
Quality of Service Requirements Specification Using an Ontology

Glen Dobson Russell Lock Ian Sommerville
Computing Department,

Lancaster University,
Lancaster, UK

Computing Department,
Lancaster University,

Lancaster, UK

Computing Department,
Lancaster University,

Lancaster, UK
g.dobson@lancs.ac.uk r.lock@lancs.ac.uk is@comp.lancs.ac.uk

Abstract

This paper describes an approach to specifying the
QoS requirements of service-centric systems using an
ontology for Quality of Service. A requirements
matching tool which makes use of this approach is also
presented. This tool allows clients to discover services
and differentiate between them based upon their QoS
requirements. The ways in which the tool both
constrains and aids the user in constructing
requirements, and applies a degree of intelligence in
the matching process, demonstrates the advantages of
the underlying ontology.

1. Introduction

A service-centric system may have a static
architecture decided at design-time. Service-Oriented
Architectures (SOA) also open up the possibility of a
dynamic architecture where certain components are
only discovered and bound at runtime.

Both of these approaches ideally require a service
marketplace, in which functionally equivalent services
compete for the same custom. In such a situation non-
functional characteristics, i.e. Quality of Service
(QoS), become more important in distinguishing
between the competing services.

In either case, it is also desirable to have a machine
understandable QoS vocabulary. In the static case this
would prove useful in implementing design-time tools,
in the dynamic case it is absolutely necessary in order
to perform service selection at runtime based upon
service QoS. A shared QoS vocabulary also aids in
representing SLAs, provider QoS advertisements and
client-side QoS requirements in a consistent and
interoperable manner. Below is a list of stakeholders,
designed to illustrate the requirements of different
parties for a shared QoS vocabulary:

Requirements common to both service and client:
• To provide common reference for negotiation

between provider and client
• To develop legally binding agreements on service

utilisation
• To determine unambiguous monitoring

responsibilities
• To provide unequivocal legal backing should a

agreement be broken

Service Provider
• To advertise services in the electronic marketplace
• To aid in internal service composition and

aggregation of sub services

Client
• To differentiate between services both at design-

time and runtime

This paper describes an ontology which provides

the basis for such a shared vocabulary, whilst also
enabling a degree of machine “understanding” of the
concepts represented. The paper is structured as
follows: Section 2 explains the concept of an ontology
and some related technologies; Section 3 details the
structure of QoSOnt itself; Section 4 explains the
limitations of OWL for representing QoS
requirements; Section 5 describes a requirements
matching tool which makes use of QoSOnt; Section 6
compares QoSOnt to related work in the field; Section
7 evaluates QoSOnt; Section 8 suggests future work;
and finally Section 9 draws conclusions on the work.

2. Background

2.1. Ontologies in Software Engineering

In software engineering, an ontology can be defined
as “a specification of a conceptualization” [1]. More
precisely, an ontology is an explicit formal
specification of how to represent the objects, concepts,
and other entities that exist in some area of interest and
the relationships that hold among them. In general, in
order to be useful, an ontology must represent a
shared, agreed upon conceptualisation.

The use of ontologies in computing has gained
popularity in recent years for two main reasons:

1. They facilitate interoperability.
2. They facilitate machine reasoning.

In its simplest form an ontology is simply a
taxonomy of domain terms. However, taxonomies by
themselves are of little use in machine reasoning. The
term ontology also implies the modeling of domain
rules. It is these which provide an extra level of
machine “understanding”.

Ontologies are already used to aid research in a
number of fields. One example is the National Cancer
Institute Thesaurus [2], which contains over 500,000
nodes covering information ranging from disease
diagnosis to the drugs, techniques and treatments used
in cancer research. Ontologies are also often used in
the development of thesauri which need to model the
relationships between nodes.

The constructs used to create ontologies vary
between ontology languages. One class of ontology
languages is those which are based upon description
logics [3]. OWL is one such language. This language
is discussed in the following section as a concrete
example of how an ontology may be created.

2.2. OWL

OWL [4] is the Web Ontology Language - an
XML-based language for publishing and sharing
ontologies via the web. OWL originated from
DAML+OIL both of which are based on RDF
(Resource Description Framework) triples. There are
three ‘species’ of OWL – but the most useful for
reasoning - OWL-DL - corresponds to a description
logic.

