
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 1

Configuration management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 2

Objectives

● To explain the importance of software
configuration management (CM)

● To describe key CM activities namely CM
planning, change management, version
management and system building

● To discuss the use of CASE tools to support
configuration management processes

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 3

Topics covered

● Configuration management planning

● Change management

● Version and release management

● System building

● CASE tools for configuration management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 4

● New versions of software systems are
created as they change:
• For different machines/OS;
• Offering different functionality;
• Tailored for particular user requirements.

● Configuration management is concerned
with managing evolving software systems:
• System change is a team activity;
• CM aims to control the costs and effort involved

in making changes to a system.

Configuration management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 5

Configuration management

● Involves the development and application of
procedures and standards to manage an
evolving software product.

● CM may be seen as part of a more general
quality management process.

● When released to CM, software systems are
sometimes called baselines as they are a
starting point for further development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 6

System families

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 7

CM standards

● CM should always be based on a set of standards
which are applied within an organisation.

● Standards should define how items are identified,
how changes are controlled and how new versions
are managed.

● Standards may be based on external CM standards
(e.g. IEEE standard for CM).

● Some existing standards are based on a waterfall
process model - new CM standards are needed for
evolutionary development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 8

Concurrent development and testing

● A time (say 2pm) for delivery of system
components is agreed.

● A new version of a system is built from these
components by compiling and linking them.

● This new version is delivered for testing
using pre-defined tests.

● Faults that are discovered during testing are
documented and returned to the system
developers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 9

Frequent system building

● It is easier to find problems that stem from
component interactions early in the process.

● This encourages thorough unit testing -
developers are under pressure not to ‘break
the build’.

● A stringent change management process is
required to keep track of problems that have
been discovered and repaired.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 10

● All products of the software process may
have to be managed:
• Specifications;
• Designs;
• Programs;
• Test data;
• User manuals.

● Thousands of separate documents may be
generated for a large, complex software
system.

Configuration management planning

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 11

● Defines the types of documents to be
managed and a document naming scheme.

● Defines who takes responsibility for the CM
procedures and creation of baselines.

● Defines policies for change control and
version management.

● Defines the CM records which must be
maintained.

The CM plan

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 12

The CM plan

● Describes the tools which should be used to
assist the CM process and any limitations on
their use.

● Defines the process of tool use.

● Defines the CM database used to record
configuration information.

● May include information such as the CM of
external software, process auditing, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 13

● Large projects typically produce thousands of
documents which must be uniquely identified.

● Some of these documents must be maintained for
the lifetime of the software.

● Document naming scheme should be defined
so that related documents have related names.

● A hierarchical scheme with multi-level names is
probably the most flexible approach.
• PCL-TOOLS/EDIT/FORMS/DISPLAY/AST-INTERFACE/CODE

Configuration item identification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 14

Configuration hierarchy

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 15

● All CM information should be maintained in a
configuration database.

● This should allow queries about configurations to be
answered:
• Who has a particular system version?

• What platform is required for a particular version?

• What versions are affected by a change to component X?

• How many reported faults in version T?

● The CM database should preferably be linked to the
software being managed.

 The configuration database

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 16

CM database implementation

● May be part of an integrated environment to
support software development.
• The CM database and the managed documents

are all maintained on the same system

● CASE tools may be integrated with this so
that there is a close relationship between the
CASE tools and the CM tools.

● More commonly, the CM database is
maintained separately as this is cheaper and
more flexible.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 17

● Software systems are subject to continual
change requests:
• From users;

• From developers;

• From market forces.

● Change management is concerned with
keeping track of these changes and ensuring
that they are implemented in the most cost-
effective way.

Change management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 18

Request change by completing a change request form
Analyze change request
if change is valid then
 Assess how change might be implemented
 Assess change cost
 Submit request to change control board
 if change is accepted then
 repeat
 make changes to software
 submit changed software for quality approval
 until software quality is adequate
 create new system version
else
 reject change request
else
 reject change request

The change management process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 19

● The definition of a change request form is part of the
CM planning process.

● This form records the change proposed, requestor of
change, the reason why change was suggested and
the urgency of change(from requestor of the
change).

● It also records change evaluation, impact analysis,
change cost and recommendations (System
maintenance staff).

