
QoSOnt: A QoS Ontology for Service-Centric Systems

Glen Dobson Russell Lock Ian Sommerville
Computing Department,
Lancaster University,

Lancaster, UK

Computing Department,
Lancaster University,

Lancaster, UK

Computing Department,
Lancaster University,

Lancaster, UK
g.dobson@lancs.ac.uk r.lock@comp.lancs.ac.uk is@comp.lancs.ac.uk

Abstract

This paper reports on the development of QoSOnt: an
ontology for Quality of Service (QoS). Particular focus is
given to its application in the field of service-centric
systems. QoSOnt is being developed to promote consensus
on QoS concepts, by providing a model which is generic
enough for reuse across multiple domains. As well as the
structure of the ontology itself, an example application
currently in development, SQRM (Service QoS
Requirements Matcher) is discussed. This application is
used to highlight some of the advantages of the ontology.
As well as standardisation, one such advantage is the
ability to perform certain types of automated reasoning on
QoSOnt and anything defined using QoSOnt.

1. Introduction

A service provider's business relies upon customers
being able to trust the services they provide. There are
many elements which contribute towards trust in this
context, one of which is the availability of Quality of
Service (QoS) information. In this paper the term QoS will
be used to denote all non-functional aspects of a service
which may be used by clients to judge service quality. This
extends other more restrictive QoS definitions such as the
common interpretation of QoS to mean network
performance attributes. QoS data is of particular
importance in service-based systems because services are
generally black-box – being exposed purely through their
WSDL interface. Moreover, in the situation where a
service marketplace exists, quality will be traded off
against cost by customers, making the judgment of service
quality a key issue.

Simply having QoS data available is not quite enough in
itself to achieve client trust. The provenance of the data is
of utmost importance. In this paper, we assume that we
have some trusted source of data, although we accept that
achieving this is a non-trivial problem to which there is
currently no complete solution.

As well as simply retrieving QoS data, customers may
wish to query the data and select services based upon their
QoS requirements. In order to enable the client, provider

ant intermediaries to intercommunicate in order to achieve
this, a common way of specifying QoS is needed. For this
purpose we have designed QoSOnt - a QoS ontology.

 The structure of the remainder of the paper is as
follows: Section 2 examines the background technologies
relevant to the project. Section 3 presents the QoSOnt
architecture in detail. Section 4 examines the SQRM tool
developed in parallel to QoSOnt. Section 5 examines the
evaluation mechanisms for QoSOnt and SQRM. Finally
section 6 provides information on future work and
conclusions.

2. Background

This section briefly explains some of the technologies
which form the background to QoSOnt: including SOA,
Ontologies in general, OWL as an example ontology
language and OWL-S, an OWL ontology for web services.

2.1. Service-Oriented Architectures

 Service-Oriented Architectures (SOAs) are
exemplified by the Web Services Architecture (WSA) and
Open Grid Services Architecture (OGSA). One of the key
selling points of these architectures is interoperability
through the use of already ubiquitous technologies such as
XML and HTTP.

SOAs are becoming increasingly popular with those
who believe in the VO (Virtual Organisation) vision. VOs
consist of an organisational structure rich in co-operation
across structural, temporal and geographic boundaries. The
flexibility to create, modify and destroy co-operative
relationships without the cost and time lag seen in more
rigid environments is paramount.

 The development of DCOM, CORBA and more
recently web services, has been driven primarily by the
need for this improved business agility and greater
emphasis on more dynamic service offerings. SOAs should
be technology agnostic (not relying on given hardware,
platforms, transport etc), and in doing so, eclipse the
limitations of more rigid, costly interaction mechanisms
built from technologies like EDI.

 VO development depends on an expanding supply of
services capable of interaction through common interfaces.

Diversity of services requires a number of different
technologies to be developed. In order to compose services
and in turn orchestrate them, workflow languages such as
WSFL are required, enabling higher level service support
for functions including fault tolerance. In order to discover
potential services, discovery mechanisms like UDDI,
UDDIe, WSIL, etc. need to be further developed to
provide richer semantic information than they do at
present.