An OWL ontology consists of Classes and their
Properties. The Class definition specifies the
conditions for individuals to be members of a Class. A
Class can therefore be viewed as a set. The set
membership conditions are usually expressed as
restrictions on the Properties of a Class. For instance
the allValuesFrom and someValuesFrom property

restrictions commonly occur in Class definitions.
These correspond to the universal quantifier (∀) and

existential qualifier (∃) of predicate logic. More
precisely, in OWL such restrictions form anonymous
Classes of all individuals matching the corresponding
predicate.

Classes may be constructed from other Classes
using the intersectionOf, unionOf and complementOf
constructs which correspond to their namesakes from
set theory. Another way to define a Class is to specify
all individuals of which it consists explicitly using the
oneOf construct.

A key feature of OWL and other description logics
is that classification (and subsumption relationships)
can be automatically computed by a reasoner. An open
world assumption is made. This means that no
assumptions are made about anything which is not
asserted explicitly. One outcome of this is that a Class
definition does not act as a template for individuals as
it might in a closed world. For instance, an individual
may have extra Properties about which nothing is
asserted in its Class definition. An individual may also
be a member of many Classes.

Because classifications can be inferred, the creator
of an individual does not need to be aware of all
possible Classes into which the individual may fall at
the time of creation. Instead, all Classes of which it is a
member can be inferred by a reasoner.

The following snippet from our ontology gives a
flavour of OWL. It defines a Class
MeasurableAttribute, stating that it is exactly
equivalent to the QoSAttribute Class intersected with
the set of all individuals which have a Property
“hasMetric”, with at least one value which is a
“Metric”; intersected with the set of all individuals
which have a property “hasMetric” with only values
which are “Metrics”. Finally it states that the class
MeasurableAttribute and UnmeasurableAttribute are
disjoint.

<owl:Class rdf:about="#MeasurableAttribute">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Metric" />
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasMetric" />
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Metric" />
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasMetric" />
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:about="#QoSAttribute" />
 </owl:intersectionOf>
 </owl:Class>

 </owl:equivalentClass>
 <owl:disjointWith>
<owl:Class rdf:ID="UnmeasurableAttribute" />
 </owl:disjointWith>
</owl:Class>

Clearly this is not particularly human-readable,
especially because the Classes and Properties
referenced (Metric, hasMetric, Unmeasurable-
Attribute) could be defined anywhere in the file.
Editing OWL manually can be difficult for the same
reason. We used Protégé [5] and its OWL plug-in in
our ontology development.

2.3. OWL-S

OWL was not developed to describe web services;
in order to apply OWL under these circumstances
OWL-S was developed. OWL-S is designed to provide
many of the common markup language constructs
necessary to describe services. Along with OWL and
RDF it is a core “semantic web” technology. The
semantic web is a movement to make the semantics of
web-content accessible to machines. It has been
summarised by its originators as "an extension of the
current web in which information is given well-defined
meaning, better enabling computers and people to
work in cooperation” [6].

The OWL-S ontology is structured around the class
Service, which consists of one or more “profiles”,
“groundings” and a single “model”. The profile

describes what a service requires and provides. The
model is a functional model (i.e. it describe how the
service works), whilst the grounding describes how to
actually use a service (most commonly linking
between the OWL-S and WSDL description).

The “profile” is the class of relevance to QoS. It is
here that a service’s non-functional parameters can be
defined. QoSOnt is best used as an extension to OWL-
S by the service provider, since OWL-S provides the
ability to describe the non-QoS aspects of services.
This also unifies the service specification so that it is
accessible through a single point.

3. Structure of QoSOnt

The QoSOnt ontology is modular in nature in that it is
structured as a set of interconnected smaller
ontologies. Figure 1 summarises some of these
ontologies and some of the Classes they contain. This
is just a small subset of QoSOnt to give an impression
of how it is used. We concentrate mainly on how to
use the Class Metric as this is most relevant to
requirements engineering. We use the term attribute to
refer to a general QoS property (e.g. dependability,
reliability, performance) and metric to refer to a
specific way of measuring an attribute.

Metric, Attribute and other basic QoS concepts are
defined in the base ontology. Concepts specific to
some attribute can then be built into separate
ontologies on top of the base concepts.

