directory = /users/secretaries
This definition associates the name directory with the string "/users/secretaries".
If pattern names are used in the definition of other patterns, that is on the right
hand side of let declarations, the name must be enclosed in angle brackets to inform
the translator that this is a pattern name rather than a simple string:-

let fullname = <directory>/<name)>
Essentially the let declaration normally defines a macro name and the table

generator program substitutes the "macro body" for that name each time it is

encountered on the right side of a declaration. Therefore the above declaration
becomes: -

let fullname = /users/secretaries/[a-z]#0-13

The power of the pattern matcher is such that the user can define patterns as a
sequence of alternatives or as "anything up to some delimiter”. TFor example:-

> z Fe
let edit command = 2dit!editor|change {modify|correct

4 = g4

T

-

-~ o9

)

- e %

“w Y W

ey

{

e S S e T O S S S S T S S o)

i

[

This specifies
"change', "modi

The let declara
let u

defines a patte
The special syr

let t

specifies that
command «

The let declarz
let s

In a system wh
matches <noun>
pattern should

pet e

Therefore if we
appropriate not

Action procedu:
of the interfac
called S—-algol]
that reference
let declaratio:
pattern names

completely pre
procedure. If

and the return:

The example be.
name. The name
let declaratioc:

acti
begi

end
This action pr
let

The:string re:
includes the

string user.a:
to the action

Tha user int
det%g;gtic:
priognal

B T LIRS T S v ST

-3 s

e

WO T Y W Y W

This specifies that the name edit command should zatch the strings "odit", "editor",
"change", "modify", "correct'.

The let declaration:-
let up.to.by = (by)@

defines a pattern which will match anything up to but not including the string "oyt
The special symbol $ stands for "end of command" so

let the.rest = ($)@

specifies that '"the.rest" should match everything up to the end of the current
command. =

The let declarations can introduce patterns which are context semsitive:=
let subject = <nound>!<verb>!

In a svstem where <noun> and <verb> ar defined as patterms, the pattern "subject"
matches <noun> only if it is followed by <verb>. Conversely, we can specify that a
pattern should only match when it does not appear in some particular context:-

let object = <noun>!T<verb>!

Therefore if we had simple commands made up of nouns and verbs we could identify the
appropriate nouns representing the subject and object of the command.

Action procedures are specified by the interface definer in the programming language
of the interface translator. In this implementation, this is a programming language
called S-algol{5]. They are exactly as any other procedures in that language except
that reference may be made within these procedures to the pattern names defined in a
let declaration. A preprocessor scans the procedure code, replaces references to
pattern names by strings representing the pattern and once, the procedure has been
completely preprocessad calls the S-algol compiler to check the syntax of the
procedure. If an action procedure returns a value, it must be returned as a string,
and the returned string is considered to be a pattern definition.

The example below illustrates a simple action procedure which asks the user for his
name. The name is returned as a string and the action procedure may be called in a
let declaration to assign that string to some name.
action procedure get.name(->string)
begin
write '™ello, please type your name n"
read.a.line(s.1)
end !getname

This action procedure would be called as follows:-
let user.name = action get.name

The string returned by get.name would be named by user.name. When a let declaration
{ncludes the word action, the system associates a "don’t yet know'' value with the
string user.name. On the first reference to user name in a define statement, a call
to the action procedure is filled in to find the actual user name.

F e

er {nterface being defined-is specified usisg define declarations. A define

defines the tem

pticoal ‘reply’ part which

ST

ararion has thres parts = the user command, the associated system command andian -
eplies and | the corresponding user -

|
f
] !'
9;
|
r

e et ot

translations of these replies. For example:-

define <edit command> as
ed workfile
end

Again, if pattern names are used, they must be enclosed in angle brackets. This
declares that <edit command> is translated into '"ed workfile". .However <edit
command> matches a number of strings so that the user commands ''edit!, "editor”,
"eorrect”, "change'" and "modify" are synonomous and all have the same effect.

