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Abstract 

This paper reports on the development of QoSOnt: an 
ontology for Quality of Service (QoS).  Particular focus is 
given to its application in the field of service-centric 
systems. QoSOnt is being developed to promote consensus 
on QoS concepts, by providing a model which is generic 
enough for reuse across multiple domains. As well as the 
structure of the ontology itself, an example application 
currently in development, SQRM (Service QoS 
Requirements Matcher) is discussed. This application is 
used to highlight some of the advantages of the ontology. 
As well as standardisation, one such advantage is the 
ability to perform certain types of automated reasoning on 
QoSOnt and anything defined using QoSOnt. 
 

1.  Introduction 

A service provider's business relies upon customers 
being able to trust the services they provide. There are 
many elements which contribute towards trust in this 
context, one of which is the availability of Quality of 
Service (QoS) information. In this paper the term QoS will 
be used to denote all non-functional aspects of a service 
which may be used by clients to judge service quality. This 
extends other more restrictive QoS definitions such as the 
common interpretation of QoS to mean network 
performance attributes. QoS data is of particular 
importance in service-based systems because services are 
generally black-box – being exposed purely through their 
WSDL interface. Moreover, in the situation where a 
service marketplace exists, quality will be traded off 
against cost by customers, making the judgment of service 
quality a key issue. 

Simply having QoS data available is not quite enough in 
itself to achieve client trust. The provenance of the data is 
of utmost importance. In this paper, we assume that we 
have some trusted source of data, although we accept that 
achieving this is a non-trivial problem to which there is 
currently no complete solution. 

As well as simply retrieving QoS data, customers may 
wish to query the data and select services based upon their 
QoS requirements. In order to enable the client, provider 

ant intermediaries to intercommunicate in order to achieve 
this, a common way of specifying QoS is needed. For this 
purpose we have designed QoSOnt - a QoS ontology. 

  The structure of the remainder of the paper is as 
follows: Section 2 examines the background technologies 
relevant to the project. Section 3 presents the QoSOnt 
architecture in detail. Section 4 examines the SQRM tool 
developed in parallel to QoSOnt. Section 5 examines the 
evaluation mechanisms for QoSOnt and SQRM. Finally 
section 6 provides information on future work and 
conclusions.  

2.  Background 

This section briefly explains some of the technologies 
which form the background to QoSOnt: including SOA, 
Ontologies in general, OWL as an example ontology 
language and OWL-S, an OWL ontology for web services. 

2.1.  Service-Oriented Architectures 

  Service-Oriented Architectures (SOAs) are 
exemplified by the Web Services Architecture (WSA) and 
Open Grid Services Architecture (OGSA). One of the key 
selling points of these architectures is interoperability 
through the use of already ubiquitous technologies such as 
XML and HTTP. 

SOAs are becoming increasingly popular with those 
who believe in the VO (Virtual Organisation) vision. VOs 
consist of an organisational structure rich in co-operation 
across structural, temporal and geographic boundaries. The 
flexibility to create, modify and destroy co-operative 
relationships without the cost and time lag seen in more 
rigid environments is paramount. 

  The development of DCOM, CORBA and more 
recently web services, has been driven primarily by the 
need for this improved business agility and greater 
emphasis on more dynamic service offerings. SOAs should 
be technology agnostic (not relying on given hardware, 
platforms, transport etc), and in doing so, eclipse the 
limitations of more rigid, costly interaction mechanisms 
built from technologies like EDI.  

  VO development depends on an expanding supply of 
services capable of interaction through common interfaces. 



Diversity of services requires a number of different 
technologies to be developed. In order to compose services 
and in turn orchestrate them, workflow languages such as 
WSFL are required, enabling higher level service support 
for functions including fault tolerance. In order to discover 
potential services, discovery mechanisms like UDDI, 
UDDIe, WSIL, etc. need to be further developed to 
provide richer semantic information than they do at 
present.  

The diversity of service instances also requires the 
implementation of higher level structures to support 
service monitoring, service negotiation, and the formation 
of legally binding documents (which could take the form 
of an informal SLA or service usage contract). As 
resource-based SOA instances commercialise, creating 
more dynamic services, it becomes increasingly difficult to 
maintain understanding between clients/services, for 
example, what is meant by a given term, in what way can it 
to used, in what domain does it exist, etc. It is these 
situations that have led to the increasing attention on 
ontologies in SOAs, and in particular on a QoS ontology 
for SOAs. 

