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Abstract

As a branch of engineering cybernetics, automatic control theory has been extensively applied to improve products, increase produc-
tivity and rationalize management. This paper adapts the principles of automatic control theory to the field of software process improve-
ment. In particular, the work described uses control theory to define a requirement engineering (RE) process control system, its dynamic
and steady-state performance, and the steps in designing, analyzing and improving such a system. The work has highlighted the need for
process activities relating to measuring elements, including those in feedback compensation and organizational support. The results of
this research can be used to guide the establishment and improvement of RE processes, compare different requirement process solutions
quantitatively, develop methods for evaluating benefits from process improvements, and structure the application of knowledge about
RE.
! 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Requirements Engineering Good Practice Guide
(REGPG) (Sawyer et al., 1999; Sommerville and Sawyer,
1997) was the first public-domain software process
improvement (SPI) model that explicitly focused on the
incremental, systematic improvement of Requirements
Engineering (RE) processes. It describes 66 RE good prac-
tices organized according to a number of RE process areas,
an assessment method and a three-level improvement
model.

Since the REGPG’s publication in 1997 it has been sub-
ject to an extensive empirical analysis (Sommerville and
Ransom, 2005; Kauppinen et al., 2002; Kauppinen and

Kujala, 2001) designed to improve its efficacy as an RE
process improvement model. It has also been the subject
of, or contributed to, several research projects investigating
RE process improvement for particular domains, such as
packaged software development (Regnell et al., 1998),
and organisational contexts, particularly SMEs (Nikula
and Sajaniemi, 2002; Nikula, 2003).

These studies, complement the eight years of experience
and deployment with the REGPG in many companies
world-wide. They have shown that among the REGPG’s
most important strengths are that it provides practitioners
with an overall view of RE concepts and principles, is effec-
tive at raising personnel awareness of RE and motivating
them for RE process improvement, is useful in identifying
process improvements across a range of different types of
companies and includes relevant requirements practices
for different kinds of application domains.

However, the REGPG offers only a limited and general
set of process improvement guidelines. Moreover it lacks
sufficient guidance for selecting a realistic set of practical
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RE improvement actions to meet specific business goals
with available resources.

We have exploited the understanding we have acquired
through experience with, and validation of, the REGPG
to investigate what insights into RE process improvement
might accrue from the application of cybernetics. Our work
represents the first attempt to apply classical control theory
(Ogata, 1970) to RE process improvement in what we call a
Requirements Process Control (RPC) system. We charac-
terize RE problems as deviations from an RE process’s
ideal performance. The RPC system’s role is to damp these
deviations to a tolerable level thus making the RE pro-
cesses more repeatable.

In Section 2 we map the REGPG’s 66 good practices to
different types of control system components and develop
themechanism of collecting process data for them in Section
3. We define the dynamic and steady-state performance of
an RPC system in Section 4 and propose steps in designing
and improving an RPC in Section 5. In Section 6 we demon-
strate how the framework presented in this paper works in
RE process establishment and improvement.

2. An RPC system

We use (I, O, C, T) to define an RPC system, where:

• I refers to the input of the RPC system i.e. the stake-
holders’ requirements to be implemented;

• O refers to the object to be controlled i.e. the require-
ment specification of the application. ‘‘Requirements
specification’’ here is a proxy not only for the require-
ments specification document(s) but for the set of
requirements artifacts that have to be managed by an
RE process;

• C refers to the output of the RPC system i.e. the quality
of O produced, and;

• T refers to the task of this RPC system i.e. controlling O
to be produced within a given time and budget repre-
senting I and of the specified quality.

Fig. 1 shows the logical structure of an RPC system, and
its basic components. These are:

• Actuators, which here are the requirements analysts who
fulfill the control task T, representing the idea that dif-
ferent control strategies are embodied by the people per-
forming process activities.

• Measuring elements, which measure C, and may also
detect an error by comparing C with I.

• The requirements specification O.
• Compensators, which may act as actuators or measuring
elements but in the process of application system
requirement development to help improve the perfor-
mance of the RPC system.

From these basic components we have classified the 66
good practices in the REGPG according to which compo-

nents they address. Table 1 shows how the RE process
areas map to the RPC components. Appendix A adds more
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Fig. 1. Block diagram of an RPC system.

