Aspect-oriented Software
Development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Objectives

To explain the principle of separation of concerns
In software development

To introduce the fundamental ideas underlying
aspect-oriented development

To show how an aspect-oriented approach can
be used at all stages of development

To discuss problems of testing aspect-oriented
systems

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Topics covered

e The separation of concerns
e Aspects, join points and pointcuts
o Software engineering with aspects

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Aspect-oriented software development

e An approach to software development based
around a new type of abstraction - an aspect.

Used in conjunction with other approaches -
normally object-oriented software engineering.

Aspects encapsulate functionality that cross-cuts
and co-exists with other functionality.

Aspects include a definition of where they should
be included in a program as well as code
Implementing the cross-cutting concern.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

The separation of concerns

e The principle of separation of concerns states
that software should be organised so that each

program element does one thing and one thing
only.

Each program element should therefore be
understandable without reference to other
elements.

Program abstractions (subroutines, procedures,
objects, etc.) support the separation of concerns.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Concerns

e Concerns are not program issues but reflect the system
requirements and the priorities of the system

stakeholders.

« Examples of concerns are performance, security, specific
functionality, etc.

By reflecting the separation of concerns in a program,
there is clear traceability from requirements to
Implementation.

Core concerns are the functional concerns that relate to

the primary purpose of a system; secondary concerns are
functional concerns that reflect non-functional and QoS

requirements.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Stakeholder concerns

Functional concerns which are related to specific functionality to be
iIncluded in a system.

Quality of service concerns which are related to the non-functional
behaviour of a system.

Policy concerns which are related to the overall policies that govern
the use of the system.

System concerns which are related to attributes of the system as a
whole such as its maintainability or its configurability.

Organisational concerns which are related to organisational goals
and priorities such as producing a system within budget, making use
of existing software assets or maintaining the reputation of an
organisation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Cross-cutting concerns

e Cross-cutting concerns are concerns whose
iImplementation cuts across a number of program
components.

e This results in problems when changes to the
concern have to be made - the code to be
changed is not localised but is in different places
across the system.

Cross cutting concerns lead to tangling and
scattering.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Cross-cutting concerns

Flew customes ficoound Custiomer
res. red. rmanagement req.

Cross-cutting
CONCETS

Security meq.

Recowery .

Core concerns

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Tangling

synchronized void put (SensorRecord rec) throws InterruptedException
{
if (numberOfEntries == bufsize)
wait () ;
store [back] = new SensorRecord (rec.sensorld, rec.sensorVal) ;
back = back + 1 ;
if (back == bufsize)
back = 0 ;
numberOfEntries = numberOfEntries + 1 ;
notify () ;
} //put

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Slide 10

Scattering

Iimage Lonsultation IJ

—attmbute decls>s < attnbute decls>s attrmbul= decly>

getilame () gethiodality () makedppoint }
edithlame (} archeie () canceldppoink ()
getfddress) getliate {} asapniurse (j
edithddress {} it Date () bookEquip ()

ananymmise () saveliagnosis () ananmymise {j
saveType {} saveConsult ()

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 11

Aspects, join points and pointcuts

e An aspect is an abstraction which implements a
concern. It includes information where it should
be included in a program.

e Ajoin point is a place in a program where an
aspect may be included (woven).

e A pointcut defines where (at which join points)
the aspect will be included in the program.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Aspect terminology

Term Definition

advice The code implementing a concern.

aspect A program abstr action that defines a cross-cutting
concern. It includes the definition of a pointcut and
the advice associated with that concern.

join point An event in an executing program where the advice
associated with an aspect may be executed.

join point model The set of events that may be referenced ina

pointcut.

pointcut A statement, included in an aspect, that defines the
join points where the associated aspect advice
should be executed.

weaving The incorporation of advice code at the specified
join points by an aspect weaver.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 13

An authentication aspect

aspect authentication

{
before: call (public void update* (..)) // thisis a pointcut

{

// this is the advice that should be executed when woven into
// the executing system
int tries =0 ;
string userPassword = Password.Get (tries) ;
while (tries < 3 && userPassword != thisUser.password ())
{
// allow 3 tries to get the password righ t
tries = tries+ 1 ;
userPassword = Password.Get (tries) ;
b
if (userPassword != thisUser.password ()) then
J/if password wrong, assume user has forgotten to logou t
System.Logout (thisUser.uid) ;

+
} // authentication

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Slide 14

Aspectd - join point model

Call events
« (Calls to a method or constructor

Execution events

 Execution of a method or constructor
Initialisation events

« Class or object initialisation
Data events

« Accessing or updating a field

Exception events
« The handling of an exception

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 15

Pointcuts

|dentifies the specific events with which advice
should be associated.