2.2.  Ontologies in Software Engineering 

In software engineering, an ontology can be defined as 
“a specification of a conceptualization” [1]. The use of 
ontologies in computing has gained popularity in recent 
years for two main reasons: 

 
 

1.  They facilitate interoperability. 
2.  They facilitate machine reasoning. 

 
 

The boundaries between taxonomy and ontology, and 
between data modelling and ontology engineering can be 
confusing. In its simplest form an ontology is simply a 
taxonomy of domain terms, which in turn is clearly a form 
of data model. However, taxonomies are little use in 
machine reasoning. The term ontology also implies the 
addition of domain rules, used to aid machine reasoning.  

  Ontologies are already used to aid research in a 
number of fields. One example is the National Cancer 
Institute Thesaurus [2], which contains over 500,000 nodes 
covering information ranging from disease diagnosis to the 
drugs, techniques and treatments used in cancer research. 
Ontologies are also often used in the development of 
thesauri which need to model the relationships between 
nodes. 

Problems that could be addressed through careful 
ontological design pervade much of our lives. Worldwide 
deaths are recorded through referencing to the ICD-10 
WHO taxonomy [3]. The complexity of which should not 
be underestimated. The following code is given for a death 
involving a volcanic eruption whilst waterskiing in a 
public library: 

 

X35.2.0 
 
 
 

This is a good example of combinatorial explosion, in 

that any location, activity, and environment can be 
combined due to the lack of suitable ontological structure. 
Using an ontology would add, for example, the ability to 
constrain possible combinations of properties in order to 
create a more accurate model of the world. 

The following section discusses OWL, which is an 
example of an ontology language. Since it is reasonably 
representative of such languages this should also give a 
useful overview of the constructs which generally make up 
an ontology. 

2.3.  OWL 

OWL [4] is the Web Ontology Language, designed for 
publishing and sharing ontologies via the web. OWL is 
based upon the Resource Description Framework (RDF), 
which can also be regarded as a simple ontology language. 
Unlike OWL, RDF only provides limited support for 
concepts such as cardinality, datatyping, etc. RDF in turn 
is built upon XML. There are three ‘species’ of OWL – but 
the most useful for reasoning - OWL-DL - corresponds to 
a description logic. [5] gives a good introduction as to 
what this means. 

OWL provides the base constructs for building an 
ontology. The two most important are called Class and 
Property. Other common names used for Class elsewhere 
include concept, category and type; whilst Properties may 
be referred to elsewhere as slots or relations. 

The majority of the other OWL constructs exist to allow 
Classes to be defined.  Defining a Class consists of 
precisely stating the requirements for individuals to be 
members of that class. A class definition is therefore 
synonymous with the set of all individuals meeting its 
membership requirements. A key feature of OWL and 
other description logics is that subsumption relationships 
can be automatically computed by a reasoner. 

The following snippet from QoSOnt gives a flavour of 
OWL. It defines a Class MeasurableAttribute, stating that 
it is exactly equivalent to the QoSAttribute class 
intersected with the set of all individuals which have a 
property “hasMetric”, with at least one value which is a 
“Metric”; intersected with the set of all individuals which 
have a property “hasMetric” with only values which are 
“Metrics”. Finally it states that the class 
MeasurableAttribute and UnmeasurableAttribute are 
disjoint. 

 
<owl:Class rdf:about="#MeasurableAttribute"> 
  <owl:equivalentClass> 
    <owl:Class> 
      <owl:intersectionOf rdf:parseType="Collection"> 
        <owl:Restriction> 
          <owl:allValuesFrom rdf:resource="#Metric" />  
          <owl:onProperty> 
             <owl:InverseFunctionalProperty rdf:ID="hasMetric" />  
          </owl:onProperty> 
        </owl:Restriction> 
        <owl:Restriction> 
          <owl:someValuesFrom rdf:resource="#Metric" />  



            <owl:onProperty> 
              <owl:InverseFunctionalProperty rdf:about="#hasMetric" />  
            </owl:onProperty> 
          </owl:Restriction> 
        <owl:Class rdf:about="#QoSAttribute" />  
      </owl:intersectionOf> 
    </owl:Class> 
  </owl:equivalentClass> 
  <owl:disjointWith> 

<owl:Class rdf:ID="UnmeasurableAttribute" />  
  </owl:disjointWith> 
</owl:Class> 
 

Clearly this is not particularly human-readable, 
especially because the classes and properties referenced 
(Metric, hasMetric, UnmeasurableAttribute) could be 
defined anywhere in the file. Editing OWL manually can 
be difficult for the same reason. We used Protégé [6] and 
its OWL plug-in in our development of QoSOnt. 