Figure 1. QoSOnt Structure

We currently have a relatively complete ontology of
dependability concepts based upon [7]. We choose not
to define specific metrics here as we do not wish to tie
the generic concepts of dependability to specific ways
of measuring dependability. We therefore have a
separate ontology of actual metrics. We also have a
less complete performance ontology, which plays an
analogous role to the dependability ontology shown in
Figure 1.

One reason for creating an ontology for a particular
attribute is to allow the concepts that metrics of that
attribute refer to to be defined. For instance, the
concept "failure" comes in useful in order to define
probability of failure on demand (POFOD) and allows
POFOD to be defined for specific types of failure
rather than just referring to all failures.

A further lightweight ontology ties the generic
concepts of the base ontology to web services in
particular. This is done by defining relationships
between QoSOnt and OWL-S. This basically allows
Metrics and Attributes to refer to the OWL-S Service

3.1. Metrics in QoSOnt

A Metric represents one way of measuring a
specific QoSAttribute. It must result in a numerical
value and must be calculable in practice as well as
theory. For instance, a statement that a service has
transactional throughput of 1000 transactions per
second can be falsified by a single party (be they a
client, provider or monitoring service) but cannot
generally be measured by a client or third party, as
they have no access to the traffic statistics for the
service. The Class MeasurableAttribute shown in
Figure 1 is a QoSAttribute having one or more
associated Metrics. This is mainly a convenience
Class, as the user of QoSOnt could instead subclass
QoSAttribute and have a reasoner infer the more
specific subclass.

A Metric is defined to consist of a description, an
acceptability direction and zero or more values. The
acceptability direction indicates whether higher or
lower values are preferable for the Metric (e.g. A low
probability of failure on demand is more desirable). It
must be remembered that these Classes can be
extended or constrained by their subclasses, so being
over-specific at this base level is undesirable.

An individual metric conforming to a Class in
QoSOnt should be created when some measured QoS
data is being provided. An SLA would, in theory, also
refer to such an individual metric, although we have
not considered the full ramifications of using QoSOnt
in SLAs. A requirement or QoS offering/advertisement
should instead use a Metric Class. This is because
these documents actually refer to a set of individuals

(those required, or those notionally available to any
client respectively) rather than any specific one. The
Class in question may be directly provided by QoSOnt
or created by combining, extending or restricting those
Classes defined in QoSOnt.

The actual measured values of an individual Metric
should be provided by some third party in order to be
trusted by the client, possibly as the result of service
monitoring. The provider may still maintain ownership
of the rest of the document defining the individual/s -
but will use OWL's import mechanism to allow the
metric values to be specified externally.

Figure 1 shows an individual - MyPOFOD - and
how it can be classified as both ServiceSpecificMetric
and ProbabilityofFailureOnDemand. In the figure the
term "instance of" is used - but the use of this term can
be slightly confusing given its connotations in closed
world reasoning. There is no reason that MyPOFOD
(or any other individual Metric) could not simply be
asserted to be equivalent to the intersection of these
two Classes. However, even if this is not done, a
reasoner could infer these classifications from the
Properties of the individual.

A further note on the creation of an individual
service Metric is that if the provider does not wish to
provide an OWL-S service description then they
should simply not make use of the Service and OWL-S
ontologies. It is therefore generally preferable to define
new Metric Classes without reference to the Service
ontology, and leave it to the creator of individuals of
that Metric Class to specify the intersection with the
relevant Class from the service ontology. Note that in
the case shown in Figure 1, MyPOFOD is classified as
a ServiceSpecificMetric. It therefore refers to POFOD
over the use of the whole service. Metrics specifying
POFOD for specific operations could be created by
intersecting with OperationSpecificMetric instead.
Since OperationSpecificMetric references
WsdlOperationRef, QoSont currently only supports a
WsdlGrounding in OWL-S. Whilst other types of
grounding are theoretically possible it is felt that the
WsdlGrounding is likely to be the only one to gain
widespread use.

3.2. Other QoSOnt Features

Figure 1 hides a lot of information. Among this is
the fact that Metric values refer not just to some
numerical datatype - but to a quantity of something in
the world. In the base ontology this is modelled as a
MetricValue Class with a hasUnits Property (which
has the Class Unit as its range). The place this occurs
most often is in defining performance Metrics. Here, it
is often necessary to refer to quantities of time. For
instance it is meaningless to refer to a mean time to
complete of 500 without stating whether that is

measured in milliseconds or hours. We provide a time
ontology for this purpose.