The diversity of service instances also requires the
implementation of higher level structures to support
service monitoring, service negotiation, and the formation
of legally binding documents (which could take the form
of an informal SLA or service usage contract). As
resource-based SOA instances commercialise, creating
more dynamic services, it becomes increasingly difficult to
maintain understanding between clients/services, for
example, what is meant by a given term, in what way can it
to used, in what domain does it exist, etc. It is these
situations that have led to the increasing attention on
ontologies in SOAs, and in particular on a QoS ontology
for SOAs.

2.2. Ontologies in Software Engineering

In software engineering, an ontology can be defined as
“a specification of a conceptualization” [1]. The use of
ontologies in computing has gained popularity in recent
years for two main reasons:

1. They facilitate interoperability.
2. They facilitate machine reasoning.

The boundaries between taxonomy and ontology, and
between data modelling and ontology engineering can be
confusing. In its simplest form an ontology is simply a
taxonomy of domain terms, which in turn is clearly a form
of data model. However, taxonomies are little use in
machine reasoning. The term ontology also implies the
addition of domain rules, used to aid machine reasoning.

 Ontologies are already used to aid research in a
number of fields. One example is the National Cancer
Institute Thesaurus [2], which contains over 500,000 nodes
covering information ranging from disease diagnosis to the
drugs, techniques and treatments used in cancer research.
Ontologies are also often used in the development of
thesauri which need to model the relationships between
nodes.

Problems that could be addressed through careful
ontological design pervade much of our lives. Worldwide
deaths are recorded through referencing to the ICD-10
WHO taxonomy [3]. The complexity of which should not
be underestimated. The following code is given for a death
involving a volcanic eruption whilst waterskiing in a
public library:

X35.2.0

This is a good example of combinatorial explosion, in

that any location, activity, and environment can be
combined due to the lack of suitable ontological structure.
Using an ontology would add, for example, the ability to
constrain possible combinations of properties in order to
create a more accurate model of the world.

The following section discusses OWL, which is an
example of an ontology language. Since it is reasonably
representative of such languages this should also give a
useful overview of the constructs which generally make up
an ontology.

2.3. OWL

OWL [4] is the Web Ontology Language, designed for
publishing and sharing ontologies via the web. OWL is
based upon the Resource Description Framework (RDF),
which can also be regarded as a simple ontology language.
Unlike OWL, RDF only provides limited support for
concepts such as cardinality, datatyping, etc. RDF in turn
is built upon XML. There are three ‘species’ of OWL – but
the most useful for reasoning - OWL-DL - corresponds to
a description logic. [5] gives a good introduction as to
what this means.

OWL provides the base constructs for building an
ontology. The two most important are called Class and
Property. Other common names used for Class elsewhere
include concept, category and type; whilst Properties may
be referred to elsewhere as slots or relations.

The majority of the other OWL constructs exist to allow
Classes to be defined. Defining a Class consists of
precisely stating the requirements for individuals to be
members of that class. A class definition is therefore
synonymous with the set of all individuals meeting its
membership requirements. A key feature of OWL and
other description logics is that subsumption relationships
can be automatically computed by a reasoner.

The following snippet from QoSOnt gives a flavour of
OWL. It defines a Class MeasurableAttribute, stating that
it is exactly equivalent to the QoSAttribute class
intersected with the set of all individuals which have a
property “hasMetric”, with at least one value which is a
“Metric”; intersected with the set of all individuals which
have a property “hasMetric” with only values which are
“Metrics”. Finally it states that the class
MeasurableAttribute and UnmeasurableAttribute are
disjoint.

<owl:Class rdf:about="#MeasurableAttribute">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Metric" />
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasMetric" />
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Metric" />

 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasMetric" />
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:about="#QoSAttribute" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <owl:disjointWith>

<owl:Class rdf:ID="UnmeasurableAttribute" />
 </owl:disjointWith>
</owl:Class>

Clearly this is not particularly human-readable,
especially because the classes and properties referenced
(Metric, hasMetric, UnmeasurableAttribute) could be
defined anywhere in the file. Editing OWL manually can
be difficult for the same reason. We used Protégé [6] and
its OWL plug-in in our development of QoSOnt.

Part of the reason (other than avoiding ambiguity) for
the relative complexity of this definition is that OWL
works under an open world assumption. This means that
no assumptions are made about anything unless they are
explicitly stated or can be inferred from asserted facts.
Open world reasoning is often counter-intuitive to those
used to closed-world data modelling, and is not appropriate
in all situations. OWL is extremely difficult to debug by
hand due partly to its verbosity, making visualisation tools
such as Protégé an essential part of ontology development.

