
Quality of Service Requirements Specification Using an Ontology 
 
 

Glen Dobson Russell Lock Ian Sommerville 
Computing Department, 

Lancaster University, 
Lancaster, UK 

Computing Department, 
Lancaster University, 

Lancaster, UK 

Computing Department, 
Lancaster University, 

Lancaster, UK 
g.dobson@lancs.ac.uk r.lock@lancs.ac.uk is@comp.lancs.ac.uk 

 
 

Abstract 
 

This paper describes an approach to specifying the 
QoS requirements of service-centric systems using an 
ontology for Quality of Service. A requirements 
matching tool which makes use of this approach is also 
presented. This tool allows clients to discover services 
and differentiate between them based upon their QoS 
requirements. The ways in which the tool both 
constrains and aids the user in constructing 
requirements, and applies a degree of intelligence in 
the matching process, demonstrates the advantages of 
the underlying ontology.  
 
 
1. Introduction 
 

A service-centric system may have a static 
architecture decided at design-time. Service-Oriented 
Architectures (SOA) also open up the possibility of a 
dynamic architecture where certain components are 
only discovered and bound at runtime. 

Both of these approaches ideally require a service 
marketplace, in which functionally equivalent services 
compete for the same custom. In such a situation non-
functional characteristics, i.e. Quality of Service 
(QoS), become more important in distinguishing 
between the competing services. 

In either case, it is also desirable to have a machine 
understandable QoS vocabulary. In the static case this 
would prove useful in implementing design-time tools, 
in the dynamic case it is absolutely necessary in order 
to perform service selection at runtime based upon 
service QoS. A shared QoS vocabulary also aids in 
representing SLAs, provider QoS advertisements and 
client-side QoS requirements in a consistent and 
interoperable manner. Below is a list of stakeholders, 
designed to illustrate the requirements of different 
parties for a shared QoS vocabulary: 

 
 
 

Requirements common to both service and client: 
• To provide common reference for negotiation 

between provider and client 
• To develop legally binding agreements on service 

utilisation 
• To determine unambiguous monitoring 

responsibilities 
• To provide unequivocal legal backing should a 

agreement be broken 
 

Service Provider 
• To advertise services in the electronic marketplace 
• To aid in internal service composition and 

aggregation of sub services 
 

Client 
• To differentiate between services both at design-

time and runtime 
 
This paper describes an ontology which provides 

the basis for such a shared vocabulary, whilst also 
enabling a degree of machine “understanding” of the 
concepts represented. The paper is structured as 
follows: Section 2 explains the concept of an ontology 
and some related technologies; Section 3 details the 
structure of QoSOnt itself; Section 4 explains the 
limitations of OWL for representing QoS 
requirements; Section 5 describes a requirements 
matching tool which makes use of QoSOnt; Section 6 
compares QoSOnt to related work in the field; Section 
7 evaluates QoSOnt; Section 8 suggests future work; 
and finally Section 9 draws conclusions on the work. 
 
 
 
 

 



2. Background 
 
2.1. Ontologies in Software Engineering 
 

In software engineering, an ontology can be defined 
as “a specification of a conceptualization” [1]. More 
precisely, an ontology is an explicit formal 
specification of how to represent the objects, concepts, 
and other entities that exist in some area of interest and 
the relationships that hold among them. In general, in 
order to be useful, an ontology must represent a 
shared, agreed upon conceptualisation. 

The use of ontologies in computing has gained 
popularity in recent years for two main reasons: 

 
1. They facilitate interoperability. 
2. They facilitate machine reasoning. 

 
 

In its simplest form an ontology is simply a 
taxonomy of domain terms. However, taxonomies by 
themselves are of little use in machine reasoning. The 
term ontology also implies the modeling of domain 
rules. It is these which provide an extra level of 
machine “understanding”. 

Ontologies are already used to aid research in a 
number of fields. One example is the National Cancer 
Institute Thesaurus [2], which contains over 500,000 
nodes covering information ranging from disease 
diagnosis to the drugs, techniques and treatments used 
in cancer research. Ontologies are also often used in 
the development of thesauri which need to model the 
relationships between nodes. 

The constructs used to create ontologies vary 
between ontology languages. One class of ontology 
languages is those which are based upon description 
logics [3]. OWL is one such language. This language 
is discussed in the following section as a concrete 
example of how an ontology may be created. 

