
Research Documentation Guidelines
Capturing knowledge, improving research

Andre Oboler
Computing Department

Lancaster University
Lancaster, UK

oboler@comp.lancs.ac.uk

Ian Sommerville
School of Computer Science

St Andrews University
St Andrews, UK

ifs@dcs.st-and.ac.uk

Abstract
This paper introduced coding guidelines for use by
academics developing code as part of their research in
areas of computer science or similar disciplines. We
introduce the guidelines and discuss their success and
popularity as a tool for MSc students undertaking five
month research projects. The guidelines lead to the use of
comments combined with dOxygen as an agile approach to
model both the software and the research ideas as they
develop and change.

I. Introduction

This paper presents our Research Documentation

Guidelines for use by researchers in university computer
science departments. The guidelines aim to capturing the
extra ideas and information that would otherwise be lost
when a research project comes to a close. Our
implementation combines the guidelines with dOxygen, a
JavaDoc like documentation tool for Java, C++ and other
languages and tests the adoption and results using multiple
five month MSc Project over the course of three years.

The documentation guidelines are one tool in a RAISER
[1] development process that aims to improve productivity
for the current researcher as well as improving the quality of
the software and data collected to assist future researchers.
The RAISER development process is an SDLC specific to
Software Engineering by Computer Science Researchers [2]
to meet the needs of their research environment. The
RAISER/RESET approach splits the long-term work into
Research (carried out by researchers under a RAISER
methodology) and Development (to be carried out by
professionals engineers attached to an academic institution
under RESET guidelines). The coding guidelines were tested
in a way that simulated the availability of a software
engineering with experience in RESET, though no RESET
work was conducted.

In our work we aim to develop approaches that meet the
RAISER guidelines and experimentally test them. The
Documentation Guidelines are one of our oldest tools and

have been used over a three year period with increasing
success. Success for our approach can be measured along
two axes, the perceived benefit by researchers and the
adoption rate. The null hypothesis states that the default
unplanned approach (without the aid of the documentation
guidelines or other similar tools) is equally good and the only
approach researchers find acceptable i.e. researchers see no
benefit in the approach and it is either not adopted at all or
found to be a burden with higher cost than value. We aim to
disprove this hypothesis.

Our work uses MSc students engaged in research projects
at Lancaster University. As very early stage researchers,
MSc students were seen as more likely to try new
approaches. As students with hard deadlines and project that
only last about 5 months they were also seen as being very
discriminating when it came to their own cost / benefit
analysis of potential tools. Successful adoption of a tool is
itself a validation of a tool having greater benefit than cost.
Our case studies also involved surveys, interviews,
observation and analysis of students’ final products. The use
of Documentation Guidelines, student perception of their
usefulness and the changes to practices and product that the
caused were monitored throughout the experiment.

We begin this paper with a discussion of the research
environment, followed by an introduction to our
experimental basis. Next we examine the problems we hope
to solve through the use of documentation guidelines and the
rational for using the guidelines we’ve experimented with as
the solution. The guidelines themselves are then introduced
followed by a discussion of their adoption and the both the
researcher and engineers view of their success. We end with
a discussion of future work including the possibility of a
software tool to augment our approach and our conclusions
on the guidelines as a response the problems introduced.

II. The Research Environment

The definition of research used by the Organisation for

Economic Co-operation and Development (the OECD) is
“creative work undertaken on a systematic basis in order to
increase the stock of knowledge” [3]. The tension is between

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

allowing researchers the freedom to creatively explore and
ensuring there is a systematic approach. Meeting both goals
is a challenge, and one that is usually left to the researcher.
Having examined the research environment we agree that
care should be taken not to step on academic freedom, yet
the development of software, even for researcher purposes,
remains a problem that can be helped by sound engineering.
Applied properly, Software Engineering can provide the
systematic basis that separates real research from hobby
coding. As industry looks more to extreme programming and
lighter types of engineering, it becomes possible to again
consider the ideas of software engineering that grow out of
industry – or at least the concepts we teach our students in
order to prepare them for industry – and consider how they
could be applied to our own research based problems.