2.4. OWL-S

OWL-S [7] is an OWL ontology for describing web
services. Along with OWL and RDF it is a core “semantic
web” technology. The semantic web is a movement to
make the semantics of web-content accessible to machines.
It has been summarised by its originators as:

"an extension of the current web in which information is

given well-defined meaning, better enabling computers
and people to work in cooperation” [10]

The OWL-S ontology is structured around the class

Service, which consists of one or more “profiles”,
“groundings” and a single “model”. The profile describes
what a service requires and provides. The model is a
functional model (i.e. it describe how the service works),
whilst the grounding describes how to actually use a
service (most commonly linking between the OWL-S and
WSDL description).

The “profile” is the class of relevance to QoS. It is here
that a service’s non-functional parameters can be defined.
QoSOnt is best used as an extension to OWL-S by the
service provider, since OWL-S provides the ability to
describe the non-QoS aspects of services. This also unifies
the service specification so that it is accessible through a
single point. How to link the OWL-S and QoSOnt
ontologies for the purposes of service QoS description is
touched upon in Section 3.

3. The QoSOnt Ontology

QoSOnt was developed by a process of examining
existing QoS specification languages ([8], [9]). The
majority of detail in QoSOnt is in our specific area of
interest, which is dependability, where we have built upon
existing work by making use of an existing taxonomy and
modelling commonly used metrics.

QoSOnt represents many of the commonalities
discovered between the QoS specification languages
examined. Unlike most of these languages however,
QoSOnt also aims to be generic enough to be used no
matter what one’s particular view of QoS is. Our approach
has been to provide a base set of useful constructs which
cover common cases. These also exist as an example to
others who wish to model their own QoS viewpoint on top
of the basic QoSOnt Classes.

To facilitate reusability and extensibility the ontology
has been designed from the beginning to be modular in
nature. Each “module” is an ontology in itself. Ontologies
in higher layers will specialise and build upon those from
lower layers. The ontologies fall into three layers as shown
in Figure 1.

Base QoS
Units

Attributes

Usage Domains

Dependability

Time

Network Service

Performance

Figure 1. Layers of the ontology

The architecture is designed to allow third parties to
replace parts of the ontology as needed. For instance they
may have a different view of dependability to ours, or have
produced a time ontology which suits their purposes better.
Obviously this is only useful if the relevant ontologies are
shared with the community they wish to interact with.

The base QoS layer contains generic concepts relevant
to QoS. Unit ontologies also logically reside in this layer.
Time is the most relevant unit in QoS, and is therefore the
only unit ontology defined at the moment. It represents
units of time and how to convert between them. This
means that an inference engine could establish, for
instance, that 1 minute is the same as 60,000
microseconds. This is particularly useful if clients use the
same metric as providers - but different units.

The attribute layer contains ontologies defining
particular QoS attributes and their metrics. On top of this is

the domain-specific layer, which links the lower layers to
specific types of computer system. For instance, the
network ontology defines that certain QoS attributes are
specific to a particular network route and the service
ontology that QoS attributes sometimes refer to particular
services, service operations, etc.

In the following sections we discuss each of the layers
of QoSOnt.

3.1. The Base QoS Ontology

The base QoS ontology represents a minimal set of
generic QoS concepts (as shown in Figure 2). We
introduce the concept of a QoS attribute, and its
unmeasurable and measurable subclasses. In using the
ontology it is entirely optional whether one chooses to use
these sub-classes or create one's own. Ontologies allow
multiple inheritance, so many different classifications are
possible. Indeed, a QoSOnt specification will always
subclass something from the attribute layer as well as from
the domain layer (e.g. to say that what is being referred to
is the attribute reliability, and it is specifically the
reliability of service X).

Unmeasurable in this context relates to attributes which
cannot be measured from a given viewpoint. An example
of this could be adherence to a particular standard.
Anything which is measurable has a metric (as the OWL in
Section 2.3. shows). A metric represents one way of
measuring a specific QoS attribute. It must result in a
numerical value and must be calculable in practice as well
as theory. For instance, a statement that a service has
transactional throughput of 1000 transactions per second
can be falsified by a single party (be they a client, provider
or monitoring service) but cannot generally be measured
by a client or third party as they have no access to the
traffic statistics for the service.