We also offer the possibility of unit conversion
through the Class ConversionRate. This proves very
useful in the situation where client requirements are
stated in different units to metric data.

It is also worth noting that the interrelationships
between Classes through their Properties allows
traversal of the ontology to retrieve useful information.
For instance, having a specific Metric, one could use
its isMetricOf property to find what QoSAttribute it
measures and then use the QoSAttribute's hasMetric
properties to find all other metrics provided for that
attribute. In a similar way one could use Class
Properties to navigate to information not directly
regarded as QoS (e.g. Dependability.hasMeans
indicates the mechanisms used to achieve
dependability in a service).

4. OWL's Limitations

Considering our preferred way of representing and
matching requirements using QoSOnt reveals some
shortcomings in the current OWL specification.

Recall from Section 2.2 that an OWL Class
definition specifies a set of individuals of the ontology
by expressing restrictions on their Properties; and that
classification can be performed on individuals without
the creator of the individual having any knowledge of
the Class in question.

This suggests that a good way to express a QoS
requirement would be as a Class created by the client.
Such a requirement Class would define a subset of
QoS metrics from the set of QoSOnt descriptions
under consideration based upon the properties of the
individual metrics (e.g. their hasValue Property).

For instance the probability of failure on demand
(POFOD) requirement "POFOD<0.01" is matched by
the Class defined as the intersection of POFOD and
those things with a hasValue property which satisfies
allValuesFrom 0.0 to 0.01. The range 0 to 0.01 could
be defined using a custom XML datatype like so:

 <xsd:simpleType name="dataRange">
 <xsd:restriction base="float">
 <xsd:minInclusive value="0.0">
 <xsd:maxInclusive value="0.01">
 </xsd:restriction>
</xsd:simpleType>

The OWL specification states that allValuesFrom

supports quantification over a data range - but only
mandates limited tool support for XML datatypes. On
top of this, there is the added difficulty that there is no
standard way to refer to user defined datatypes (like
dataRange above) in OWL [10]. Due to these factors

(among others) reasoners do not support the kind of
restriction we wish to use.

This also gives us problems in modelling
probabilities (values from 0.0 - 1.0) and percentages
(values from 0.0-100.0), for instance, and appears to
be a fundamental problem with OWL.

We envision that this problem will, in the future, be
addressed in OWL and OWL reasoners. In the
meantime we use a custom XML language to represent
requirements. The concepts of this language map
easily to those of the approach set out above in
anticipation of future improvements to OWL.

5. SQRM: a QoSOnt Application

To demonstrate the use of the ontology, and aid in

its evaluation, a prototype tool for service discovery
and selection based upon QoS requirements has been
developed. We have named the tool the Service QoS
Requirements Matcher (SQRM). SQRM is designed to
showcase a range of different situations in which
QoSOnt can be utilised within the service domain. The
tool supports the following:

• Service Discovery

• Requirement Specification

• Service Querying – Differentiation/Selection

The tool may be used at design-time to specify
initial QoS requirements (and find matching services),
or to narrow down a set of services already selected
using some other method. The code could also form
the basis for an API to allow QoS-based service
selection to be performed dynamically at runtime.

5.1. Service Discovery

The first stage SQRM is designed to undertake is
the initial discovery of services. UDDI [8] is used for
this purpose. We do not attempt to address the existing
problems with public UDDI registries (un-
vetted/incorrect information etc), but instead use
UDDI purely as one way to identify services worth
further investigation. We implement this functionality
using JAXR [9] which is registry independent - so
theoretically would find it easy to implement support
for other discovery mechanisms.

Clients query the repository via keyword search
(see Figure 2). The extent to which clients can search
for particular service requirements at this stage is
highly restricted, this instead occurring at the next
stage.

For each service the user selects the tool retrieves a
QoSOnt document linked to the service entry

(provided this information has been published in the
registry or is available through the WSDL).

Figure 2. Service Discovery in SQRM

5.2. Requirement Specification

QoS Requirement and capability specification
affects all clients and services. Without a way to
specify requirements a client could not differentiate
between services; without capability specification a
service could not advertise its resources. The SQRM
tool currently concentrates on the client viewpoint –
providing a graphical means of specifying QoS
requirements. Much of it however, could be reused for
a provider-side specification and publishing tool.