 
2.2. OWL 
 

OWL [4] is the Web Ontology Language - an 
XML-based language for publishing and sharing 
ontologies via the web.  OWL originated from 
DAML+OIL both of which are based on RDF 
(Resource Description Framework) triples. There are 
three ‘species’ of OWL – but the most useful for 
reasoning - OWL-DL - corresponds to a description 
logic. 

An OWL ontology consists of Classes and their 
Properties. The Class definition specifies the 
conditions for individuals to be members of a Class. A 
Class can therefore be viewed as a set. The set 
membership conditions are usually expressed as 
restrictions on the Properties of a Class. For instance 
the allValuesFrom and someValuesFrom property 

restrictions commonly occur in Class definitions. 
These correspond to the universal quantifier (∀) and 

existential qualifier (∃) of predicate logic. More 
precisely, in OWL such restrictions form anonymous 
Classes of all individuals matching the corresponding 
predicate. 

Classes may be constructed from other Classes 
using the intersectionOf, unionOf and complementOf 
constructs which correspond to their namesakes from 
set theory. Another way to define a Class is to specify 
all individuals of which it consists explicitly using the 
oneOf construct. 

A key feature of OWL and other description logics 
is that classification (and subsumption relationships) 
can be automatically computed by a reasoner. An open 
world assumption is made. This means that no 
assumptions are made about anything which is not 
asserted explicitly. One outcome of this is that a Class 
definition does not act as a template for individuals as 
it might in a closed world. For instance, an individual 
may have extra Properties about which nothing is 
asserted in its Class definition.  An individual may also 
be a member of many Classes. 

Because classifications can be inferred, the creator 
of an individual does not need to be aware of all 
possible Classes into which the individual may fall at 
the time of creation. Instead, all Classes of which it is a 
member can be inferred by a reasoner. 

The following snippet from our ontology gives a 
flavour of OWL. It defines a Class 
MeasurableAttribute, stating that it is exactly 
equivalent to the QoSAttribute Class intersected with 
the set of all individuals which have a Property 
“hasMetric”, with at least one value which is a 
“Metric”; intersected with the set of all individuals 
which have a property “hasMetric” with only values 
which are “Metrics”. Finally it states that the class 
MeasurableAttribute and UnmeasurableAttribute are 
disjoint. 

 
<owl:Class rdf:about="#MeasurableAttribute"> 
  <owl:equivalentClass> 
    <owl:Class> 
      <owl:intersectionOf rdf:parseType="Collection"> 
        <owl:Restriction> 
          <owl:allValuesFrom rdf:resource="#Metric" />  
          <owl:onProperty> 
             <owl:InverseFunctionalProperty rdf:ID="hasMetric" />  
          </owl:onProperty> 
        </owl:Restriction> 
        <owl:Restriction> 
          <owl:someValuesFrom rdf:resource="#Metric" />  
            <owl:onProperty> 
       <owl:InverseFunctionalProperty rdf:about="#hasMetric" />  
            </owl:onProperty> 
          </owl:Restriction> 
        <owl:Class rdf:about="#QoSAttribute" />  
      </owl:intersectionOf> 
    </owl:Class> 



  </owl:equivalentClass> 
  <owl:disjointWith> 
<owl:Class rdf:ID="UnmeasurableAttribute" />  
  </owl:disjointWith> 
</owl:Class> 
 

Clearly this is not particularly human-readable, 
especially because the Classes and Properties 
referenced (Metric, hasMetric, Unmeasurable-
Attribute) could be defined anywhere in the file. 
Editing OWL manually can be difficult for the same 
reason. We used Protégé [5] and its OWL plug-in in 
our ontology  development. 

 
2.3. OWL-S 
 

OWL was not developed to describe web services; 
in order to apply OWL under these circumstances 
OWL-S was developed. OWL-S is designed to provide 
many of the common markup language constructs 
necessary to describe services. Along with OWL and 
RDF it is a core “semantic web” technology. The 
semantic web is a movement to make the semantics of 
web-content accessible to machines. It has been 
summarised by its originators as "an extension of the 
current web in which information is given well-defined 
meaning, better enabling computers and people to 
work in cooperation” [6]. 