Measurable attributes have one or more associated
metrics. At this level in the architecture we do not
prescribe individual metrics; these are defined in more
specific attribute ontologies. We define a metric to consist
of a description, an acceptability direction and zero or
more values. The acceptability direction indicates whether
higher or lower values are preferable for the metric (e.g. A
low probability of failure on demand is more desirable). It
must be remembered that these classes can be extended or
constrained by their subclasses, so being over-specific at
this base level is undesirable.

A “physical quantity” has one or more associated
“units”. In many cases a numerical value alone cannot be
understood without its unit type (e.g. You need to know
whether “time to complete” is quoted in seconds,
microseconds, milliseconds, etc.). Many metrics in QoS
involve time, which is why we have included the time –
ontology in QoSOnt. Other types of physical quantity are
rare in QoS – but the structures are there to model them
when they are required. Percentages can also be modelled
as units in QoSOnt. This gives the ability to understand

that availability of 0.99 is the same as availability of 99%
for instance.

For metrics which have values with simple types (e.g.
alphanumeric strings or integer counts) a new datatype
property would be included in that sub-class of Metric.

Figure 2. The base QoS ontology

Note that Figure 2 shows the Properties and Classes of
the ontology, but one may question how the domain rules
talked about in Section 2.2. are modelled. In OWL (and
therefore QoSOnt), it is the Class definitions which
constitute the domain rules. These definitions not only
define the Class in terms of necessary and sufficient
conditions for membership, they also constrain the use of
Properties and therefore the interrelationships between
classes.

These Class definitions consist of OWL constructs such
as those detailed for MeasurableAttribute in Section 2.3.
There is no succinct way of representing these. For the
sake of QoSOnt most Classes are defined in a pragmatic
manner. That is, they are defined with sufficient rigour to
be identified within the confines of QoSOnt (e.g. a
MeasurableAttribute is any QoSAttribute with a hasMetric
property which is a Metric). However, philosophical
questions of the defining nature of the concepts modelled

have not been considered. Since the ontology is an
engineering artefact this is deemed to be a sensible
approach.

3.2. The QoSOnt Attribute Layer

Figure 3 shows some attributes from both the
dependability and performance ontologies (prefixed by d:
and p: respectively).

Figure 3. Example Classes from the attribute layer

The full dependability ontology is largely based upon

the taxonomy defined in [11]. It not only includes the
ability to represent dependability attributes – but also
means of achieving dependability and dependability
threats. These latter may be of less relevance to QoS – but
will find use in other forms of specification. There is
therefore an overarching concept of dependability, as
shown in Figure 3.

The ability, given a particular Metric, to find the QoS
attribute it measures through the isMetricOf Property (see
Figure 2) allows other Metrics for that attribute to be
found. With the overarching concept of Dependability, a
further step may be made through the
isPartofDependability Property. This Property gives access
to the Dependability Class and therefore all information
relevant to dependability (threats, means, etc.). This shows
how the attribute layer provides a good point at which to
provide hooks to non-QoS concepts. Doing so allows the
integration of ontologies for further types of system
description.

As well as the reusable dependability (or other attribute)
ontology, a further ontology contains actual metrics (e.g.
probability of failure on demand, mean time between
failures, mean availability, etc.). It is this level of detail
which is perhaps the most important; as it is only once
specific metrics are added that QoSOnt is usable for QoS
specification.

3.3. The QoSOnt Usage Domain Layer

Ontologies in the usage domain layer link QoS to a
particular class of system. Currently QoSOnt supports
networks and services as types of system that QoS may
refer to. As with all layers, this can easily be expanded
upon.

The most important part of the service ontology simply
links the concept of “QoS attribute” and “service”. Since
we are working in the web services arena we use the
Service class from the OWL-S ontology. Our ontology can
also enhance the OWL-S ontology by providing concrete
Classes to act as its “ServiceParameters”. An example is
shown in Figure 4.

Figure 4. Example of the QoSOnt/OWL-S link

The prefixes in the figure refer to the following

namespaces: s: OWL-S Service, p :OWL-S Profile, bqos:
QoSOnt Base QOS, sqos: QoSOnt Service QoS, dm: DIGS
metrics (Which contains our dependability metrics in the
Attribute Layer). The solid lines labelled io indicate
“instance of”. The instances are the part which would
actually be visible in a specification. The Service instance
(ephemerisService in the figure) would be the point of
entry to the OWL-S specification. The figure shows that a
service presents a profile and that a profile has a
parameter. Also depicted is how such a service parameter
can make use of QoSOnt in this case by specifying a
ServiceParameter which is Probability of Specific Failure
on Demand. The unusual terminology is to distinguish it
from probability of any failure on demand. “Specific
Failure” refers to the fact that it represents the probability
of one particular service failure defined using the
dependability ontology.