Change request form

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 20

Change request form

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 21

● A major problem in change management is
tracking change status.

● Change tracking tools keep track the status
of each change request and automatically
ensure that change requests are sent to the
right people at the right time.

● Integrated with E-mail systems allowing
electronic change request distribution.

Change tracking tools

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 22

● Changes should be reviewed by an external group
who decide whether or not they are cost-effective
from a strategic and organizational viewpoint rather
than a technical viewpoint.

● Should be independent of project responsible
for system. The group is sometimes called a change
control board.

● The CCB may include representatives from client
and contractor staff.

Change control board

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 23

● This is a record of changes applied to a
document or code component.

● It should record, in outline, the change made,
the rationale for the change, who made the
change and when it was implemented.

● It may be included as a comment in code. If
a standard prologue style is used for the
derivation history, tools can process this
automatically.

Derivation history

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 24

Component header information

// BANKSEC project (IST 6087)
//
// BANKSEC-TOOLS/AUTH/RBAC/USER_ROLE
//
// Object: currentRole
// Author: N. Perwaiz
// Creation date: 10th November 2002
//
// © Lancaster University 2002
//
// Modification history
// Version ModifierDate Change Reason
// 1.0 J. Jones 1/12/2002 Add header Submitted to CM
// 1.1 N. Perwaiz 9/4/2003New field Change req. R07/02

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 25

● Invent an identification scheme for system
versions.

● Plan when a new system version is to be
produced.

● Ensure that version management procedures
and tools are properly applied.

● Plan and distribute new system releases.

Version and release management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 26

● Version An instance of a system which is
functionally distinct in some way from other
system instances.

● Variant An instance of a system which is
functionally identical but non-functionally
distinct from other instances of a system.

● Release An instance of a system which is
distributed to users outside of the
development team.

Versions/variants/releases

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 27

Version identification

● Procedures for version identification should
define an unambiguous way of identifying
component versions.

● There are three basic techniques for
component identification
• Version numbering;

• Attribute-based identification;

• Change-oriented identification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 28

● Simple naming scheme uses a linear
derivation
• V1, V1.1, V1.2, V2.1, V2.2 etc.

● The actual derivation structure is a tree or a
network rather than a sequence.

● Names are not meaningful.

● A hierarchical naming scheme leads to fewer
errors in version identification.

Version numbering

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 29

Version derivation structure

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 30

● Attributes can be associated with a version with
the combination of attributes identifying that
version
• Examples of attributes are Date, Creator,

Programming Language, Customer, Status etc.

● This is more flexible than an explicit naming scheme
for version retrieval; However, it can cause problems
with uniqueness - the set of attributes have to be
chosen so that all versions can be uniquely
identified.

● In practice, a version also needs an associated
name for easy reference.

Attribute-based identification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 31

Attribute-based queries

● An important advantage of attribute-based
identification is that it can support queries so
that you can find ‘the most recent version in
Java’ etc.

● The query selects a version depending on
attribute values
• AC3D (language =Java, platform = XP, date =

Jan 2003).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 32

Change-oriented identification

● Integrates versions and the changes made to create
these versions.

● Used for systems rather than components.

● Each proposed change has a change set that
describes changes made to implement that change.

● Change sets are applied in sequence so that, in
principle, a version of the system that incorporates
an arbitrary set of changes may be created.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 33

● Releases must incorporate changes forced
on the system by errors discovered by users
and by hardware changes.

● They must also incorporate new system
functionality.

● Release planning is concerned with when to
issue a system version as a release.

Release management

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 34

System releases

● Not just a set of executable programs.
● May also include:

• Configuration files defining how the release is configured
for a particular installation;

• Data files needed for system operation;
• An installation program or shell script to install the system

on target hardware;
• Electronic and paper documentation;
• Packaging and associated publicity.

● Systems are now normally released on optical disks
(CD or DVD) or as downloadable installation files
from the web.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 35

● Customer may not want a new release of the
system
• They may be happy with their current system as

the new version may provide unwanted
functionality.

● Release management should not assume
that all previous releases have been
accepted. All files required for a release
should be re-created when a new release is
installed.

Release problems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 36

Release decision making

● Preparing and distributing a system release
is an expensive process.