Speaking about software engineering in general, Glass [4]
suggests improvement will come from greater appreciation
for “ad hoc” approaches. In computing, “ad hoc” is defined
as “contrived purely for the purpose in hand rather than
planned carefully in advance” [5]. The lack of planning is
discipline specific and not part of the general usage of the
term. The Latin root of ad hoc means “to this”, an approach
can be planned (in advance) yet still be a tailored solution.

The coding standard we introduce here is part of a wider
set of tools aimed at researchers working in a university
environment on small (one to two people) projects. We aim
to allow personalised software engineering that is still
systematic. We believe this combination best meets both the
needs of the computer science research environment and the
definitions of research commonly used by funding bodies.

III. Experimental basis

Between 2003 and 2006 we provided an opportunity for

MSc students to participate in an experiment offering
additional tools and methods to assist them with their five
month research projects. In an evolutionary manner, the tools
and methods were updated before each group started work.
In the final two years 21 students opted in (our participants),
and 28 students opted out. One of earliest and most stable
artifacts were guidelines on documenting research code.

We gathered results on participants through observation
of students at work during the project, inspection of final
products, formal technical reviews of code and comments,
and a post project survey on the tools. Additionally semi-
structured interviews (recorded) and a general survey were
done with all students, including the non-participants.

Our approach to evaluation is considered a multi case
holistic study in the blocked subject-project form [6]. The
work is carried out in vivo. There are no “toy problems”
involved and all “training” with the methods we use takes
place on the students’ actual projects. This adds a natural
barrier to adoption, similar to that in other research
environments where progress on the core work must be
demonstrated. Our case study approach follows guidelines

outlined in Kitchenham, L. Pickard and S. L. Pfleeger [7]
who along with Basili [8] classify our type of approach as a
formal experiment. The data collected from non-participants
is used to cross the effect of our intervention.

IV. Examining the problem

Coding guidelines are taught to undergraduate students to

encourage well-structured and consistent style. The
importance of commenting is emphasised both as a way of
enabling understanding in revision and of explanation for
markers. Internal documentation in such work normally
concentrates on what the code is doing [9, 10]. While useful
for new programmers, understanding what code does is not
the most valuable information a researcher can store either
for themselves or for others. While a useful learning tool, the
styles of documentation promoted to undergraduates fall
short of our needs as researchers. A new approach is required
to meet the needs of the research environment, and
specifically the academic research environment that typically
has smaller projects with fewer researchers.

In research the high value information is not what the
code is doing. Other researchers should be able to eventually
work this out from the code. Explaining what the code does
can save time and should (at a high level of abstraction) still
be documented, but if this is all a researcher does the most
valuable part of their work – the research itself – is lost.

The question we believe researchers should address is
why something is being done. A researcher’s rationale and
intentions are critically important. Another question is why
something is not being done, and this relates to past efforts
on this problem which may save another research months of
work down a dead end. In a similar way ideas of changes that
have been thought of but not carried through can help future
work develop in a focussed manner that learns from past
efforts even without the original researchers active
involvement. This last answers the question of what more
could be done? but also includes the original researchers
thoughts on how to proceed.

Our current answer to capturing the information described
here is to rely on publications. While reports and papers may
capture some of the rationale decisions, they are unlikely to
completely document them. Publications aim to focus on an
interesting facet of the work. Another potential source of
information would be research notes books, but these are
private and unlikely to be made available to others. Both
papers and journals as forms of external documentation
suffer from the problem of the manual – most programmers
will use them only as a last resort. The idea of extending
internal documentation to additionally capture information
relevant for research seems a natural progression of the
existing use of documentation and a suitable replacement for
the types of comments researchers may have found useful as
undergraduates but now find a waste of time (often leading
to minimal documentation or no documentation at all).