Part of the reason (other than avoiding ambiguity) for 
the relative complexity of this definition is that OWL 
works under an open world assumption. This means that 
no assumptions are made about anything unless they are 
explicitly stated or can be inferred from asserted facts. 
Open world reasoning is often counter-intuitive to those 
used to closed-world data modelling, and is not appropriate 
in all situations. OWL is extremely difficult to debug by 
hand due partly to its verbosity, making visualisation tools 
such as Protégé an essential part of ontology development. 

2.4.  OWL-S 

OWL-S [7] is an OWL ontology for describing web 
services. Along with OWL and RDF it is a core “semantic 
web” technology. The semantic web is a movement to 
make the semantics of web-content accessible to machines. 
It has been summarised by its originators as: 

 
"an extension of the current web in which information is 

given well-defined meaning, better enabling computers 
and people to work in cooperation” [10] 

 
The OWL-S ontology is structured around the class 

Service, which consists of one or more “profiles”, 
“groundings” and a single “model”. The profile describes 
what a service requires and provides. The model is a 
functional model (i.e. it describe how the service works), 
whilst the grounding describes how to actually use a 
service (most commonly linking between the OWL-S and 
WSDL description).  

The “profile” is the class of relevance to QoS. It is here 
that a service’s non-functional parameters can be defined. 
QoSOnt is best used as an extension to OWL-S by the 
service provider, since OWL-S provides the ability to 
describe the non-QoS aspects of services. This also unifies 
the service specification so that it is accessible through a 
single point. How to link the OWL-S and QoSOnt 
ontologies for the purposes of service QoS description is 
touched upon in Section 3. 

3.  The QoSOnt Ontology 

QoSOnt was developed by a process of examining 
existing QoS specification languages ([8], [9]). The 
majority of detail in QoSOnt is in our specific area of 
interest, which is dependability, where we have built upon 
existing work by making use of an existing taxonomy and 
modelling commonly used metrics. 

QoSOnt represents many of the commonalities 
discovered between the QoS specification languages 
examined. Unlike most of these languages however, 
QoSOnt also aims to be generic enough to be used no 
matter what one’s particular view of QoS is. Our approach 
has been to provide a base set of useful constructs which 
cover common cases. These also exist as an example to 
others who wish to model their own QoS viewpoint on top 
of the basic QoSOnt Classes. 

To facilitate reusability and extensibility the ontology 
has been designed from the beginning to be modular in 
nature. Each “module” is an ontology in itself. Ontologies 
in higher layers will specialise and build upon those from 
lower layers. The ontologies fall into three layers as shown 
in Figure 1. 

 

Base QoS
Units

Attributes

Usage Domains

Dependability

Time

Network Service

Performance

  
Figure 1. Layers of the ontology 

The architecture is designed to allow third parties to 
replace parts of the ontology as needed. For instance they 
may have a different view of dependability to ours, or have 
produced a time ontology which suits their purposes better. 
Obviously this is only useful if the relevant ontologies are 
shared with the community they wish to interact with. 

The base QoS layer contains generic concepts relevant 
to QoS. Unit ontologies also logically reside in this layer. 
Time is the most relevant unit in QoS, and is therefore the 
only unit ontology defined at the moment. It represents 
units of time and how to convert between them. This 
means that an inference engine could establish, for 
instance, that 1 minute is the same as 60,000 
microseconds. This is particularly useful if clients use the 
same metric as providers - but different units. 

The attribute layer contains ontologies defining 
particular QoS attributes and their metrics. On top of this is 



the domain-specific layer, which links the lower layers to 
specific types of computer system. For instance, the 
network ontology defines that certain QoS attributes are 
specific to a particular network route and the service 
ontology that QoS attributes sometimes refer to particular 
services, service operations, etc. 

In the following sections we discuss each of the layers 
of QoSOnt. 