The OWL-S ontology is structured around the class 
Service, which consists of one or more “profiles”, 
“groundings” and a single “model”. The profile  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

describes what a service requires and provides. The 
model is a functional model (i.e. it describe how the 
service works), whilst the grounding describes how to 
actually use a service (most commonly linking 
between the OWL-S and WSDL description).  

The “profile” is the class of relevance to QoS. It is 
here that a service’s non-functional parameters can be 
defined. QoSOnt is best used as an extension to OWL-
S by the service provider, since OWL-S provides the 
ability to describe the non-QoS aspects of services. 
This also unifies the service specification so that it is 
accessible through a single point. 
 
3. Structure of QoSOnt 
 
The QoSOnt ontology is modular in nature in that it is 
structured as a set of interconnected smaller  
ontologies. Figure 1 summarises some of these 
ontologies and some of the Classes they contain. This 
is just a small subset of QoSOnt to give an impression 
of how it is used. We concentrate mainly on how to 
use the Class Metric as this is most relevant to 
requirements engineering. We use the term attribute to 
refer to a general QoS property (e.g. dependability, 
reliability, performance) and metric to refer to a 
specific way of measuring an attribute.  

Metric, Attribute and other basic QoS concepts are 
defined in the base ontology. Concepts specific to 
some attribute can then be built into separate 
ontologies on top of the base concepts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. QoSOnt Structure 



We currently have a relatively complete ontology of 
dependability concepts based upon [7]. We choose not 
to define specific metrics here as we do not wish to tie 
the generic concepts of dependability to specific ways 
of measuring dependability. We therefore have a 
separate ontology of actual metrics. We also have a 
less complete performance ontology, which plays an 
analogous role to the dependability ontology shown in 
Figure 1. 

One reason for creating  an ontology for a particular 
attribute is to allow the concepts that metrics of that 
attribute refer to to be defined. For instance, the 
concept "failure" comes in useful in order to define 
probability of failure on demand (POFOD) and allows 
POFOD to be defined for specific types of failure 
rather than just referring to all failures. 

A further lightweight ontology ties the generic 
concepts of the base ontology to web services in 
particular. This is done by defining relationships 
between QoSOnt and OWL-S. This basically allows 
Metrics and Attributes to refer to the OWL-S Service  

 
 
3.1. Metrics in QoSOnt 
 

A Metric represents one way of measuring a 
specific QoSAttribute. It must result in a numerical 
value and must be calculable in practice as well as 
theory. For instance, a statement that a service has 
transactional throughput of 1000 transactions per 
second can be falsified by a single party (be they a 
client, provider or monitoring service) but cannot 
generally be measured by a client or third party, as 
they have no access to the traffic statistics for the 
service. The Class MeasurableAttribute shown in 
Figure 1 is a QoSAttribute having one or more 
associated Metrics. This is mainly a convenience 
Class, as the user of QoSOnt could instead subclass 
QoSAttribute and have a reasoner infer the more 
specific subclass. 

A Metric is defined to consist of a description, an 
acceptability direction and zero or more values. The 
acceptability direction indicates whether higher or 
lower values are preferable for the Metric (e.g. A low 
probability of failure on demand is more desirable). It 
must be remembered that these Classes can be 
extended or constrained by their subclasses, so being 
over-specific at this base level is undesirable. 

An individual metric conforming to a Class in 
QoSOnt should be created when some measured QoS 
data is being provided. An SLA would, in theory, also 
refer to such an individual metric, although we have 
not considered the full ramifications of using QoSOnt 
in SLAs. A requirement or QoS offering/advertisement 
should instead use a Metric Class. This is because 
these documents actually refer to a set of individuals 

(those required, or those notionally available to any 
client respectively) rather than any specific one. The 
Class in question may be directly provided by QoSOnt 
or created by combining, extending or restricting those 
Classes defined in QoSOnt. 

The actual measured values of an individual Metric 
should be provided by some third party in order to be 
trusted by the client, possibly as the result of service 
monitoring. The provider may still maintain ownership 
of the rest of the document defining the individual/s - 
but will use OWL's import mechanism to allow the 
metric values to be specified externally. 

Figure 1 shows an individual - MyPOFOD - and 
how it can be classified as both ServiceSpecificMetric 
and ProbabilityofFailureOnDemand. In the figure the 
term "instance of" is used - but the use of this term can 
be slightly confusing given its connotations in closed 
world reasoning. There is no reason that MyPOFOD 
(or any other individual Metric) could not simply be 
asserted to be equivalent to the intersection of these 
two Classes. However, even if this is not done, a 
reasoner could infer these classifications from the 
Properties of the individual. 