To demonstrate the form QoS requirements may
take, we briefly introduce one of the scenarios used to
evaluate QoSOnt. The example used is based upon the
field of epidemiology, and the study of pandemics. The
computation of the projected spread of diseases on
given population models is both time consuming and
of interest to multiple bodies, governmental, academic
and independent.

Requirements relating to different algorithms /
processing capacity / time expended, make QoS
specification an important factor. For example some
algorithms work better with larger datasets; others may
converge on an answer in such a way as to make long
processing runs unnecessary for the accuracy required;
for others, short runs may render results useless.
Information of this type can be built into an ontology,
creating a richer information resource than a mere list
of supported functions.

In SQRM, a QoS requirement is basically a
predicate (represented in XML), the truth value of
which depends upon the asserted facts in the QoS
descriptions of the client selected services. The
subjects of the predicates are instances or Classes
defined in QoSOnt. In contrast to requirements, the

provider's description of their QoS capabilities consists
of asserted propositions. These often simply say "QoS
Metric X has been measured to have value Y".

Requirement predicates are visualised as a tree – the
leaves of which are Values or Classes of Metric
expressed in QoSOnt. The inner nodes are logical and
arithmetic operators. Such as AND / OR. These allow
expressions of the type shown below to be inputted:

Mean time to Failure > 10 days
AND
Mean Availability > 98%

Figure 3 shows a screenshot of the current

implementation of our SQRM requirement
specification environment.

Figure 3. Requirement Specification in SQRM

5.3. Requirements Matching

Determining whether a service supports certain
metrics is of limited use without being able to compare
the clients’ requirements against the services
capabilities. The ontology becomes useful (for
example) in situations where metrics are not defined in
the same units between client and provider; this allows
a tool to take into account and convert types with the
aid of the ontology. The requirements matching phase
takes files from both client and provider(s), analyses,
and provides feedback to the client on the
compatibility of the requirements and capabilities
documents. The matching parser is designed to enable
complex expressions of AND / OR construction to be
used. It is not the job of the matching tool to negotiate
a settlement between client and service provider, this
instead would be provided by an additional phase of
the service operation cycle. The requirements matcher
is therefore useful as a first attempt to refine the

services available, prior to the commencement of
negotiation proper.

6. Related Work

DAML-QoS [11] like our own QoSOnt, is an
ontology for Quality of Service (QoS) in service-
centric systems. Like QoSOnt it is realised using OWL
(Web Ontology Language) (or at least its predecessor
DAML+OIL) and works in symbiosis with OWL-S.

As well as QoS description, DAML-QoS supports
concepts such as QoS adverts and inquiries. An
attempt is made to do this in much the same way
described in Section 3.2.

The approach presented in [11] also appears to be
fundamentally flawed in that it uses cardinality
constraints to express bounds upon QoS properties. As
the term cardinality suggests, this is actually a misuse
of this OWL construct. A cardinality constraint puts
constraints on the number of values a property can
take, not on the values themselves. Even if the
approach taken was valid, it also carries the limitation
that it can only express bounds as positive integers
(e.g. there is no simple way to say "availability>
0.999'').

The domain features modelled also seem to be
rather sparse. Essentially DAML-QoS seems to be
little more than a schema for QoS. As such, nothing
distinguishes it from the many existing QoS
specification languages [12].

[13] also presents an ontology with many
similarities to our own. A framework using the
ontology to support dynamic web services selection is
also outlined. Despite its promise, this ontology lacks
both an openly available implementation and links to
OWL-S.

Our work seeks to address the gaps left by this
work by providing an openly available, extensible
OWL ontology, allowing complex and varying QoS
metrics to be defined. Our aim is not just to provide a
schema for QoS in web services - but use the power of
knowledge representation in OWL to allow a certain
degree of intelligence to be applied by agents and
applications (e.g. conversion of units, inference of
composite metric values, inference of the QoS of
composite services).

7. Evaluation

The evaluation of an ontology such as QoSOnt
ultimately relies upon its application by the research
community. We are hoping to soon benefit from
interaction with a number of other interested parties.

We see QoSOnt as something which may, in the
future, form the basis of a standard QoS ontology for

use across the community. During development, we
have simulated its usage by generating a set of
scenarios, one of which was introduced briefly in the
previous section, relating to pandemics. QoSOnt aims
to provide a common QoS conceptualisation for use by
client, provider, and third party intermediary systems.
We have therefore attempted to consider the scenarios
from each of these viewpoints, although we have
initially concentrated on the client and provider point
of view. We consider the scalability of the ontological
approach to be sufficient for the needs of large scale
projects; however we do accept that the current tooling
may require further work to maintain usability when
scaled to deal with large numbers of requirements.