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

V. The design rationale

We see the capture of information about research work as

critical to the maturing of computer science research, yet we
recognise that on a practical level researchers need to benefit
personally from their work (e.g. through publications) and
support for documentation exists mostly at an abstract level
and little is ever instantiated out side of publications. Put
simply, an effort that has no benefit for the researcher but
might benefit others in the field is likely to be very low
priority for the only person who is able to do the work and as
a result is unlikely to be adopted.

The use of coding guidelines for research provides a
standard that is clear, and can be defended through an
explanation of the benefits to the current researcher. The use
of flexible guidelines rather than a stricter standard is
intentional and designed to add agility and leave control with
the individual researcher.

In our guidelines we specifically propose a documentation
standard compatible with the dOxygen documentation tool.
DOxygen extracts comments and produces html based
documentation similar (but in our opinion superior) to
JavaDoc. The use of such a tool combined with the capture
of ideas in source code is designed to make capturing
information as simple as possible without requiring the
researcher to context switch or change tools away from their
IDE or editor. It also makes the output easy to read and
navigate, the conversion from input to output being
automated and extracting further information from the source
code itself.

In creating coding guidelines and environments for
research we believe every effort should be made to reduce
the adoption and usage barrier and to allow researchers to
focus on their ideas, and not their tools. The guidelines
presented here, though very generic, have shown high levels
of adoption and satisfaction in our environment. We believe
tailored guidelines, i.e. those made specific to a research
domain and the common development environment of a
research group in this domain, could further increase both
adoption and efficiency. Such investigation was however
beyond the scope of this research. The guidelines presented
here are intended as a generic approach and were used on
projects in a variety of research areas.

VI. The Research Coding Guidelines

In this section we provide a reduced version of the

guidelines, the original is a 9 page document [11].

A. When efficiency is important
When time is being invested in highly efficient code, a

similar effort should be invested in documenting why this
method is needed (why is speed / disk space / memory

conservation important at this point?) and how the method
works.

The following guidelines are given for documenting
highly efficient code:

1. Internal comments should mark the start and end of
the efficiency zone.

2. Preconditions (What is required to enter this
section) and Post conditions (what is the guaranteed outcome
e.g. what data transformation occurs?) should be listed.

3. External documentation should exist illustrating the
method and how it works.

4. References used in creating the method should be
listed (i.e. books, articles etc)

5. Where the source is a web page or a
correspondence, a copy should always be retained with the
project. In other cases it is recommended.

B. Types of Comments
Comments in the RAISER process serve four purposes.
1. To keep track of the purpose of a module of code

(What)
2. To keep track of the owner and version of a module

(Who and When)
3. To keep track of the method being applied (How)
4. To keep track of the authors rationale (Why)

Comments occur at 4 levels,
1. File level
2. Class Level (if working in OO)
3. Method Level (OO) / Function Level (Structured)
4. Internal comments (these are inline comments)
Comments should preferably be compatible with

dOxygen and dOxygen /todo comment should be used to
indicate future work.

C. When to comment
Take a half day each week and use this to add any missing

comments. Start with required comments, then go on to
optional comments. After a few days (perhaps a weekend
off) you should have a little distance between yourself and
the code. Anything that isn’t immediately clear and obvious
to you now needs to be commented. If in doubt, ask yourself
if your supervisor could understand this code without you
there to explain it. Next think of questions they might ask
and document the answers, particularly the rationale ones.

D. File Level Comments
Use these for tracking which files are yours for this

project and which are being reused. If you change a file you
have inherited or included from else where document this in
a file level comment. File comments should also explain
what the file is about and how it fits into the over all
architecture (though in object oriented languages this may be
relegated to the class level).

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

E. Class Level Comments
These describe the specific responsibilities of the class.

What is it for? This comment should be general enough to
cover all things related to the class, and specific enough to
exclude the inclusion of functionality that belong in other
classes. Decisions for the structure of the class including
reasons why other options were rejected should be included.
If the class structure is less than ideal an explanation of the
problems and any ideas on for restructuring should be
included in the comments.