A further note on the creation of an individual 
service Metric is that if the provider does not wish to 
provide an OWL-S service description then they 
should simply not make use of the Service and OWL-S 
ontologies. It is therefore generally preferable to define 
new Metric Classes without reference to the Service 
ontology, and leave it to the creator of individuals of 
that Metric Class to specify the intersection with the 
relevant Class from the service ontology. Note that in 
the case shown in Figure 1, MyPOFOD is classified as 
a ServiceSpecificMetric. It therefore refers to POFOD 
over the use of the whole service. Metrics specifying 
POFOD for specific operations could be created by 
intersecting with OperationSpecificMetric instead. 
Since OperationSpecificMetric references 
WsdlOperationRef, QoSont currently only supports a 
WsdlGrounding in OWL-S. Whilst other types of 
grounding are theoretically possible it is felt that the 
WsdlGrounding is likely to be the only one to gain 
widespread use. 

 
3.2. Other QoSOnt Features 
 

Figure 1 hides a lot of information. Among this is 
the fact that Metric values refer not just to some 
numerical datatype - but to a quantity of something in 
the world. In the base ontology this is modelled as a 
MetricValue Class with a hasUnits Property (which 
has the Class Unit as its range). The place this occurs 
most often is in defining performance Metrics. Here, it 
is often necessary to refer to quantities of time. For 
instance it is meaningless to refer to a mean time to 
complete of 500 without stating whether that is 



measured in milliseconds or hours. We provide a time 
ontology for this purpose. 

We also offer the possibility of unit conversion 
through the Class ConversionRate. This proves very 
useful in the situation where client requirements are 
stated in different units to metric data. 

It is also worth noting that the interrelationships 
between Classes through their Properties allows 
traversal of the ontology to retrieve useful information. 
For instance, having a specific Metric, one could use 
its isMetricOf property to find what QoSAttribute it 
measures and then use the QoSAttribute's hasMetric 
properties to find all other metrics provided for that 
attribute. In a similar way one could use Class 
Properties to navigate to information not directly 
regarded as QoS (e.g. Dependability.hasMeans 
indicates the mechanisms used to achieve 
dependability in a service). 

 
4. OWL's Limitations 
 

Considering our preferred way of representing and 
matching requirements using QoSOnt reveals some 
shortcomings in the current OWL specification. 

Recall from Section 2.2 that an OWL Class 
definition specifies a set of individuals of the ontology 
by expressing restrictions on their Properties; and that 
classification can be performed on individuals without 
the creator of the individual having any knowledge of 
the Class in question. 

This suggests that a good way to express a QoS 
requirement would be as a Class created by the client. 
Such a requirement Class would define a subset of  
QoS metrics from the set of QoSOnt descriptions 
under consideration based upon the properties of the 
individual metrics (e.g. their hasValue Property). 

For instance the probability of failure on demand 
(POFOD) requirement "POFOD<0.01" is matched by 
the Class defined as the intersection of POFOD and 
those things with a hasValue property which satisfies 
allValuesFrom 0.0 to 0.01. The range 0 to 0.01 could 
be defined using a custom XML datatype like so: 

 
 <xsd:simpleType name="dataRange"> 
    <xsd:restriction base="float"> 
        <xsd:minInclusive value="0.0"> 
        <xsd:maxInclusive value="0.01"> 
    </xsd:restriction> 
</xsd:simpleType> 

 
The OWL specification states that allValuesFrom 

supports quantification over a data range - but only 
mandates limited tool support for XML datatypes. On 
top of this, there is the added difficulty that there is no 
standard way to refer to user defined datatypes (like 
dataRange above) in OWL [10]. Due to these factors 

(among others) reasoners do not support the kind of 
restriction we wish to use. 

This also gives us problems in modelling 
probabilities (values from 0.0 - 1.0) and percentages 
(values from 0.0-100.0), for instance,  and appears to 
be a fundamental problem with OWL. 

We envision that this problem will, in the future, be 
addressed in OWL and OWL reasoners. In the 
meantime we use a custom XML language to represent 
requirements. The concepts of this language map 
easily to those of the approach set out above in 
anticipation of future improvements to OWL. 
 