Table 1
The 66 key practice areas viewed from the perspective of different RPC
system components

RPC system
components

RE process area Good practicea

Actuators Feasibility study (AC4) 4.1
Requirements elicitation
(AC4)

4.3, 4.5–4.7, 4.9, 4.11
and 4.12

Requirements description
(AC6) (System modeling)

6 Describe
requirements 7.1–7.3

Requirements management
(AC9)

9 Manage
requirements

Series
compensation

Feasibility study (SC4) 10.3
Requirements elicitation
(SC4)

4.10, 4.13 and 10.4

Requirements management
(SC9)

9.5

Measuring
elements

Requirements validation
(ME8)

8.1, 8.2, 8.5–8.7

Feedback
compensation

Requirements elicitation
(FC4)

4.10

Requirements analysis (and
negotiation) (FC5)

5.1, 5.2, 5.4–5.8, and
10.5

Requirements description
(FC6) (System modeling)

7.1, 7.2, 7.6 and 10.6

Requirements validation
(FC8)

8.3, 10.2, 8.8 and
10.5

Organizational
support

Requirements documentation
(OS3)

3.1–3.8

Requirements elicitation
(OS4)

4.2, 4.4, 4.8–4.11,
and 4.13

Requirements analysis and
negotiation (OS5)

5.2, 5.5–5.8

Requirements description
(OS6) (System modeling)

6.1–6.5, 7.1–7.6, and
10.6

Requirements validation
(OS8)

8.2, 8.4, 10.1, 8.5, 8.7
and 8.8

Requirements management
(OS9)

9.1–9.9

To all 10.3, 10.7–10.9
a The number reflects the section in a chapter in Sommerville and

Sawyer (1997) describing the practice.
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detail, listing the corresponding good practices that rather
than just their reference numbers as shown in the last col-
umn of Table 1. It should be noted that

• An RPC system consists of different system components,
which comprise different process activities. However,
there is a many-to-many relationship between RPC
components and process areas.

• Compensators acting as series compensation can be
viewed as actuators.

• Feedback compensation relating to the requirements
validation area can be viewed as measuring elements.

• Through the establishment of standards and policies,
process institutionalization and staff training programs,
an organization provides the culture, context and
resources for an RPC system.

3. Mechanism of process data collection for RPC system
components

Based on the work of (Kitchenham et al., 2001), we use
a unified data set model {PA, AU, MP, ST} to measure the
process and document process activities in an RPC system
so as to ensure that the data collected are reliable, consis-
tent, repeatable, comparable and interchangeable, and that
the resulting analysis is valid. Here

• The object to be measured PA = {Per, Act, Prj}, where
Per is the person participating in the development
of the requirements specification; Act = {Cyc, Pha, Tas,
Gra}, a process activity performed by Per, and is
defined by the current development cycle Cyc of the cur-
rent project Prj, the current development phase Pha in
the software process followed, the project task Tas

undertaken and the granularity Gra of the resulting
product such as modules or sub-systems; and
Prj = {Nam, Pde, Dom, Typ, Pop}, where Nam is the pro-
ject name, Pde the development platform, Dom the appli-
cation domain, Typ the application type (such as
interactive or embedded systems), and Pop the operation
platform.

• The basic set of measurement values AU = {AU1, AU2,
AU3}

AUi ¼ fAi;Uig; Ai ¼ fAiA;AiEg i ¼ 1; 2; 3

where A1, A2 and A3 are three basic attributes to be mea-
sured on PA; A1 consists of the actual time A1A spent on
Act and the estimated one A1E, which are measured by
minutes specified by U1; A2 consists of the actual size
A2A of the application system requirement specification
produced by Act and the estimated one A2E, which are
measured by pages specified by U2; A3 consists of the ac-
tual number of defects A3A found in the application sys-
tem requirement specification produced by Act and the
estimated one A3E, which are measured by numbers
specified by U3; and A1E, A2E and A3E are represented

as a most likely value together with upper and lower
bounds such as 95% or 99% confidence limits.

• The set of measurement protocols

MP ¼ fMP1;MP2;MP3 g
MPi ¼ fMPiA;MPiE g
MPiA ¼ f T iA; P iA;MiA g; MPiE ¼ f T iE; P iE;MiE g

i ¼ 1; 2; 3

which are defined in the context of PA, and where TiA

and TiE specify when to measure Ai in the development
process, PiA and PiE who are responsible for the mea-
surement, and MiA and MiE the tools or methods used
to extract, record and store the data values such as those
described in the Team Software Process (TSP) (Hum-
phrey, 2000). See Table 2 for details.

