
©Ian Sommerville 2004 Software Engineering Case Studies Slide 1

The Ariane 5 Launcher Failure

June 4th 1996

Total failure of the
Ariane 5 launcher

on its maiden
flight

©Ian Sommerville 2004 Software Engineering Case Studies Slide 2

Ariane 5

● A European rocket designed to
launch commercial payloads
(e.g.communications satellites,
etc.) into Earth orbit

● Successor to the successful
Ariane 4 launchers

● Ariane 5 can carry a heavier
payload than Ariane 4

©Ian Sommerville 2004 Software Engineering Case Studies Slide 3

Launcher failure

● Approximately 37 seconds after a successful lift-off, the
Ariane 5 launcher lost control.

● Incorrect control signals were sent to the engines and
these swivelled so that unsustainable stresses were
imposed on the rocket.

● It started to break up and was destroyed by ground
controllers.

● The system failure was a direct result of a software
failure. However, it was symptomatic of a more general
systems validation failure.

©Ian Sommerville 2004 Software Engineering Case Studies Slide 4

The problem

● The attitude and trajectory of the rocket are
measured by a computer-based inertial reference
system. This transmits commands to the engines to
maintain attitude and direction.

● The software failed and this system and the backup
system shut down.

● Diagnostic commands were transmitted to the
engines which interpreted them as real data and
which swivelled to an extreme position resulting in
unforeseen stresses on the rocket.

©Ian Sommerville 2004 Software Engineering Case Studies Slide 5

Software failure

● Software failure occurred when an attempt to
convert a 64-bit floating point number to a signed
16-bit integer caused the number to overflow.

● There was no exception handler associated with
the conversion so the system exception
management facilities were invoked. These shut
down the software.

● The backup software was a copy and behaved in
exactly the same way.

©Ian Sommerville 2004 Software Engineering Case Studies Slide 6

Avoidable failure?

● The software that failed was reused from the
Ariane 4 launch vehicle. The computation that
resulted in overflow was not used by Ariane 5.

● Decisions were made
• Not to remove the facility as this could introduce new

faults;
• Not to test for overflow exceptions because the

processor was heavily loaded. For dependability
reasons, it was thought desirable to have some
spare processor capacity.

©Ian Sommerville 2004 Software Engineering Case Studies Slide 7

Why not Ariane 4?

● The physical characteristics of Ariane 4 (A
smaller vehicle) are such that it has a lower initial
acceleration and build up of horizontal velocity
than Ariane 5.

● The value of the variable on Ariane 4 could never
reach a level that caused overflow during the
launch period.

©Ian Sommerville 2004 Software Engineering Case Studies Slide 8

Validation failure

● As the facility that failed was not required for Ariane
5, there was no requirement associated with it.

● As there was no associated requirement, there were
no tests of that part of the software and hence no
possibility of discovering the problem.

● During system testing, simulators of the inertial
reference system computers were used. These did
not generate the error as there was no requirement!

©Ian Sommerville 2004 Software Engineering Case Studies Slide 9

Review failure

● The design and code of all software should be reviewed
for problems during the development process

● Either
• The inertial reference system software was not reviewed

because it had been used in a previous version;

• The review failed to expose the problem or that the test
coverage would not reveal the problem;

• The review failed to appreciate the consequences of system
shutdown during a launch.

©Ian Sommerville 2004 Software Engineering Case Studies Slide 10

Lessons learned

● Don’t run software in critical systems unless it is
actually needed.

● As well as testing for what the system should do,
you may also have to test for what the system
should not do.

● Do not have a default exception handling
response which is system shut-down in systems
that have no fail-safe state.

©Ian Sommerville 2004 Software Engineering Case Studies Slide 11

Lessons learned

● In critical computations, always return best effort
values even if the absolutely correct values
cannot be computed.

● Wherever possible, use real equipment and not
simulations.

● Improve the review process to include external
participants and review all assumptions made in
the code.

©Ian Sommerville 2004 Software Engineering Case Studies Slide 12

Avoidable failure

● The designer’s of Ariane 5 made a critical and
elementary error.

● They designed a system where a single
component failure could cause the entire system
to fail.

● As a general rule, critical systems should always
be designed to avoid a single point of failure.