● Factors such as the technical quality of the
system, competition, marketing requirements
and customer change requests should all
influence the decision of when to issue a
new system release.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 37

System release strategy

Factor Description

Technical quality of
the system

If serious system faults are reported which affect the way in which
many customers use the system, it may be necessary to issue a fault
repair release. However, minor system faults may be repaired by issuing
patches (often distributed over the Internet) that can be applied to the
current release of the system.

Platform changes You may have to create a new release of a software application when a
new version of the operating system platform is released.

Lehman’s fifth law
(see Chapter 21)

This suggests that the increment of functionality that is included in each
release is approximately constant. Therefore, if there has been a system
release with significant new functionality, then it may have to be
followed by a repair release.

Competition A new system release may be necessary because a competing product is
available.

Marketing
requirements

The marketing department of an organisation may have made a
commitment for releases to be available at a particular date.

Customer change
proposals

For customised systems, customers may have made and paid for a
specific set of system change proposals and they expect a system release
as soon as these have been implemented.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 38

Release creation

● Release creation involves collecting all files
and documentation required to create a
system release.

● Configuration descriptions have to be written
for different hardware and installation scripts
have to be written.

● The specific release must be documented to
record exactly what files were used to create
it. This allows it to be re-created if necessary.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 39

● The process of compiling and linking
software components into an executable
system.

● Different systems are built from different
combinations of components.

● This process is now always supported by
automated tools that are driven by ‘build
scripts’.

System building

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 40

● Do the build instructions include all required
components?
• When there are many hundreds of components making up

a system, it is easy to miss one out. This should normally
be detected by the linker.

● Is the appropriate component version
specified?
• A more significant problem. A system built with the wrong

version may work initially but fail after delivery.

● Are all data files available?
• The build should not rely on 'standard' data files. Standards

vary from place to place.

System building problems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 41

● Are data file references within components
correct?
• Embedding absolute names in code almost always causes

problems as naming conventions differ from place to place.

● Is the system being built for the right platform
• Sometimes you must build for a specific OS version or

hardware configuration.

● Is the right version of the compiler and other
software tools specified?
• Different compiler versions may actually generate different

code and the compiled component will exhibit different
behaviour.

System building problems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 42

!System building

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 43

CASE tools for configuration management

● CM processes are standardised and involve
applying pre-defined procedures.

● Large amounts of data must be managed.
● CASE tool support for CM is therefore

essential.
● Mature CASE tools to support configuration

management are available ranging from
stand-alone tools to integrated CM
workbenches.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 44

CM workbenches

● Open workbenches
• Tools for each stage in the CM process are

integrated through organisational procedures
and scripts. Gives flexibility in tool selection.

● Integrated workbenches
• Provide whole-process, integrated support for

configuration management. More tightly
integrated tools so easier to use. However, the
cost is less flexibility in the tools used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 45

Change management tools

● Change management is a procedural process so it
can be modelled and integrated with a version
management system.

● Change management tools
• Form editor to support processing the change request

forms;
• Workflow system to define who does what and to

automate information transfer;
• Change database that manages change proposals and is

linked to a VM system;
• Change reporting system that generates management

reports on the status of change requests.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 46

Version management tools

● Version and release identification
• Systems assign identifiers automatically when a new version is

submitted to the system.

● Storage management.
• System stores the differences between versions rather than all

the version code.

● Change history recording
• Record reasons for version creation.

● Independent development
• Only one version at a time may be checked out for change.

Parallel working on different versions.

● Project support
• Can manage groups of files associated with a project rather than

just single files.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 47

Delta-based versioning

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 48

System building

● Building a large system is computationally
expensive and may take several hours.

● Hundreds of files may be involved.

● System building tools may provide
• A dependency specification language and

interpreter;

• Tool selection and instantiation support;

• Distributed compilation;

• Derived object management.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 49

Component dependencies

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 50

● Configuration management is the management of
system change to software products.

● A formal document naming scheme should be
established and documents should be managed in a
database.

● The configuration data base should record
information about changes and change requests.

● A consistent scheme of version identification should
be established using version numbers, attributes or
change sets.

Key points

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 51

Key points

● System releases include executable code, data,
configuration files and documentation.

● System building involves assembling components
into a system..

● CASE tools are available to support all CM activities

● CASE tools may be stand-alone tools or may be
integrated systems which integrate support for
version management, system building and change
management.