• The set of scale type specifications ST = {ST1, ST2,
ST3}, where in Cyc of Prj,0 < ST1 6 the actual or esti-
mated time of Pha as to A1A or A1E, 0 < ST2 6 the actual
or estimated size of the application system requirement
specification as to A2A or A2E, 0 < ST3 6 the found or
estimated number of defects in the application system
requirement specification as to A3A or A3E.

It should be noticed that

• There can be more than one PA in a project, and one Per

may perform one Act or more.

Table 2
The measurement protocol definitions relating to the basic attributes to be
measured

Ai MPi Definition

A1 A1A T1A T1A = {T1AS, T1AF}, where T1AS and T1AF are
the time at which Act starts and ends

P1A Per

M1A Recommend those in TSP, and A1A = T1AF " T1AS

A1E T1E The time when the planning phase of Prj ends
P1E Per, or the person who is responsible for project

planning
M1E Recommend those in TSP, and T1EF = T1ES + A1E,

where T1ES is the planned time at which Act will start,
and T1EF the estimated time at which Act will end

A2 A2A T2A T2A = T1AF

P2A Per, or the person who is responsible for measuring
the size of a product

M2A Recommend those in TSP
A2E T2E The time when the planning phase of Prj ends

P2E Per, or the person who is responsible for project
planning

M2E Recommend those in TSP

A3 A3A T3A T3A 2 [T3AR, T3AO], where T3AR is the time when
requirement inspection ends, T3AO the time at which
the number of defects is no longer counted after the
system delivery

P3A Per

M3A Recommend those in TSP
A3E T3E The time when the planning phase of Prj ends

P3E Per, or the person who is responsible for
project planning

M3E Recommend those in TSP
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• The granularity of Act should be determined by the busi-
ness goals of the software organization within its specific
development context, the specific factors for the project,
and the feasibility of collecting the process data needed.

• One RPC system manages and controls the development
of one requirements specification.

• One component of an RPC system may be one Act or a
composition of Acts, depending on the type of analysis
that is required.

4. Definition of dynamic performance and steady-state error
of an RPC system

Assume that there are r1 (r1 P 1) Acts acting as actua-
tors, series compensators and feedback compensators
(but excepting those in the requirements validation area),
and r2 (r2 P 0) Acts acting as measuring elements including
the feedback compensators in the requirements validation
area.

Assume that the unit-step response c(t) of an RPC sys-
tem is represented by the curve shown in Fig. 2 in the con-
text of the software development process. Here, the x-axis t
represents the working days of Prj, the y-axis the accumu-
lated progress of Prj measured or estimated by some tech-
nique, and the origin the starting point of Prj at which
the first process activity Act1 starts. In other words,
T1S1 = 0 and the progress of Prj is 0. We define the accumu-
lated progress of Prj as 1 when the last process activity
Actðr1þr2Þ ends at T 1Fðr1þr2Þ. We then have dynamic perfor-
mance indicators of the RPC system:

• Delay time td, where c(td) = 0.5,
• Rise time tr, where tr = t2r " t1r, c(t2r) = 0.9, c(t1r) = 0.1,
and

• Settling time ts, where ts ¼ T 1Fðr1þr2Þ; or time constant T,
where c(T) = 0.632 if logjc(t) " c(ts)j takes the form of a
line (Ogata, 1970).

The actual dynamic performance of the RPC system can
be represented by actual td, tr and ts, or T calculated by
using A1Ai, T1ASi and T1AFi, and the estimated dynamic
performance by estimated td, tr and ts, or T by using
A1Ei, T1ESi and T1EFi, where i = 1, . . . , r1 + r2.

Under the assumption that the actual defects found are
all fixed, the actual steady-state error essA of an RPC sys-
tem is defined as

Pr1
i¼1ðA3Aijt¼T 3A

" A3Aijt¼T 3AR
Þ, which is also

the actual measuring error emA of the system. We define the
estimated steady-state error essE, and the estimated measur-
ing error emE, as a& T 1EFðr1Þ & ð1" bÞ, where at T 1EFðr1Þ all
the r1 process activities will end, a is the estimated number
of defects to be injected in the application system require-
ment specification per hour, and b is the estimated percent
of defects to be fixed (Humphrey, 2000).