8. Future Work

In the future we hope to continue our efforts in the
expansion of QoSOnt in parallel with our work on
SQRM. An avenue we have begun to explore is
expressing, on top of QoSOnt, how metrics aggregate
under various forms of composition. We also plan to
explore the way in which QoSOnt could be further
leveraged in more complex QoS specification
scenarios. In particular we wish to address certain
limitations of common dependability metrics. The
issue of moving beyond UDDI to find the best way to
publish and make QoS specifications easily
discoverable and queryable is also on our agenda, as is
addressing the outstanding area of QoS monitoring.

Currently, the application of unit conversion is
slightly cumbersome from the client's point of view.
The client has to find the appropriate ConversionRate
and compute the converted values themselves. We
hope to use a rules language such as the Semantic Web
Rules Language (SWRL) [14] to represent this
knowledge in the ontology in future. SWRL would
allow us to specify conversion rates as an implication
between an antecendent (the value with its original
units) and a consequent (the converted value). This
would be transparent to the client.

Further, since we began work on QoSOnt the
OWL-Time [15] ontology has matured significantly. It
would therefore be useful to align QoSOnt with this
ontology rather than our own time ontology.

9. Conclusion

This paper has put forward an approach to
requirement specification based upon a shared QoS
ontology. In order to ground the concept further, we
have developed tools to leverage the benefits of an
ontology for QoS, and evaluated our results against
scenarios designed to test the capabilities of the design.
We accept that real world examples may pose us with

unexpected situations. We are therefore seeking to
collaborate with real world service users in order to
further evaluate and improve QoSOnt.

10. References

[1] T. R. Gruber, “A translation approach to portable
ontologies”, Knowledge Acquisition, Vol.5, No. 2, pp199-
220, http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-
71.html, 1993

[2] National Cancer Institute (NCI) Thesaurus,
http://www.mindswap.org/2003/CancerOntology/

[3] Franz Baader, Ian Horrocks, Ulrike Sattler. “Description
logics as ontology languages for the semantic web”, in
Lecture Notes in Artificial Intelligence. Springer, 2003.
http://www.cs.man.ac.uk/~horrocks/Publications/download/2
003/BaHS03.pdf/

[4] W3C, "Web Ontology Language (OWL)",
http://www.w3.org/2004/OWL

[5] DAML, “OWL-S”, http://www.daml.org/services/owl-s/

[6] Tim Berners-Lee, James Hendler, Ora Lassila, “The
Semantic Web”, Scientific American, May 2001

[7] Jean-Claude-Laprie, Brian Randell, Carl Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing”, in IEEE Transactions on Dependable & Secure
Computing. Vol. 1, No. 1, pp. 11-33.

[8] Tom Bellwood et al, “UDDI Version 3.0.2”, edited by
Luc Clement et al, http://uddi.org/pubs/uddi-v3.0.2-
20041019.htm

[9] Sun Microsystems, "JAXR",
 http://java.sun.com/xml/jaxr/index.jsp

[10] Jeremy J. Panel, Jeff Z. Pan, "XML Schema Datatypes
in RDF and OWL", http://www.w3.org/TR/swbp-xsch-
datatypes/, 2005

[11] Chen Zhou, Liang-Tien Chia and Bu-Sung Lee,
"DAML-QoS Ontology for Web Services", ICWS, pp472-
479, 2004

[12] Glen Dobson, "Quality of Service in Service-Oriented
Architectures”, http://digs.sourceforge.net/papers/qos.pdf

[13] E.M. Singh, M.P Maximilien, "A Framework and
Ontology for Dynamic Web Services Selection", IEEE
Internet Computing Vol. 8, No.5, pp84-93, 2005

[14] Ian Horrock et al, "SWRL: A Semantic Web Rule
Language Combining OWL and RuleML",
http://www.daml.org/2003/11/swrl/, 2003
"SWRL

[15] Jerry R. Hobbs, Feng Pan, "An Ontology of Time for
the Semantic Web", 2004, TALIP, Vol. 3, No.1, pp.66-85,
2004