3.1.  The Base QoS Ontology 

The base QoS ontology represents a minimal set of 
generic QoS concepts (as shown in Figure 2). We 
introduce the concept of a QoS attribute, and its 
unmeasurable and measurable subclasses. In using the 
ontology it is entirely optional whether one chooses to use 
these sub-classes or create one's own. Ontologies allow 
multiple inheritance, so many different classifications are 
possible. Indeed, a QoSOnt specification will always 
subclass something from the attribute layer as well as from 
the domain layer (e.g. to say that what is being referred to 
is the attribute reliability, and it is specifically the 
reliability of service X). 

Unmeasurable in this context relates to attributes which 
cannot be measured from a given viewpoint. An example 
of this could be adherence to a particular standard. 
Anything which is measurable has a metric (as the OWL in 
Section 2.3. shows). A metric represents one way of 
measuring a specific QoS attribute. It must result in a 
numerical value and must be calculable in practice as well 
as theory. For instance, a statement that a service has 
transactional throughput of 1000 transactions per second 
can be falsified by a single party (be they a client, provider 
or monitoring service) but cannot generally be measured 
by a client or third party as they have no access to the 
traffic statistics for the service. 

Measurable attributes have one or more associated 
metrics. At this level in the architecture we do not 
prescribe individual metrics; these are defined in more 
specific attribute ontologies. We define a metric to consist 
of a description, an acceptability direction and zero or 
more values. The acceptability direction indicates whether 
higher or lower values are preferable for the metric (e.g. A 
low probability of failure on demand is more desirable). It 
must be remembered that these classes can be extended or 
constrained by their subclasses, so being over-specific at 
this base level is undesirable. 

A “physical quantity” has one or more associated 
“units”. In many cases a numerical value alone cannot be 
understood without its unit type (e.g. You need to know 
whether “time to complete” is quoted in seconds, 
microseconds, milliseconds, etc.). Many metrics in QoS 
involve time, which is why we have included the time –
ontology in QoSOnt. Other types of physical quantity are 
rare in QoS – but the structures are there to model them 
when they are required. Percentages can also be modelled 
as units in QoSOnt. This gives the ability to understand 

that availability of 0.99 is the same as availability of 99% 
for instance. 

For metrics which have values with simple types (e.g. 
alphanumeric strings or integer counts) a new datatype 
property would be included in that sub-class of Metric.  

 

 
 

Figure 2. The base QoS ontology 
 

Note that Figure 2 shows the Properties and Classes of 
the ontology, but one may question how the domain rules 
talked about in Section 2.2. are modelled. In OWL (and 
therefore QoSOnt), it is the Class definitions which 
constitute the domain rules. These definitions not only 
define the Class in terms of necessary and sufficient 
conditions for membership, they also constrain the use of 
Properties and therefore the interrelationships between 
classes. 

These Class definitions consist of OWL constructs such 
as those detailed for MeasurableAttribute in Section 2.3. 
There is no succinct way of representing these. For the 
sake of QoSOnt most Classes are defined in a pragmatic 
manner. That is, they are defined with sufficient rigour to 
be identified within the confines of QoSOnt (e.g. a 
MeasurableAttribute is any QoSAttribute with a hasMetric 
property which is a Metric). However, philosophical 
questions of the defining nature of the concepts modelled 



have not been considered. Since the ontology is an 
engineering artefact this is deemed to be a sensible 
approach. 

3.2.  The QoSOnt Attribute Layer 

Figure 3 shows some attributes from both the 
dependability and performance ontologies (prefixed by d: 
and p: respectively). 

 

 
Figure 3. Example Classes from the attribute layer 

 
The full dependability ontology is largely based upon 

the taxonomy defined in [11]. It not only includes the 
ability to represent dependability attributes – but also 
means of achieving dependability and dependability 
threats. These latter may be of less relevance to QoS – but 
will find use in other forms of specification. There is 
therefore an overarching concept of dependability, as 
shown in Figure 3. 

The ability, given a particular Metric, to find the QoS 
attribute it measures through the isMetricOf Property (see 
Figure 2) allows other Metrics for that attribute to be 
found. With the overarching concept of Dependability, a 
further step may be made through the 
isPartofDependability Property. This Property gives access 
to the Dependability Class and therefore all information 
relevant to dependability (threats, means, etc.). This shows 
how the attribute layer provides a good point at which to 
provide hooks to non-QoS concepts. Doing so allows the 
integration of ontologies for further types of system 
description. 

As well as the reusable dependability (or other attribute) 
ontology, a further ontology contains actual metrics (e.g. 
probability of failure on demand, mean time between 
failures, mean availability, etc.). It is this level of detail 
which is perhaps the most important; as it is only once 
specific metrics are added that QoSOnt is usable for QoS 
specification. 