5. Steps of designing an RPC system

In general, we assume the performance specification of
an RPC system is expressed as the cost constraint CG,
the given time TG and the required quality QG of the
requirements specification together with their lowest and
highest acceptable values. We also assume that we have his-
torical measurement values needed to derive possible RPC
system components, which have been collected and docu-
mented by using the unified process data set model
described in Section 3. Through synthesis, simulation,
and trial and error, we can determine the RPC system com-
ponents needed and organize them in a way that all the
process activities are performed with the expected dynamic
performance and within the specified steady-state error,
and as a result of this, the established or improved RPC
system satisfies the given specification. The general steps
for the RPC system design are:

(1) Map the specification of the RPC system to be
designed to its expected dynamic performance and
acceptable steady-state error. Here, let the targeted
settling time tsG = TG, and if QG is represented by
the tolerable number of defects to be found per page
of the resulting application system requirement spec-
ification, let acceptable steady-state error

essG ¼ QG &
Xr1

i¼1

A2Ei:

(2) Identify RPC system components, relationships
among them and between them and the whole system.
As we have done for the REGPG in Table 1, this
involves identifying the activities that comprise the
requirements process and mapping them to corre-
sponding RPC system components.

(3) According to the result of step 2, historical process
data sets, and the definitions in Section 4, calculate
the estimated delay time tdE, rise time trE, settling
time tsE and steady-state error essE of the designed
RPC system. The people performing process activities
in the system, the software and hardware needed con-
stitute the main part of the estimated cost CE of this
RPC system solution. The availability of historical
process data requires that progress measurement is

0

0.2

0.4

0.6

0.8

1

t

c(t)

t1r  td  tst2r

tr

Fig. 2. The accumulated progress of Prj controlled by an RPC system.

H. Xu et al. / The Journal of Systems and Software 79 (2006) 1504–1513 1507



Aut
ho

r's
   p

er
so

na
l   

co
py

systematically collected by the organization and this
acts as a prerequisite.

(4) Compare tsE, essE and CE with tsG, essG and CG. If the
specification of the RPC system is satisfied, then go
on with step 6, otherwise execute step 5.

(5) Partly, or as a whole, adjust the structure of the
designed system (i.e. the relationships among system
components and/or between the system components
and the whole system), and/or add, remove and
replace system components. Selection of which com-
ponents to adjust, replace, etc. is informed by knowl-
edge about which requirements process activities
represent which RPC components, the strengths
and weaknesses of the practices used to enact these
activities and the costs and benefits of alternative
practices. Return to step 3.

(6) If there is more than one design satisfying tsG, essG
and CG, we may further compare their tdEs and trEs,
and select the solution with quicker transient-
response and less steady-state error.

It should be noticed that:

• Although development techniques, available software
tools, staff experience, the characteristics of computer
hardware, application system size and complexity differ
in software organizations and projects in an organiza-
tion, many remain unchanged in the context of one pro-
ject. However, because of the effect of the learning curve,
people performing process activities may have different
work experience and familiarity with the project. This
may manifest itself in different measurement values in
the process data sets collected. In general, people with
more development experience and familiarity with the
project at hand work more effectively and their products
are of better quality. While designing the RPC system to
be established or improved, it is important to achieve a
compromise between the dynamic performance and the
steady-state behavior of the resulting system. In general
the performance of the designed system should satisfy
the specification, but is not necessarily better than that
or optimized.

• When identifying the compensators in the system, it is
important to take into consideration the specification
of the RPC system, the characteristics of the informa-
tion in the system, the components available for com-
pensator selection, the convenience of management,
the requirements of adaptation and cost-effectiveness,
the context of the project, and the experience of the peo-
ple designing the RPC system. This is in order that the
compensated system can produce the requirements spec-
ification of the specified QG representing the stakehold-
ers’ requirements within TG and CG.

• When identifying the measuring elements in the RPC
system to be designed, it is important to select those with
more types of defects found, less time delays, and higher

percent of defects detected since the upper bound of the
static accuracy of the RPC system is determined by the
measuring elements.