Examples of contexts where advice can be
woven into a program

« Before the execution of a specific method

« After the normal or exceptional return from a method

 When a field in an object is modified

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 16

Aspect weaving

Aspect weavers process source code and weave
the aspects into the program at the specified
pointcuts.

Three approaches to aspect weaving
e Source code pre-processing
* Link-time weaving
* Dynamic, execution-time weaving

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 17

Aspect weaving

fuuthenbication aspecl

Logging aspect

L

B

Patient

updateDetails (...}

..| Aspedt weaver

oy

©lan Sommerville 2006

Fatierd

auth=ntication code
updateDetails [._)
logging code

Software Engineering, 8th edition. Chapter 32

Slide 18

Software engineering with aspects

e Aspects were introduced as a programming
concept but, as the notion of concerns comes
from requirements, an aspect oriented approach
can be adopted at all stages in the system
development process.

The architecture of an aspect-oriented system is
based around a core system plus extensions.

e [he core system implements the primary
concerns. Extensions implement secondary and
cross-cutting concerns.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Core system + extensions

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 20

Types of extension

Secondary functional extensions
« Add extra functional capabilities to the core system
Policy extensions

« Add functional capabilities to support an organisational policy
such as security

QoS extensions

« Add functional capabilities to help attain quality of service
requirements

Infrastructure extensions

« Add functional capabilities to support the implementation of the
system on some platform

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 21

Concern-oriented requirements
engineering

An approach to requirements engineering that
focuses on customer concerns is consistent with
aspect-oriented software development.

Viewpoints (discussed in Chapter 7) are a way to
separate the concerns of different stakeholders.

Viewpoints represent the requirements of related
groups of stakeholders.

Cross-cutting concerns are concerns that are
identified by all viewpoints.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Viewpoints and Concerns

Viewpaoinks Loncerns

Equipment

Il =

Managers | THE SYSTEM

Jrganisstian

Senciety

Regulation 5Security Dependabalsty

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 23

Viewpoints on an inventory system

1. Emergency service user s

1.1 Find a specified type of equipment (e.g. heavy lifting gear)
1.2 View equipment available in a specified store

1.3 Check-out equipment

1.4 Check-in equipment
1.5
1.6
1.7

Arrange equipment to be transported to emergency
Submit damage report
Find store close to emergency

2. Emergency planner s
2.1 Find a specified type of equipment
2.2 View equipment available in a specified location
2.3 Add and remove equipment from a store
2.4 Move equipment from one store to another
2.6 Order new equipment

3. Maintenance staff
3.1 Check-in/Check-out equipment for maintenance
3.2 View equipment available at each store
3.3 Find a specified type of equipment
3.4 View maintenance schedule for an equipment item
3.5 Complete maintenance record for an equipment item
3.6 Show all items in a store requiring maintenance

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 24

Avallability requirements

AV.1 There shall be a ‘hot standby’ system available in a location that
is geographically well-separated from the principal system.

Rationale: The emergency may affect the principal location of the
system.

AV.1.1 All transactions shall be logged at the site of the principal
system and at the remote standby site.

Rationale: This allows these transactions to be replayed and the system
databases made consistent

AV.1.2 The system shall send status information to the emergency
control room system every five minutes

Rationale: The operators of the control room system can switch to the hot standby

if the principal system is unavailable.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 25

Inventory system - core requirements

e C.1 The system shall allow authorised users to
view the description of any item of equipment in
the emergency services inventory.

C.2 The system shall include a search facility to
allow authorised users to search either individual
iInventories or the complete inventory for a
specific item or type of equipment.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Inventory system - extension requirements

e E1.11Itshall be possible for authorised users to
place orders with accredited suppliers for
replacement items of equipment.