3.3.  The QoSOnt Usage Domain Layer 

Ontologies in the usage domain layer link QoS to a 
particular class of system. Currently QoSOnt supports 
networks and services as types of system that QoS may 
refer to. As with all layers, this can easily be expanded 
upon. 

The most important part of the service ontology simply 
links the concept of “QoS attribute” and “service”. Since 
we are working in the web services arena we use the 
Service class from the OWL-S ontology. Our ontology can 
also enhance the OWL-S ontology by providing concrete 
Classes to act as its “ServiceParameters”. An example is 
shown in Figure 4. 

 
 

Figure 4. Example of the QoSOnt/OWL-S link 
 
The prefixes in the figure refer to the following 

namespaces: s: OWL-S Service, p :OWL-S Profile, bqos: 
QoSOnt Base QOS, sqos: QoSOnt Service QoS, dm: DIGS 
metrics (Which contains our dependability metrics in the 
Attribute Layer). The solid lines labelled io indicate 
“instance of”. The instances are the part which would 
actually be visible in a specification. The Service instance 
(ephemerisService in the figure) would be the point of 
entry to the OWL-S specification. The figure shows that a 
service presents a profile and that a profile has a 
parameter. Also depicted is how such a service parameter 
can make use of QoSOnt in this case by specifying a 
ServiceParameter which is Probability of Specific Failure 
on Demand. The unusual terminology is to distinguish it 
from probability of any failure on demand. “Specific 
Failure” refers to the fact that it represents the probability 
of one particular service failure defined using the 
dependability ontology. 

As well as service-specific, certain QoS attributes are 
also operation-specific (e.g. time-to-complete, accuracy) 
and therefore reference the OperationRef class from OWL-
S. Other attributes, e.g. reliability, may be best modelled as 
workflow specific since they are specific to a usage 
pattern. OWL-S provides a Process class which is much 
like a workflow. However it would be preferable to also be 
able to reference other types of workflow definition (e.g. 



BPEL4WS). 
A provider (or QoS measurement service) publishes 

QoS data as part of their OWL-S description or directly 
using QoSOnt alone. The former is the preferred option as 
it gives a standard way of referring to the service, 
operation, etc. in question. It also provides a single point of 
access for the complete specification. 

The following section describes a tool which 
differentiates between comparable services by matching 
user requirements against published service QoSOnt 
specifications. 

4.  SQRM: A QoSOnt Application 

To demonstrate the use of the ontology, and aid in its 
evaluation, a tool for service discovery, differentiation and 
selection based upon QoS requirement has been developed. 
We have named the tool the Service QoS Requirements 
Matcher (SQRM). SQRM is designed to showcase a range 
of different situations in which QoSOnt can be utilised 
within the service domain. The tool supports the following 
service cycle: 

 

• Service Discovery 
• Requirement   Specification 
• Service Querying – Differentiation 

 

Beyond these stages the following external service 
interactions need to take place to complete the service 
cycle: 
 

• Service Negotiation 
• Service Agreement generation 
• Service Monitoring (Encompassing mediation) 

 
 

Though these are outside our current project scope, 
these three areas are also likely to make use of QoSOnt, as 
they are likely to reference many of the QoS attributes 
used in service discovery and differentiation. The 
following sections give an introduction to the different 
parts of the tool and their relationship to QoSOnt. 

4.1.  Service Discovery 

Service discovery in SQRM consists of querying a 
UDDI registry. This consists of a keyword search (as 
shown in Figure 5). The user can discover broadly similar 
services (or functionally identical services by examining 
the WSDL). 

A feature planned for the near future is the ability to 
search by TModel. A TModel in UDDI is a generic data 
structure which provides “...the ability to describe 
compliance with specifications, concepts, or even shared 
design...” [12]. A UDDI entry for a particular service may 
have many associated TModels. 

One use of a TModel is to specify adherence to a 
common WSDL interface. The originator of an interface 
can publish a TModel via UDDI which others can then use 
to show they adhere to the same interface. A “Type 

category” called wsdlSpec in the UDDI specification is 
used to indicate exactly such a use of TModel. By allowing 
SQRM users to search for services advertising a particular 
wsdlSpec TModel we provide a means to automatically 
retrieve a list of functionally identical services for 
comparison. SQRM will then gain access to the QoS data 
for a service by retrieving the URI for the data from the 
TModel in question. 