In some cases details about methods or properties should
be mentioned at class level (with further details against the
item itself). In particular if a method or property appears not
to fit the responsibilities of the class the reason for this
deviation should be given. It might indicate a need to revisit
the design. In some cases it may be appropriate to explain
why a class exists at all, or what the class is supposed to be
abstracting. It is particularly important that a link is provided
in the comments between abstract research constructs and
classes in the code that may not exactly map to these.

F. Method Level / Function Level
In most (but not all) cases a methods name will give

sufficient information. In those cases where there is
additional important information or where the exact result of
the function is not obvious, the following questions could be
answered:

1) Question relating to “what”
What does this method / function do?
What constitutes valid/invalid input?
Are there any special cases?
What format is the output?
Is it scaled / rounded / ordered etc in anyway?

2) Questions relating to “who” and “when”
If the researcher is not the creator, who wrote? (e.g. note

code form supervisor, for extracted from a paper etc) Even if
the researcher coded it, if they were implementing someone
else’s algorithm details of the original source are important.

If this is an alternative implementation, this should be
noted along with details on the original and why the change
was needed.

3) Questions relating to “how”
What algorithm is being applied?
What data structure is being used?
Are there any fudges? (if so what?)

G. Internal comments
Internal comments should take only one line and should

usually be document so they are not extracted by tools like
dOxygen (introducing public variables is an exception where
greater detail for extract may be required). Internal
comments document how something is being achieved in a
concrete fashion noting when each step occurs. They should
be used sparingly and be as focussed as possible.

VII. Adoption Results

In addition to the coding guidelines we provided

participants with a copy of dOxygen, an installation and
setup guide and a config file with instructions. To help
researchers accurately judge the cost/benefit of the tool in the
second and third year of the experiment a sample input file
and the generated output that went with it were provided.
These files were from an MSc project in the first year of the
experiment.

Our observation is that researchers liked the idea of
dOxygen but until the cost and benefit were made clear were
reluctant to invest time learning it which reduced take up in
the first year. In the second year more students used it, but
many only generated documentation at the end of their
projects. In the third year with the sample input and output as
well as the installation guide available earlier, more students
decided to document in time to take part in a technical
review. The technical reviews were largely based on the
documentation. In their final surveys and interviews almost
all students made reference to the documentation guidelines
and or the dOxygen tool they used with it. All references
were positive.

All large number of the more active participants from the
final year have accepted funded PhD places and a number
have commented that they will continue to use the tools and
particularly the documentation guidelines for their PhD.
With the experiment drawing to a close there was also
concern expressed that this years MSc students will not have
the benefit of the guidelines and tools. The department have
responded and the resources from the experiment will be
made available on the intranet. A number of PhD student
have also expressed interest in trying the documentation
guidelines, dOxygen and a technical review.

VIII. Researchers perception

As reflected by the success in adoption, researchers felt

the coding guidelines were of benefit to them. In feedback
one student noted how “it helps, as the project grows, to keep
a clear vision of it” another said “advice on coding, backup,
versioning issues etc are given without first having to ask the
question”. The hypotehsised benefits were realised, e.g. one
student said they were helped by “code comments and the
diary as a rough version of what I wrote in the final report” .
A comment by a student in the final year on coding
guidelines summed the benefit up quite well “It's easier to
read a line (of comments) than to read ten lines of code, even
if it's not difficult (code)” they said. Others expressed similar
positive views to open questions on the benefits.

The Coding guidelines were ranking as the third most
useful tool by students (out of 16 tools), behind only the
“introduction to research” document and the webpage
recommending tools students could consider. The sample
dOxygen input and output (showing how comments

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

following the guidelines are entered and how they appear in
the generated output) was ranked the 6th most useful tool,
compared to dOxygen itself which ranked 8th. The fact that
dOxygen was used by the majority of the students and
commented on very positively in most students feedback (to
open questions) puts the relative rankings into some
perspective. While the installation and basic setting guide to
dOxygen was used by many students (in the second and third
year) it ranked a poor 10th.