E1.1.1 When an item of equipment is ordered, it
should be allocated to a specific inventory and
flagged in that inventory as ‘on order’.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Aspect-oriented design/programming

e Aspect-oriented design

« The process of designing a system that makes use
of aspects to implement the cross-cutting concerns
and extensions that are identified during the
requirements engineering process.

e Aspect-oriented programming

« The implementation of an aspect-oriented design
using an aspect-oriented programming language
such as Aspectd.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 28

Use-cases

e A use-case approach can serve as a basis for
aspect-oriented software engineering.
Each use case represents an aspect.

« Extension use cases naturally fit the core +
extensions architectural model of a system

e Jacobsen and Ng develop these ideas of using
use-cases by introducing new concepts such as
use-case slices and use case modules.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 29

An extension use case

Yiewy marienarse
schedule

View equiprment ikem

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 30

©lan Sommerville 2006

Inventory use cases

Eemove equipment
from stare
!

| |
o
o

Operator Add equepment to
stare

Flace eguipment
arder

Software Engineering, 8th edition. Chapter 32

Slide 31

Inventory extension use-case

#Hetende MHacp .=|;|-Ji|:-r'_1-:-|'||:

arder

Add equeprment to store

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 32

An AOSD process

- : # ram "
; Aspedt " Compesiton 'Conflict anakysis

'
identdication | design and resolutan
and design ' ",

Softwars fﬂ;" Frogram naming

regquirsments Design models standards

..--.l: -.l--.
are system | Marme dessgn

l_ design

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 33

UML extensions

e EXpressing an aspect oriented design in the UML
requires:

A means of modelling aspects using UML
stereotypes.

A means of specifying the join points where the
aspect advice is to be composed with the core
system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 34

An aspect-oriented design

&
i

“jainpaints
Flatioimmn

]

Haspecho
Ordering

©lan Sommerville 2006

inventory

Haspects
Maintenance

Equipment

Slare

Locstion

i,
.

catsan

Hjainpaints
uipment

waspects
fvailability

Software Engineering, 8th edition. Chapter 32 Slide 35

A partial model of an aspect

waspect:
Maint=nance

poinicuts

viesnbdain = call gethtemilndo ()
mainco = call remoweltem {..)
rmain o = call additem {-)

class extensions

WewiflaimtenanceHistory

cwiewdtemn> [after (<viewhdam > pdisplayiHistong}

Hore exfensions hare

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 36

Verification and validation

The process of demonstrating that a program meets it
specification (verification) and meets the real needs of its
stakeholders (validation)

Like any other systems,aspect-oriented systems can be
tested as black-boxes using the specification to derive
the tests

However, program inspections and ‘white-box’ testing
that relies on the program source code is problematic.

Aspects also introduce additional testing problems

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 37

Testing problems with aspects

How should aspects be specified so that tests
can be derived?

How can aspects be tested independently of the
base system?

How can aspect interference be tested?

How can tests be designed so that all join points
are executed and appropriate aspect tests
applied?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

Program inspection problems

e [0 inspect a program (in a conventional
language) effectively, you should be able to read
it from right to left and top to bottom.

e Aspects make this impossible as the program is
a web rather than a sequential document. You
can't tell from the source code where an aspect
will be woven and executed.

Flattening an aspect-oriented program for
reading is practically impossible.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

White box testing

e [The aim of white box testing is to use source
code knowledge to design tests that provide
some level of program coverage e.g. each logical
branch in a program should be executed at least

once.

e Aspect problems

« How can source code knowledge be used to derive
tests?

« What exactly does test coverage mean?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 40

Aspect problems

e Deriving a program flow graph of a program with
aspects is impossible. It is therefore difficult to
design tests systematically that ensure that all
combinations of base code and aspects are
executed.

e What does test coverage mean?
 Code of each aspect executed once?

« Code of each aspect exeucted once at each join
point where aspect woven?
27?7

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 41

Key points

e Ihe key benefit of an aspect-oriented approach
Is that it supports the separation of concerns.

Tangling occurs when a module implements
several requirements; Scattering occurs when
the implementation of a single concern is spread
across several components.

Systems may be designed as a core system with
extensions to implement secondary concerns.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32 Slide 42

Key points

e [0 identify concerns, you may use a viewpoint-
oriented approach to requirements engineering.

The transition from requirements to design may
be made using use-cases where each use-case
represents a stakeholder concern.

The problems of inspecting and deriving tests for
aspect-oriented programs are a significant barrier
to the adoption of AOSD.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 32