In the same way, a TModel for QoSOnt or OWL-S (of 
the specification category) can be published in UDDI to 
allow providers to state that their services offer a 
specification adhering to either of these ontologies. 

SQRM expects to find one of these TModels. A 
TModel must indicate, among other things, the URI 
through which to retrieve the specification in question. 
SQRM uses this to gain access to the QoS data for a 
service. Note that the QoSOnt specification that the URI 
points to may, in practice, be provided by a third party. 

 

 
 

Figure 5. Service discovery in SQRM 

4.2.  Requirement Specification 

QoS Requirement and capability specification affects 
all clients and services. Without a way to specify 
requirements a client could not differentiate between 
services; without capability specification a service could 
not advertise its resources. The SQRM tool currently 
concentrates on the client viewpoint – providing a 
graphical means of specifying QoS requirements. Much of 
it however, could be reused for a provider-side 
specification and publishing tool. 

To demonstrate what forms QoS requirements may take 
we briefly introduce one of the scenarios used to evaluate 
QoSOnt. The example used is based upon the field of 
epidemiology, and the study of pandemics. The 
computation of the projected spread of diseases on given 
population models is both time consuming and of interest 



to multiple bodies, ranging from governments to 
international collaborative organisations including the 
World Health Organisation (WHO), and individual 
research institutions and universities. Different algorithms 
can be used to analyse data and the time taken for the 
analysis process makes QoS of great importance.  

  Some techniques for analysis of epidemiology are 
more applicable to some situations than others, and may 
depend on the time available for computation. For 
example, for a given sample size the use of a MCMC 
(Markov Chain Monte Carlo) computation may yield 
unacceptably inaccurate results if not run for a large 
enough quantity of time. For other algorithms perhaps a 
final result is attainable, and cutting computation short 
would render results useless. Information of this type can 
be built into an ontology, creating a rich information 
resource. 

Our scenario pictures a situation where; given a number 
of possible services, capable of supplying a number of 
different formula computations; service differentiation and 
requirement matching tools play an important role. 

Client software for analysing epidemiology data could 
potentially have a number of different QoS requirements. 
For example, the requirement of certain degrees of 
accuracy dependent on the algorithm used for analysis i.e.: 

 
Algorithm A Accuracy > S  Using Metric N 
or 
Algorithm B Accuracy < P  Using Metric M 

 
In SQRM, a QoS requirement is basically a predicate 

(represented in XML), the truth value of which depends 
upon the asserted facts in the QoS descriptions of the user 
selected services. The subjects of the predicates are 
instances or Classes defined in QoSOnt. 

In contrast to requirements, the provider's description of 
their QoS capabilities consists of asserted propositions. 
These often simply say "QoS Metric X has been measured 
to have value Y". QoSOnt alone is sufficient to express 
these. If a provider wishes to use more complex forms of 
proposition then the same hybrid approach as for 
requirements may be used. For instance, the XML schema 
includes the ability to represent service classes (i.e. set 
offerings of the same service with different service levels). 
This is not currently possible to do with QoSOnt, although 
it is something which is likely to be incorporated in the 
future. The provider may also wish to express the inherent 
interdependence of certain metrics/attributes (e.g. server 
load and transactional throughput). 

Requirement predicates are visualised as a tree – the 
leaves of which are Values or Classes of Metric expressed 
in QoSOnt. The inner nodes are logical and arithmetic 
operators. Figure 6 illustrates this with a screenshot of a 
requirement expression as it is created (MTTC is an 
abbreviation for Mean Time to Complete). QoSOnt allows 
constraints on the Values a Metric can support to be taken 
into account dynamically as the expression is constructed. 

The expression shown in the figure states the following 
requirement: ((MTTC<500 milliseconds) AND (Mean 
Availability>0.9)) OR ((MTTC<1 second) AND (Mean 
Availability>0.99)). This shows how trade-offs can be 
expressed: That time to complete can be traded off in 
favour of availability. 

 

 
 

Figure 6. Requirement construction 

4.3.  Requirements Matching 

Requirements matching is a bottom up evaluation 
process, which starts from the leaves. That is, for each 
service being considered, the asserted values of Metrics 
can first be established from the published capabilities. 
The truth value (or arithmetic result) these produce in the 
parent sub-tree can then be established, and this can 
continue to filter up until a truth value is established for the 
whole tree. 