One observation was that documentation was no longer
updated when researchers switched to report writing,
concepts were instead embedded in the report. This shows a
reluctance by researchers to context switch. Rather than
indicating a problem we see this as validation for the idea
that rationale of both software design decisions and of the
research design decisions, questions, and ideas, should be
placed in source code in a format that allows extraction and
automatically generated documentation.

We noted some common problems in students use of the
guidelines, these were corrected through discussion and
caught in technical reviews. The problems included:

Under documenting – Often due to procrastination and a
lack of a deadlines to increase the urgency of this task. The
proposed solution was a recommendation to set aside half a
day each week for catching up on documentation and other
meta level work or small tasks.

Over documentation – This was a result of the wrong
things being documented. It was necessary to remind
researchers that at this level readers’ proficiency in
programming may be expected. Those who over documented
tended to also under document their rationale.

Some students liked the idea of the guidelines and
dOxygen so much that they tried to use both the guidelines
and dOxygen with programming languages that were not
supported by dOxygen. This met with mixed success in
terms of the generated output, however students found the
capturing of ideas to still be very useful.

Researchers found that advanced features of dOxygen
were not needed to achieve reasonable benefits, yet learning
extra features was of help e.g. \todo comments which
generates an extra page in the document listing all the “to
do” items with links to the places they occur.

Students found the installation guide, technical review
and other supporting aspects related to both dOxygen and the
coding guidelines useful. While the real benefit can be said
to rest with the guidelines, other tools that lower the adoption
barrier are vital if approaches like this are to be used.

IX. Engineers perception

From the Software Engineers perspective, the use of

coding guidelines combined with dOxygen allowed a project
to be reviewed in two hours with two hours spent in
preparation by the reviewer. This allowed multiple reviews
on projects in unrelated areas to take place on the same day

and for a reviewer to extract the core design and research
issues for a project with minimum effort. All reviews raised
issues the researchers found significant. The coding
guidelines made it particularly easy to understand and follow
the development of a research project without requiring a
high level of investment. The combination of code that
followed the dOxygen created a standard platform that
separated the review from the particular favour of operating
system, IDE and to an extent programming language that the
researchers chose to use (dOxygen was used for projects in
C++ and Java successful and in other languages like C# with
less success).

Technical review on the design of research in some cases
caused the research direction to change. This in turn resulted
in changes to the code. The documentation and in this regard
be seen as a type of requirement. This is perhaps fairly
unique to the research environment, where the problem itself
can be changed to focus more on interesting issues that are
discovered. The use of comments in source code to
document the research ideas allows engineers to ask the right
questions that can help researchers refine not only their ideas
but also their focus. This sort of role outs the engineer in the
position of a multi-disciplinary researcher and allows the
connections between projects to be found and collaboration
increased within a department.

Based on researchers ideas (as documented) and the
structure of the code (as extracted and drawn up by
dOxygen) it became possible for the engineer to comment on
the design of the software architecture, modularization, and
other key issues effecting the quality of the code. The
engineers job becomes one of looking for mismatches and
effectively prodding at them with questions for the
researchers or suggestions of alternative approaches.

The coding guidelines and dOxygen output allow the
engineering to focus at a high and abstract level, but if the
guidelines are followed, also allows them to focus in on
lower level abstractions and eventually code. This approach
allows key aspects of the code to examined (including minor
section that might otherwise be ignored) while avoiding
areas that are not the focus of the research or may be built on
inherited code that is out of scope.

From the Engineers point of view, the coding guidelines
made an impossibly large task not only simpler but
achievable with minimal investment.

X. Empirical difference

In Table 1 we show the combined results from the second

and third years of our study. The table provides a comparison
of the participants (21 members) and non-participants (28
members) group’s average performance using the heuristic
metric ∆, which we define as a students project mark, minus
their course work mark. This can be considered their
improvement.

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

Table 1 Summary data for 2004-2006

Mean

Project
STDEV
Project

Mean
Course
Work

STDEV
Course
work ∆

STDEV
(∆)

Participants 65.23 8.58 60.19 6.89 5.04 5.60
Non

Participants 62.91 10.26 61.47 6.13 1.44 8.26
Change 2.32 -1.67 -1.28 0.76 3.60 -2.66

Participants had a higher degree of improvement. Coding

guidelines were one of many changes and as such represent
only a part of the treatment applied, but with both
observations and surveys indicating their importance they are
thought to have played a significant part in these results.