• The actual performance of the RPC system, which has
been designed to satisfy all the specifications, may devi-
ate from the expectation in operation. However, step 3
can still be used to predict the future behavior of the
RPC system. When needed, different control strategies
can be evaluated by steps 1–6 with updated specification
and input of the RPC system and adjustments in the sys-
tem components and their relationships.

6. The REGPG as an RPC system

From the RPC system component point of view, Fig. 3
shows the 66 RE process activities, the subset of these that
the REGPG terms the ‘top 10’ guidelines recommended for
any organization commencing basic RE process improve-
ment, and the subset that are specifically recommended
for critical systems (Sommerville and Sawyer, 1997).
Fig. 4 shows the good practices selected as the RE improve-
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Fig. 3. The distribution of RPC system components recommended in the
REGPG.
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Fig. 4. The distribution of RPC system components selected in (Kaup-
pinen et al., 2002).
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ment actions by the four Finnish organizations described in
(Kauppinen et al., 2002). The detailed RE process areas in
the RPC system components are shown in Figs. 5 and 6
respectively. It can be seen that:

• There are only five good RE practices that have been
recommended in the REGPG in the category of mea-
suring elements with 18 in actuators and series com-
pensation, 17 in feedback compensation, and 51 in
organizational support. Practices in the requirements
validation area, which help improve the performance
of measuring elements, account for 23.5% in the cate-
gory of feedback compensation and 11.8% (or 15.7%
considering those two practices relating to collecting
and learning from incident experience) in organizational
support.

• In the case of top 10 basic guidelines and those particu-
larly important for critical systems, there is one practice
in the category of measuring elements and two in the
requirements validation area in organizational support.

These account for 8.3% and 16.7%, respectively of the
top 10, and 7.7% and 15.4% of the critical systems good
practices. No feedback compensation for measuring ele-
ments has been suggested.

• As to the four Finnish organizations, no measuring ele-
ments, no feedback compensation and no organizational
support in the requirements validation area (except
organization A who selects one practice in the last cate-
gory and one relating to defining guidelines for formal
requirements inspections) are selected as the RE
improvement actions.

It is too early to claim with certainty that adapted prin-
ciples of conventional control theory presented in this
paper are immediately deployable in RE process improve-
ment. However, we have learned that more good RE prac-
tices relating to measuring elements, including those in
feedback compensation and organizational support, should
be introduced into the existing REGPG framework if an
RE process improvement model can really operate as a
process control system.

This is an interesting finding since the collection of
quantitative historical data is generally considered to be
feasible only by organizations whose processes are
already mature. For example, in the CMMI (CMU,
2002), quantitative data collection is mandated at level 4
(Quantitatively Managed). The state-of-the-art in RE
processes at the time that the REGPG was designed was
such that the characteristics of mature RE processes
were uncertain. There simply were not any mature RE pro-
cesses known to the authors from which guidelines
and practices for the higher levels in the REGPG matu-
rity model could be synthesized. For this reason, the
REGPG is limited to the levels that correspond broadly
to the lower three of the CMMI. Given this fact, it is not
surprising that the REGPG is deficient in measurement
practices. Nevertheless, it interesting that our work has
indirectly validated the focus on measurement at the
CMMI’s upper levels.

7. Related work and conclusions

Recognizing the emerging field of software cybernetics,
the first international workshop on software cybernetics,
in conjunction with COMPSAC 2004, was held in Hong
Kong, China in 2004: ‘‘This workshop is motivated by a
strong perceived need for formalization in the area of soft-
ware development process (IWSC, 2004)’’. The ideas of
software cybernetics, the state-of-the-art, ‘‘the on-going
work in the area of software cybernetics and the back-
ground on which it rests and borrows from’’, and the
potential research and application topics are summarized
in (Cai et al., 2003; Cai and Chen, 2002). What distin-
guishes our work from the existing efforts to explicitly
apply the concepts, principles or approaches of control
theory to the research on software process (Cai et al.,
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2003; Cai and Chen, 2002; FEAST, 2001; Lehman, 1998;
Lehman, 2001; Lehman, 2000; Cangussu et al., 2003;
Cangussu et al., 2002) lies in:

• Problem scope. Our work focuses on the RE process.
However, this is for essentially pragmatic reasons given
the experience of two of the authors in this area. The
scope of the work could be widened to apply to software
process improvement models that spanned the whole
lifecycle.