5. SQRM: a QoSOnt Application 

 
To demonstrate the use of the ontology, and aid in 

its evaluation, a prototype tool for service discovery 
and selection based upon QoS requirements has been 
developed. We have named the tool the Service QoS 
Requirements Matcher (SQRM). SQRM is designed to 
showcase a range of different situations in which 
QoSOnt can be utilised within the service domain. The 
tool supports the following: 
 

• Service Discovery 

• Requirement   Specification 

• Service Querying – Differentiation/Selection 

The tool may be used at design-time to specify 
initial QoS requirements (and find matching services), 
or to narrow down a set of services already selected 
using some other method. The code could also form 
the basis for an API to allow QoS-based service 
selection to be performed dynamically at runtime. 

 
5.1. Service Discovery 
 

The first stage SQRM is designed to undertake is 
the initial discovery of services. UDDI [8] is used for 
this purpose. We do not attempt to address the existing 
problems with public UDDI registries (un-
vetted/incorrect information etc), but instead use 
UDDI purely as one way to identify services worth 
further investigation.  We implement this functionality 
using JAXR [9] which is registry independent - so 
theoretically would find it easy to implement support 
for other discovery mechanisms. 

Clients query the repository via keyword search 
(see Figure 2). The extent to which clients can search 
for particular service requirements at this stage is 
highly restricted, this instead occurring at the next 
stage. 

For each service the user selects the tool retrieves a 
QoSOnt document linked to the service entry 



(provided this information has been published in the 
registry or is available through the WSDL). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Service Discovery in SQRM 
 
5.2. Requirement Specification 
 

QoS Requirement and capability specification 
affects all clients and services. Without a way to 
specify requirements a client could not differentiate 
between services; without capability specification a 
service could not advertise its resources. The SQRM 
tool currently concentrates on the client viewpoint – 
providing a graphical means of specifying QoS 
requirements. Much of it however, could be reused for 
a provider-side specification and publishing tool. 

To demonstrate the form QoS requirements may 
take, we briefly introduce one of the scenarios used to 
evaluate QoSOnt. The example used is based upon the 
field of epidemiology, and the study of pandemics. The 
computation of the projected spread of diseases on 
given population models is both time consuming and 
of interest to multiple bodies, governmental, academic 
and independent. 

Requirements relating to different algorithms / 
processing capacity / time expended, make QoS 
specification an important factor. For example some 
algorithms work better with larger datasets; others may 
converge on an answer in such a way as to make long 
processing runs unnecessary for the accuracy required; 
for others, short runs may render results useless. 
Information of this type can be built into an ontology, 
creating a richer information resource than a mere list 
of supported functions. 

In SQRM, a QoS requirement is basically a 
predicate (represented in XML), the truth value of 
which depends upon the asserted facts in the QoS 
descriptions of the client selected services. The 
subjects of the predicates are instances or Classes 
defined in QoSOnt. In contrast to requirements, the 

provider's description of their QoS capabilities consists 
of asserted propositions. These often simply say "QoS 
Metric X has been measured to have value Y".  

Requirement predicates are visualised as a tree – the 
leaves of which are Values or Classes of Metric 
expressed in QoSOnt. The inner nodes are logical and 
arithmetic operators. Such as AND / OR. These allow 
expressions of the type shown below to be inputted: 
 

Mean time to Failure > 10 days 
AND 
Mean Availability > 98% 
 
Figure 3 shows a screenshot of the current 

implementation of our SQRM requirement 
specification environment. 
 

Figure 3. Requirement Specification in SQRM 
 
 
5.3. Requirements Matching 
 

Determining whether a service supports certain 
metrics is of limited use without being able to compare 
the clients’ requirements against the services 
capabilities. The ontology becomes useful (for 
example) in situations where metrics are not defined in 
the same units between client and provider; this allows 
a tool to take into account and convert types with the 
aid of the ontology.  The requirements matching phase 
takes files from both client and provider(s), analyses, 
and provides feedback to the client on the 
compatibility of the requirements and capabilities 
documents.  The matching parser is designed to enable 
complex expressions of AND / OR construction to be 
used. It is not the job of the matching tool to negotiate 
a settlement between client and service provider, this 
instead would be provided by an additional phase of 
the service operation cycle. The requirements matcher 
is therefore useful as a first attempt to refine the 



services available, prior to the commencement of 
negotiation proper. 