XI. Future work

The ability to enter comments directly in the code is a key

feature of our approach; however a software tool to review
the comments and allow them to be edited would be
welcome for those occasions when researches do take time
out just to document. Something like dOxygen, but with
editable fields that are then written back into the source code
would be idea. As an extension to such a tool it might be
possible to add meta information listing the question that are
being answered or additional information and storing some
of this in an XML or similar format in a separate file. Further
extensions could allow comments and questions by the
engineers and multiple other “reviewers” to be added and
stored outside the code. We are only beginning to examine
the question of improving the research software development
environment, and there is a lot more that can be done.

On the engineers side we have observed the benefits of
the documentation standard, however a systematic study
would be beneficial. Such a study might examine the quality
of feedback with varying amounts of support from engineers
with source code only, traditionally documented code, and
code documented according to these guidelines. We would
expect that the better documented the code is, the higher the
quality of the feedback would be. A tool as described above
would greatly help with cleaning up comments.

XII. Conclusion

We believe the coding guidelines presented here are of

benefit to researchers of all levels of experience and could
greatly improve the quality of the information we have about
research in computer science. They capture the high value
information that would otherwise be lost and avoid the
problem of task switching that other forms of documentation
create. Combined with technical reviews they increase the
flow of information and improve the quality of research code
and on occasion the quality of the research work itself.

The guidelines are an agile approach that allow research
projects to have their ideas and requirements captures on the

fly as they occur. They provide a systematic approach that
can be relatively consistent across projects and researchers,
greatly easing the task of engineers. While benefiting the
individual researchers, the guidelines allow improved
communication and reduce the risk of key ideas being lost.

The guidelines are a useful start to improving the research
environment in a way that benefits both the original
researchers and the field as a whole.

XIII. References

[1] A. Oboler, D. M. Squire, and K. B. Korb,
"Software Engineering for Computer Science Research -
Facilitating Improved Research Outcomes," International
Journal of Computer and Information Science, vol. 5, pp.
24-34, 2004.

[2] A. Oboler, "Examining the use of Software
Engineering by Computer Science Researchers," presented
at In Proceedings of Education Students' Third Regional
Research Conference, Graduate School in Humanities
University of Cape Town, Cape Town, South Africa, 2003.

[3] OECD, The Measurement of Scientific and
Technological Activities - Frascati Manual 2002 : Proposed
Standard Practice for Surveys on Research and
Experimental Development Frascati, France: Organisation
for Economic Co-operation and Development, 2002.

[4] R. L. Glass, "Searching for the Holy Grail of
Software Engineering," Communications of the ACM, vol. 45,
2002.

[5] D. Howe, The Free On-line Dictionary of Computing
2005.

[6] R. K. Yin, Case Study Research: Design and
Methods 2nd Edition. Beverly Hills, CA: Sage Publishing, 1994.

[7] B. Kitchenham, L. Pickard, and S. Pfleeger, "Case
Studies for Method and Tool Evaluation," in IEEE Software, July
ed, 1995, pp. 52-62.

[8] V. R. Basili, "The role of experimentation in software
engineering: past, current, and future," presented at Proceedings of
the 18th international conference on Software engineering, 1996.

[9] Sun Microsystems, "How to Write Doc Comments for
the Javadoc Tool," 2000-2004.

[10] J. K. Nair, "Computer Program Documentation
Standards: Version 1.3 " in Education Infrastructure Project, vol.
2006: Virginia Tech CS Dept, 1998.

[11] A. Oboler, "RAISER Coding Practise,"
Lancaster University: SERE Project Resource, 2004.
http://www.comp.lancs.ac.uk/computing/users/oboler/RCD.doc

International Conference on Information Technology (ITNG'07)
0-7695-2776-0/07 $20.00 © 2007