• Modeling method. We view the software process as a
software process control system that consists of different
system components. We apply modeling using the con-
ventional block diagrams in control theory and later
try to integrate this with statistical techniques. Other
work has either has paid attention to the specific role
of feedback mechanisms or considered the process under
study as a black-box plant, and has taken different
approaches to the problem such as system dynamics
and state space modeling.

The reason there is little, if any, parallel work on the
adaptation of the principles of conventional control theory
to the field of software process may be that it is difficult to
develop adequate models in the sense of conventional con-
trol theory of different system components and the soft-
ware process control system as a whole. ‘‘Even an
experienced control engineer can do nothing without a
model of the system to be controlled (Lehman, 2001)’’.
Moreover ‘‘Conventional control requirements such as sta-
bility, rise time and overshoot may no longer be appropri-
ate (Cai et al., 2003)’’. Our work opens a new way to
system modeling in the domain of classical control theory,
presents a new perspective of control requirements, and
gives some new ideas about the adaptation of control the-
ory to the field of software processes.

To summarize, we have adapted the principles of con-
ventional control theory to define the RE process as an
RPC system, reorganize the RE activities as different types
of RPC system components, map the goals of RE process
establishment and improvement to the specifications of
such a system, analyze its dynamic and steady-state perfor-
mance. By doing so, we have:

• Structured RE good practices. Not only can companies
know what these RE good practices are, but also their
roles in the RPC system. It becomes possible to apply
the knowledge about control theory to the selection of
RE process models, technologies, and good requirement
practices given the resources available.

• Related the individual behavioral performance to the
dynamic RE process and up to the wider organizational
context and business goals. Not only can companies
identify the strengths and weaknesses in their RE pro-
cesses across the board, but also the factors both within
and external to the processes that may impact the behav-

ior and performance of the RPC systems. In principle,
therefore, it becomes possible to systematically start
and/or incrementally improve the RE processes, and
objectively see the progression at individual, team and
organizational levels according to the improvement
efforts.

• Outlined an active Requirements Process Control (RPC)
System framework. Not only can companies flexibly
configure their RE processes, but also quantitatively
evaluate different RE process solutions and their benefits
using unified system performance indicators. It even
becomes possible to make sensible comparisons of RE
capability maturity and process improvement across
companies.

The RPC system is an active, continuous, configurable
requirement process establishment and improvement
framework. To make it feasible in practice and complete
in theory, we need to elaborate, assess and improve the
RPC process framework in real industrial settings. By
collecting RE process data using the unified data set
model defined in the RPC system framework and employ-
ing statistical techniques and/or others, we may further
extract different RPC system components and their process
patterns, study the stability and performance relation
between them and the whole RPC system, and conduct
the error analysis of the RPC system modeled as opposed
to the actual one. We need to develop tools superimposed
on the existing SPIToolkit, (a web application supporting
software process management, improvement and integra-
tion by producing, organizing and utilizing knowledge
based on data collected from software processes (Xu,
1999, 2004) to facilitate the computing in the RPC system
framework and hence its practical application. It should
then be possible to evaluate the extent to which the RPC
system framework can be exploited for establishing, man-
aging and improving industrial RE processes and may
further give possible support to more objective, accu-
rate, reliable, repeatable and comparable RE process
assessment.

A feature of the work is that it requires the collection of
consistent historical data on RE process activities. This
limits the practical application of classical control theory
and its deployment through our RPC system to mature
organizations. However, we believe that our work has
shown that classical control theory offers significant
insights into the nature of software processes and, cru-
cially, a means for classifying and understanding good
practices and the real role they play within a software
process.
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Appendix A. The 66 key practice areas viewed from the perspective of different RPC system components

RPC system components RE process area Good practice

Actuators Feasibility study (AC4) 4.1 Assess system feasibility
Requirements elicitation (AC4) 4.3 Identify and consult system stakeholders

4.5 Define the system’s operating environment
4.6 Use business concerns to drive requirements

elicitation
4.7 Look for domain constraints
4.9 Collect requirements from multiple viewpoints

4.11 Use scenarios to elicit requirements
4.12 Define operational processes

Requirements description
(AC6) (System modeling)

6 Describe requirements
7.1 Develop complementary system models
7.2 Model the system’s environment—4.5,

4.6, 4.11, 4.12
7.3 Model the system architecture

Requirements
management (AC9)