Naturally user commands may be translated into a sequence of system commands. For
example:—

define get <file> as
cat <directory>/<filed> >workfile
cat workfile
end _
This defines a get command which makes the named file the current workfile and lists
it on the user’s terminal. Notice that in the case, the user types a simple file
name and it is automatically converted to the full name of the file.

A reoly part may be associated with a define statement. In the reply part, the
possible system responses are listed along with their translations. For example:-

define <edit command> <filed> as
ed <directory><file>
and reply:
"no file" : " I am sorry, I can’t seem to find your document
; Could vou please check that the name
Hi is correct”
i "10 permission' : " I am-sorry this is a private document and
! you may not modify it"
end
In each case, the terse system reply is translated into a form less likely to

intimidate the casual user.

If an action is to be associated with a reply, the action procedure must be provided
and a procedure call included in the define declaration. This permits a more
sophisticated respouse to certain replies than simple message translation. For

example:—

define <edit command> <filed> as
ed <directory>/<file>

and reply:

"no file" ¢ "I am sorry, I can’t seem to find your document’;

action findnearest(<directory>,<filed)

end

if "no file" is returned, a message is output and the routine findnearest called.
This routine takes as parameters the directory and the file and perhaps may search
the directory for the closest match to the specified file and suggest to the user
that this file might be the file intended.

These examples illustrate the potential of the user interface generator and we are
presently evaluating the system by generating a secretarial interface to a Unix
time-sharing system. This interface will allow access to word processing,

information retrieval and electromic mail programs avdilkabdble under Unix.

s

AN T R S R S

The present ¢
communicating

providing int¢
system is not
we envisage tb
overhead invo:
following sect
multi-interfac
the existing i

SYSTEM ARCHITE

As micro com
appropriate i
interface tra:
dedicated to
requirements.

We assume tha
operating or
which transla

Not only doe:
hence 1increa
developed Io
Further, bec:
circumstances
reduced user

Providing lo
system secur:

(1 Th
hi:
bu
pT
fa

(2) e
lc
ac
in
iz

(3) 1
de
fe

%) B

<

ot

Of" course;,
provided =t
interpreter
terminals.

(1

d
r

e 4w ey oy

I Y SO

The present system involves implementing the interface translator as a process
communicating with both the operating system and the user terminal. The overhead of
providing interface translation is acceptable in our existing system. If the
system is not heavily loaded, the-user response time is roughly doubled. However,
we envisage that if we were to try and support many different user interfaces, the
overhead involved in a conventional implementation would be unacceptable. In the
following section, we describe an alternative' system architecture for supporting a
multi-interface system which we consider offers many advantages when compared with
the existing implementation technique.

SYSTEM ARCHITECTURE

As micro computer hardware is now relatively cheap, we believe that a more
appropriate implementation of a multi-interface system is to distribute the user
interface translation either directly to the user’s terminal or to a microcomputer
dedicated to a number of terminals used by a group who have similar interface
requirements. .

We assume that a general purpose ''computing oriented" interface is provided by the
operating or application system. The users terminal contains a preprocessor progranm
which translates the user command to the appropriate sesquence of system commancs.

Not only does this approach reduce the load on the central computer system, and
hence increase overall system performance, it also means that interfaces can be
developed for existing systems without disrupting these systems in any way.
Further, because some intelligence is distributed to the terminal, under certain
circumstances, such as data entry, it may be possible to provide some kind of
reduced user service if the central system is unavailable.

Providing local interface processing has a number of important implications for
system security and data privggyff

(1) The user may be permitted access to those system facilities relevant to
his application and no others. This can be accomplished simply by only
building knowledge of appropriate system facilities into. the interface
processor. Lt should be impossible to generate commands using forbidden
facilities.

(2) The terminal processor used to handle a particular interface can be
locared in an office where only those permitted to use that interface have
access. Any unauthorised user can easily be detected by the individuals
in that office and the system can be lock up when the office is unused. A
locked door is a potent weapon for deterring snoopers.