As well as service-specific, certain QoS attributes are
also operation-specific (e.g. time-to-complete, accuracy)
and therefore reference the OperationRef class from OWL-
S. Other attributes, e.g. reliability, may be best modelled as
workflow specific since they are specific to a usage
pattern. OWL-S provides a Process class which is much
like a workflow. However it would be preferable to also be
able to reference other types of workflow definition (e.g.

BPEL4WS).
A provider (or QoS measurement service) publishes

QoS data as part of their OWL-S description or directly
using QoSOnt alone. The former is the preferred option as
it gives a standard way of referring to the service,
operation, etc. in question. It also provides a single point of
access for the complete specification.

The following section describes a tool which
differentiates between comparable services by matching
user requirements against published service QoSOnt
specifications.

4. SQRM: A QoSOnt Application

To demonstrate the use of the ontology, and aid in its
evaluation, a tool for service discovery, differentiation and
selection based upon QoS requirement has been developed.
We have named the tool the Service QoS Requirements
Matcher (SQRM). SQRM is designed to showcase a range
of different situations in which QoSOnt can be utilised
within the service domain. The tool supports the following
service cycle:

• Service Discovery
• Requirement Specification
• Service Querying – Differentiation

Beyond these stages the following external service
interactions need to take place to complete the service
cycle:

• Service Negotiation
• Service Agreement generation
• Service Monitoring (Encompassing mediation)

Though these are outside our current project scope,
these three areas are also likely to make use of QoSOnt, as
they are likely to reference many of the QoS attributes
used in service discovery and differentiation. The
following sections give an introduction to the different
parts of the tool and their relationship to QoSOnt.

4.1. Service Discovery

Service discovery in SQRM consists of querying a
UDDI registry. This consists of a keyword search (as
shown in Figure 5). The user can discover broadly similar
services (or functionally identical services by examining
the WSDL).

A feature planned for the near future is the ability to
search by TModel. A TModel in UDDI is a generic data
structure which provides “...the ability to describe
compliance with specifications, concepts, or even shared
design...” [12]. A UDDI entry for a particular service may
have many associated TModels.

One use of a TModel is to specify adherence to a
common WSDL interface. The originator of an interface
can publish a TModel via UDDI which others can then use
to show they adhere to the same interface. A “Type

category” called wsdlSpec in the UDDI specification is
used to indicate exactly such a use of TModel. By allowing
SQRM users to search for services advertising a particular
wsdlSpec TModel we provide a means to automatically
retrieve a list of functionally identical services for
comparison. SQRM will then gain access to the QoS data
for a service by retrieving the URI for the data from the
TModel in question.

In the same way, a TModel for QoSOnt or OWL-S (of
the specification category) can be published in UDDI to
allow providers to state that their services offer a
specification adhering to either of these ontologies.

SQRM expects to find one of these TModels. A
TModel must indicate, among other things, the URI
through which to retrieve the specification in question.
SQRM uses this to gain access to the QoS data for a
service. Note that the QoSOnt specification that the URI
points to may, in practice, be provided by a third party.

Figure 5. Service discovery in SQRM

4.2. Requirement Specification

QoS Requirement and capability specification affects
all clients and services. Without a way to specify
requirements a client could not differentiate between
services; without capability specification a service could
not advertise its resources. The SQRM tool currently
concentrates on the client viewpoint – providing a
graphical means of specifying QoS requirements. Much of
it however, could be reused for a provider-side
specification and publishing tool.

To demonstrate what forms QoS requirements may take
we briefly introduce one of the scenarios used to evaluate
QoSOnt. The example used is based upon the field of
epidemiology, and the study of pandemics. The
computation of the projected spread of diseases on given
population models is both time consuming and of interest

to multiple bodies, ranging from governments to
international collaborative organisations including the
World Health Organisation (WHO), and individual
research institutions and universities. Different algorithms
can be used to analyse data and the time taken for the
analysis process makes QoS of great importance.