9 Manage requirements (more important to
Critical Systems Domain)

Series compensation Feasibility study (SC4) 10.3 Identify and analyze hazards
(Critical Systems Domain)

Requirements
elicitation (SC4)

4.10 Prototype poorly understood requirements
4.13 Reuse requirements
10.4 Derive safety requirements from hazard analysis

(Critical Systems Domain)
Requirements
management (SC9)

9.5 Use a database to manage requirements
(more important to Critical Systems Domain)

Measuring elements Requirements
validation (ME8)

8.1 Check that the requirements document meet your
standards

8.2 Organize formal requirements inspections
8.5 Use prototyping to animate requirements
8.6 Write a draft user manual
8.7 Propose requirements test cases

Feedback
compensation

Requirements elicitation (FC4) 4.10 Prototype poorly understood requirements
Requirements analysis
(and negotiation) (FC5)

5.1 Define system boundaries
5.2 Use checklists for requirements analysis
5.4 Have requirements negotiation meetings
5.5 Prioritize requirements
5.6 Classify requirements using a multi-dimensional

approach
5.7 Use interaction matrices to find conflicts

and overlaps
5.8 Assess requirements risks

10.5 Cross-check operational and functional requirements
against safety requirements (Critical Systems Domain)

Requirements description
(FC6) (System modeling)

7.1 Develop complementary system models
7.2 Model the system’s environment
7.6 Document the links between stakeholder

requirements and system models
10.6 Specify systems using formal specifications

(Critical Systems Domain)
Requirements validation (FC8) 8.3 Use multiple-disciplinary teams to review

requirements
10.2 Involve external reviewers in the validation

process (Critical Systems Domain)
8.8 Paraphrase system models

(Critical Systems Domain)
10.5 Cross-check operational and functional requirements

against safety requirements (Critical Systems Domain)
(continued on next page)
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Appendix A (continued)

RPC system components RE process area Good practice

Organizational support Requirements
documentation (OS3)

3.1 Define a standard document structure
3.2 Explain to use the document
3.3 Include a summary of the requirements
3.4 Make a business case for the system
3.5 Define specialized terms
3.6 Lay out the document for readability
3.7 Help readers find information
3.8 Make the document easy to change

Requirements elicitation
(OS4)

4.2 Be sensitive to organizational and political
considerations

4.4 Record requirements sources
4.8 Record requirements rationale
4.9 Collect requirements from multiple viewpoints

4.10 Prototype poorly understood requirements
4.11 Use scenarios to elicit requirements
4.13 Reuse requirements

Requirements analysis
and negotiation (OS5)

5.2 Use checklists for requirements analysis
5.5 Prioritize requirements
5.6 Classify requirements using a multi-dimensional

approach
5.7 Use interaction matrices to find conflicts and overlaps
5.8 Assess requirements risks

Requirements description
(OS6) (System modeling)

6.1 Define standard templates for describing requirements
6.2 Use language simply, consistently and concisely
6.3 Use diagrams appropriately
6.4 Supplement natural language with other descriptions

of requirements
6.5 Specify requirements quantitatively
7.1 Develop Complementary system models
7.2 Model the system’s environment
7.3 Model the system architecture
7.4 Use structured methods for system modeling
7.5 Use a data dictionary
7.6 Document the links between stakeholder

requirements and system models
10.6 Specify systems using formal specifications

(Critical Systems Domain)
Requirements validation (OS8) 8.2 Organize formal requirements inspections

8.4 Define validation checklists
10.1 Create safety requirement checklists

(Critical Systems Domain)
8.5 Use prototyping to animate requirements
8.7 Propose requirements test cases
8.8 Paraphrase system models (Critical Systems Domain)

Requirements management
(OS9)

9.1 Uniquely identify each requirement
9.2 Define policies for requirements management
9.3 Define traceability policies
9.4 Maintain a traceability manual
9.5 Use a database to manage requirements
9.6 Define change management policies
9.7 Identify global system requirements
9.8 Identify volatile requirements
9.9 Record rejected requirements

(more important to Critical Systems Domain)
To All 10.3 Identify and analyze hazards

10.7 Collect incident experience
10.8 Learn from incident experience
10.9 Establish an organizational safety culture

(Critical Systems Domain)
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