(@10] If an unauthorised individual gains access to the system, he will be
deterred from accessing private information simply because he he 1is not
familiar with the user interface. There is no need for users who do not
need to use particular facilities to know how to access these facilities.

(4) The user validation system may be distributed to the terminal interface so
that there is no need to keep a centralised om line record of user
validations. Therefore, it is impossible for unauthorised users to crack
the centralised validation system from any terminal.

0f course, under existing time sharing systems, a multi interface system can be
provided by implementing different user command interpreters and running these
interpreters as processes serving the appropriate user terminal or group of
terminals. It appears to us that this approach has two important disadvantages:-

o . 5% X o
It imposes. an extra load on the central systen decause extra processes

: »(if)_? :

have to be supported and serviced.

2) It is expensive to modify existing operating systems or applications
systems to provide a number of new interfaces.

As well as these absolute disadvantages, implementing the system undr an existing
operating system does not offer the security and privacy advantages -provided by a
distributed system. . o

To sum up therefore, we believe that the best way to implement a mlti-interface
system is to provide local facilities for translating particular interfaces to more
general system calls. This can be accomplished either by using a programmable
terminal or by using a microcomputer as a controller for a group of terminals.

CONCLUSIONS

In the course of development, it has become clear to us that defining suitable
well-tailored interfaces is a very difficult task indeed, simply because of the
communication problems which exist between computer specialists and those unversed
in computing terminology. We believe therefore that the most formidable obstacle to
the development of tailor-made interfaces 1is neither hardware nor software
capability but simply the human problems involved in ascertaining what constitutes a
well designed interface.

Our system makes no attempt to solve these problems. Rather, we have implemented an
interface translator generator which can significantly reduce the work involved in
developing imperative user interfaces for existing or proposed systems. This
reduction is particularly marked where the user interface is complex and/or fairly
informal.

The present implementation of our system appears to work reasomably well but it has
become clear to us that further development is required. Our system relies on user
errors being detected by the underlying system and an error message returned. This
message 1is then translated to a form understandable by the user. Whilst this
technique 1s frequently successful, there are situations where it breaks down,
particularly if one user command generates many system commands. Identifying which
command is associated with which error message 1is a difficult task. Further
developments must thersfore include more error checking and perhaps correction by
the tramslator. ;

We believe that one of the most important results of our work is the identification
of the advantages which accrue from distributing the user interface to the terminal
itself. We intend to transport our system to a Z80 based system in the near future
and use this 280 as a terminal controller. With this system, we intend to
investigate the extent of the privacy and security advantages offered by a
distributed interface system.

ACKNOWLEDGEMENTS
Des Ward of Strathclyde University has done much of the coding of the systenm,
Douglas Macgregor provided constructive criticism of this paper and Ron Morrisom of

St Andrews University provided and extended the programming language used 1in the
project.

REFERENCES

1 Ritchie D.M. and Thomson K. ’‘The Unix Time-Sharing System’, Comm. ACM 17,7,pp
3565-375(1974) P :

‘Interface Problems ina

Zason X.D.;Damodaran L.,and S Man—Computer

Interaction’. im
91-105. North-Ho

3 Sommerville
of Strathclyde,

4 Griswold R.E
Prentice-Hall, &

5 Morriscn R
University of S5t

Interaction’. in E.Mumford andH.Sackman(eds), ‘Human Choice and Computers “, pp
91-105. North-Holland, Amsterdam, 1973.

3 Sommerville I. ‘A Pattern Métching System’ Dept of Computer Science, University
of Strathclyde, Research Report 4[80.

4 . Griswold R.E., Poage J.F., and Polonsky I.P.'The SNOBOL4 Programming Language.
Prentice-Hall, New Jersey, 1971.

S Morrison R. ‘S-algol Reference Manual’, Dept. of Computational Science,
University of St Andrews, Scotland. June 1980.