 Some techniques for analysis of epidemiology are
more applicable to some situations than others, and may
depend on the time available for computation. For
example, for a given sample size the use of a MCMC
(Markov Chain Monte Carlo) computation may yield
unacceptably inaccurate results if not run for a large
enough quantity of time. For other algorithms perhaps a
final result is attainable, and cutting computation short
would render results useless. Information of this type can
be built into an ontology, creating a rich information
resource.

Our scenario pictures a situation where; given a number
of possible services, capable of supplying a number of
different formula computations; service differentiation and
requirement matching tools play an important role.

Client software for analysing epidemiology data could
potentially have a number of different QoS requirements.
For example, the requirement of certain degrees of
accuracy dependent on the algorithm used for analysis i.e.:

Algorithm A Accuracy > S Using Metric N
or
Algorithm B Accuracy < P Using Metric M

In SQRM, a QoS requirement is basically a predicate

(represented in XML), the truth value of which depends
upon the asserted facts in the QoS descriptions of the user
selected services. The subjects of the predicates are
instances or Classes defined in QoSOnt.

In contrast to requirements, the provider's description of
their QoS capabilities consists of asserted propositions.
These often simply say "QoS Metric X has been measured
to have value Y". QoSOnt alone is sufficient to express
these. If a provider wishes to use more complex forms of
proposition then the same hybrid approach as for
requirements may be used. For instance, the XML schema
includes the ability to represent service classes (i.e. set
offerings of the same service with different service levels).
This is not currently possible to do with QoSOnt, although
it is something which is likely to be incorporated in the
future. The provider may also wish to express the inherent
interdependence of certain metrics/attributes (e.g. server
load and transactional throughput).

Requirement predicates are visualised as a tree – the
leaves of which are Values or Classes of Metric expressed
in QoSOnt. The inner nodes are logical and arithmetic
operators. Figure 6 illustrates this with a screenshot of a
requirement expression as it is created (MTTC is an
abbreviation for Mean Time to Complete). QoSOnt allows
constraints on the Values a Metric can support to be taken
into account dynamically as the expression is constructed.

The expression shown in the figure states the following
requirement: ((MTTC<500 milliseconds) AND (Mean
Availability>0.9)) OR ((MTTC<1 second) AND (Mean
Availability>0.99)). This shows how trade-offs can be
expressed: That time to complete can be traded off in
favour of availability.

Figure 6. Requirement construction

4.3. Requirements Matching

Requirements matching is a bottom up evaluation
process, which starts from the leaves. That is, for each
service being considered, the asserted values of Metrics
can first be established from the published capabilities.
The truth value (or arithmetic result) these produce in the
parent sub-tree can then be established, and this can
continue to filter up until a truth value is established for the
whole tree.

As an example of the matching process consider the
requirement shown in Figure 6. If MTTC for a service
under consideration is found to have a published value of
600ms then the left hand sub-tree immediately evaluates to
false. This is because plugging a value of 600ms into the
MTTC leaf makes its immediate parent (<) evaluate to
false. Since its grandparent is an AND operator no further
evaluation is needed to assign false to the left sub-tree
rooted at AND. On the other hand, the opposite is true of
the right sub-tree. Plugging 600ms in (and using QoSOnt
to convert the units) makes > evaluate to true, the second
child of the AND sub-tree therefore also needs to be
evaluated. If MeanAvailability is found to be >0.99 then
the whole requirement will be met and “true” will
propagate up to the root of the tree.

Where the requirement is strict (i.e. it "must" hold true)
this provides a simple yes or no match. It will also be more
efficient as not all terms will always need to be evaluated
(as for the left sub-tree in the above example). If
insufficient information is available to make a conclusion
this must also be taken as a non-match. For instance, if no

specification for MeanAvailability was provided for a
service then no truth value could be assigned.

Specifying the requirement as non-strict will allow for a
more detailed comparison than simply matching or not
matching. Non-strict matching might be useful, for
instance, when a lot of required data is missing or if no
strict match can be found. However, if the requirement is
non-strict then there are a number of issues as to how to
judge how well a particular service matches it. At the time
of writing this is not a problem we have implemented a
complete solution to. The approach we propose involves
assigning a score based upon the level of match achieved.
A lower score would have more required terms which
evaluate to false or are missing. The score filtered up to the
root of the tree could then be used to assess the relative
suitability of services.