 
6. Related Work 
 

DAML-QoS [11] like our own QoSOnt, is an 
ontology for Quality of Service (QoS) in service-
centric systems. Like QoSOnt it is realised using OWL 
(Web Ontology Language) (or at least its predecessor 
DAML+OIL) and works in symbiosis with OWL-S. 

As well as QoS description, DAML-QoS supports 
concepts such as QoS adverts and inquiries. An 
attempt is made to do this in much the same way 
described in Section 3.2.  

The approach presented in [11] also appears to be 
fundamentally flawed in that it uses cardinality 
constraints to express bounds upon QoS properties. As 
the term cardinality suggests, this is actually a misuse 
of this OWL construct.  A cardinality constraint puts 
constraints on the number of values a property can 
take, not on the values themselves. Even if the 
approach taken was valid, it also carries the limitation 
that it can only express bounds as positive integers 
(e.g. there is no simple way to say "availability> 
0.999''). 

The domain features modelled also seem to be 
rather sparse. Essentially DAML-QoS seems to be 
little more than a schema for QoS. As such, nothing 
distinguishes it from the many existing QoS 
specification languages [12]. 

[13] also presents an ontology with many 
similarities to our own. A framework using the 
ontology to support dynamic web services selection is 
also outlined. Despite its promise, this ontology lacks 
both an openly available implementation and links to 
OWL-S. 

Our work seeks to address the gaps left by this 
work by providing an openly available, extensible 
OWL ontology, allowing complex and varying QoS 
metrics to be defined. Our aim is not just to provide a 
schema for QoS in web services - but use the power of 
knowledge representation in OWL to allow a certain 
degree of intelligence to be applied by agents and 
applications (e.g. conversion of units, inference of 
composite metric values, inference of the QoS of 
composite services). 
 
7. Evaluation 
 

The evaluation of an ontology such as QoSOnt 
ultimately relies upon its application by the research 
community. We are hoping to soon benefit from 
interaction with a number of other interested parties. 

We see QoSOnt as something which may, in the 
future, form the basis of a standard QoS ontology for 

use across the community. During development, we 
have simulated its usage by generating a set of 
scenarios, one of which was introduced briefly in the 
previous section, relating to pandemics. QoSOnt aims 
to provide a common QoS conceptualisation for use by 
client, provider, and third party intermediary systems. 
We have therefore attempted to consider the scenarios 
from each of these viewpoints, although we have 
initially concentrated on the client and provider point 
of view. We consider the scalability of the ontological 
approach to be sufficient for the needs of large scale 
projects; however we do accept that the current tooling 
may require further work to maintain usability when 
scaled to deal with large numbers of requirements. 

 
8. Future Work 
 

In the future we hope to continue our efforts in the 
expansion of QoSOnt in parallel with our work on 
SQRM. An avenue we have begun to explore is 
expressing, on top of QoSOnt, how metrics aggregate 
under various forms of composition. We also plan to 
explore the way in which QoSOnt could be further 
leveraged in more complex QoS specification 
scenarios. In particular we wish to address certain 
limitations of common dependability metrics. The 
issue of moving beyond UDDI to find the best way to 
publish and make QoS specifications easily 
discoverable and queryable is also on our agenda, as is 
addressing the outstanding area of QoS monitoring. 

Currently, the application of unit conversion is 
slightly cumbersome from the client's point of view. 
The client has to find the appropriate ConversionRate 
and compute the converted values themselves. We 
hope to use a rules language such as the Semantic Web 
Rules Language (SWRL) [14] to represent this 
knowledge in the ontology in future. SWRL would 
allow us to specify conversion rates as an implication 
between an antecendent (the value with its original 
units) and a consequent (the converted value). This 
would be transparent to the client. 

Further, since we began work on QoSOnt the 
OWL-Time [15] ontology has matured significantly. It 
would therefore be useful to align QoSOnt with this 
ontology rather than our own time ontology. 
 
9. Conclusion 
 

This paper has put forward an approach to 
requirement specification based upon a shared QoS 
ontology. In order to ground the concept further, we 
have developed tools to leverage the benefits of an 
ontology for QoS, and evaluated our results against 
scenarios designed to test the capabilities of the design. 
We accept that real world examples may pose us with 



unexpected situations. We are therefore seeking to 
collaborate with real world service users in order to 
further evaluate and improve QoSOnt. 
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