As an example of the matching process consider the 
requirement shown in Figure 6. If MTTC for a service 
under consideration is found to have a published value of 
600ms then the left hand sub-tree immediately evaluates to 
false. This is because plugging a value of 600ms into the 
MTTC leaf makes its immediate parent (<) evaluate to 
false. Since its grandparent is an AND operator no further 
evaluation is needed to assign false to the left sub-tree 
rooted at AND. On the other hand, the opposite is true of 
the right sub-tree. Plugging 600ms in (and using QoSOnt 
to convert the units) makes > evaluate to true, the second 
child of the AND sub-tree therefore also needs to be 
evaluated. If MeanAvailability is found to be >0.99 then 
the whole requirement will be met and “true” will 
propagate up to the root of the tree. 

Where the requirement is strict (i.e. it "must" hold true) 
this provides a simple yes or no match. It will also be more 
efficient as not all terms will always need to be evaluated 
(as for the left sub-tree in the above example). If 
insufficient information is available to make a conclusion 
this must also be taken as a non-match. For instance, if no 



specification for MeanAvailability was provided for a 
service then no truth value could be assigned. 

Specifying the requirement as non-strict will allow for a 
more detailed comparison than simply matching or not 
matching. Non-strict matching might be useful, for 
instance, when a lot of required data is missing or if no 
strict match can be found. However, if the requirement is 
non-strict then there are a number of issues as to how to 
judge how well a particular service matches it. At the time 
of writing this is not a problem we have implemented a 
complete solution to. The approach we propose involves 
assigning a score based upon the level of match achieved. 
A lower score would have more required terms which 
evaluate to false or are missing. The score filtered up to the 
root of the tree could then be used to assess the relative 
suitability of services. 

The ability to create QoS requirements involves 
understanding the underlying meaning of the attributes and 
their metrics. QoSOnt can supply much of the information 
needed for human inspection as well as providing UI 
constraints to avoid misuse of terms. For example, 
acceptability direction for a given metric (is high or low 
better), unit type, and so on. For non-strict matching we 
hope to produce advice and warnings based upon the 
semantics of the requirements created as well as an 
indication of how well the services match. 

5.  Evaluation 

The evaluation of an ontology such as QoSOnt 
ultimately relies upon its application by the research 
community. We see QoSOnt as something which may, in 
the future, form the basis of a standard QoS ontology for 
use across the community. During development, we have 
simulated its usage by generating a set of scenarios, one of 
which was introduced in the form of the epidemiology 
example in Section 4.2.  

QoSOnt aims to provide a common QoS 
conceptualisation for use by client, provider, and third 
party intermediary systems. We have therefore attempted 
to consider the scenarios from each of these viewpoints, 
although we have initially concentrated on the client and 
provider point of view. 

SQRM’s implementation has given concrete examples 
of QoSOnt’s use by the client for service differentiation, 
by the provider for publishing QoS data, as well as by 
intermediate software in the matching process. Whilst 
there are extensions we wish to make in terms of the 
metrics we have modelled in QoSOnt, we have found that 
QoSont has not restricted us in modelling those we have 
already considered. However, to reduce the work required 
to model new Metrics, the possibility of providing some 
generic base Metrics has arisen. 

We also accept that real world examples may pose us 
with unexpected situations. We are therefore seeking to 
collaborate with real world service users in order to further 
evaluate and improve QoSOnt. 

6.  Conclusion & Future Work 

In conclusion, this paper has put forward a workable 
QoS ontology, outlining its objectives with reference to the 
service cycle as a whole, and specifying both its overall 
design and implementation. 

In the future we hope to continue our efforts in the 
expansion of QoSOnt in parallel with our work on SQRM. 
An avenue we have begun to explore is expressing, on top 
of QoSOnt, how metrics aggregate under various forms of 
composition. 

We also plan to explore the way in which QoSOnt 
could be further leveraged in more complex QoS 
specification scenarios. In particular we wish to address 
certain limitations of common dependability metrics. The 
issue of moving beyond UDDI to find the best way to 
publish and make QoS specifications easily discoverable 
and queryable is also on our agenda, as is addressing the 
outstanding area of QoS monitoring. 

In terms of developing SQRM there are many user 
interface enhancements which we are considering,  
including, among other things, adding the ability to check 
the availability of services upfront; a wizard for 
requirements creation; and a visualization of the matching 
process so that non-strict cases can be judged by user. 
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