The ability to create QoS requirements involves
understanding the underlying meaning of the attributes and
their metrics. QoSOnt can supply much of the information
needed for human inspection as well as providing UI
constraints to avoid misuse of terms. For example,
acceptability direction for a given metric (is high or low
better), unit type, and so on. For non-strict matching we
hope to produce advice and warnings based upon the
semantics of the requirements created as well as an
indication of how well the services match.

5. Evaluation

The evaluation of an ontology such as QoSOnt
ultimately relies upon its application by the research
community. We see QoSOnt as something which may, in
the future, form the basis of a standard QoS ontology for
use across the community. During development, we have
simulated its usage by generating a set of scenarios, one of
which was introduced in the form of the epidemiology
example in Section 4.2.

QoSOnt aims to provide a common QoS
conceptualisation for use by client, provider, and third
party intermediary systems. We have therefore attempted
to consider the scenarios from each of these viewpoints,
although we have initially concentrated on the client and
provider point of view.

SQRM’s implementation has given concrete examples
of QoSOnt’s use by the client for service differentiation,
by the provider for publishing QoS data, as well as by
intermediate software in the matching process. Whilst
there are extensions we wish to make in terms of the
metrics we have modelled in QoSOnt, we have found that
QoSont has not restricted us in modelling those we have
already considered. However, to reduce the work required
to model new Metrics, the possibility of providing some
generic base Metrics has arisen.

We also accept that real world examples may pose us
with unexpected situations. We are therefore seeking to
collaborate with real world service users in order to further
evaluate and improve QoSOnt.

6. Conclusion & Future Work

In conclusion, this paper has put forward a workable
QoS ontology, outlining its objectives with reference to the
service cycle as a whole, and specifying both its overall
design and implementation.

In the future we hope to continue our efforts in the
expansion of QoSOnt in parallel with our work on SQRM.
An avenue we have begun to explore is expressing, on top
of QoSOnt, how metrics aggregate under various forms of
composition.

We also plan to explore the way in which QoSOnt
could be further leveraged in more complex QoS
specification scenarios. In particular we wish to address
certain limitations of common dependability metrics. The
issue of moving beyond UDDI to find the best way to
publish and make QoS specifications easily discoverable
and queryable is also on our agenda, as is addressing the
outstanding area of QoS monitoring.

In terms of developing SQRM there are many user
interface enhancements which we are considering,
including, among other things, adding the ability to check
the availability of services upfront; a wizard for
requirements creation; and a visualization of the matching
process so that non-strict cases can be judged by user.

7. References

[1] T. R. Gruber, “A translation approach to portable ontologies”,
Knowledge Acquisition, 5(2):199-220, 1993, http://ksl-
web.stanford.edu/KSL_Abstracts/KSL-92-71.html

[2] National Cancer Institute (NCI) Thesaurus,
http://www.mindswap.org/2003/CancerOntology/

[3] ICD-10 WHO Ontology,
http://www.who.int/classifications/icd/en/

[4] W3C, "Web Ontology Language (OWL)",
http://www.w3.org/2004/OWL

[5] Franz Baader, Ian Horrocks, Ulrike Sattler. “Description
logics as ontology languages for the semantic web”, in
Lecture Notes in Artificial Intelligence. Springer, 2003.
http://www.cs.man.ac.uk/~horrocks/Publications/download/2
003/BaHS03.pdf/

[6] The Protégé Ontology Editor and Knowledge Acquisition
System, http://protege.stanford.edu/

[7] DAML, “DAML Services”,
http://www.daml.org/services/owl-s/

[8] Glen Dobson, "Quality of Service in Service-Oriented
Architectures”, http://digs.sourceforge.net/papers/qos.pdf

[9] Glen Dobson, Russell Lock,
http://wiki.nesc.ac.uk/read/pa9?ParametersOfQoS

[10] Tim Berners-Lee, James Hendler, Ora Lassila, “The
Semantic Web”, Scientific American, May 2001

[11] Jean-Claude-Laprie, Brian Randell, Carl Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure
Computing”, in IEEE Transactions on Dependable & Secure
Computing. Vol. 1, No. 1, pp. 11-33.

[12] Tom Bellwood et al, “UDDI Version 3.0.2”, edited by Luc
Clement et al, http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

