
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Ontology-based multi-site software development
methodology and tools

P. Wongthongtham a, E. Chang a,*, T.S. Dillon b, I. Sommerville c

a School of Information Systems, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
b Faculty of IT University of Technology, Sydney, Australia

c Department of Computer Science, Lancaster University, Lancaster, UK

Available online 1 September 2006

Abstract

The disadvantages associated with remote communication rather than face-to-face communication is a key problem in
the multi-site distributed software development environment. Awareness of what work has been done, what task has been
misunderstood, what problems have been raised, what issues have been clarified, and understanding of why a team or a
software engineer does not follow the project plan, and how to carry out a discussion over a multi-site distributed envi-
ronment and to make a just-in-time decision are the challenge. Different teams might not be aware of what tasks are being
carried out by others, potentially leading to problems such as two groups overlapping in some work or other work not
being performed due to misinterpretation of the task. Wrong tasks may be carried out due to ignorance of who to contact
to get the proper details. If everyone working on a certain project is located in the same area, then situational awareness is
relatively straightforward but the overheads in communications to get together to discuss the problems, to raise issues, to
make decisions and to find answers in a multi-site distributed environment can become very large. Consequently, these
problems cause project delay and anxiety among teams and managers. Ontologies coupled with a multi-agents system
allow greater ease of communication by aggregating the agreed knowledge about the project, the domain knowledge,
the concepts of software engineering into a shared information resource platform and allow them to be shared among
the distributed teams across the sites and enable the intelligent agents to use the ontology to carry out initial communica-
tion and classification with developers when the problem is raised in the first instance. In this paper, we present the key
challenges in multi-site software engineering and the ontology representation of commonly shared conceptualisations in
software development. We demonstrate the agent communication with developers in the form of man–machine interac-
tions and the great potential of such a system to be used in the future for software engineering in multi-site environments.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Ontology development; Software engineering ontology; Agent-based system; Multi-site software development

1. Introduction

The centralised and single-site software develop-
ment approach has been widely used by large and
medium software development teams. Traditional
software development has occurred in environments

1383-7621/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysarc.2006.06.008

* Corresponding author. Tel.: +61 0 8 9266 1235; fax: +61 0 8
9266 7548.

E-mail addresses: WongthongthamP@cbs.curtin.edu.au (P.
Wongthongtham), ChangE@cbs.curtin.edu.au (E. Chang), thar-
am@it.uts.edu.au (T.S. Dillon), is@comp.lancs.ac.uk (I. Som-
merville).

Journal of Systems Architecture 52 (2006) 640–653

www.elsevier.com/locate/sysarc

Aut
ho

r's

pe
rs

on
al

co

py

where all necessary software development docu-
ments and source code reside on a local server avail-
able to the developer over the Local Area Network
(LAN). However, in today’s global economy, col-
laborative software development, spanning multiple
teams in multiple development locations, is becom-
ing the norm rather than the exception [1]. We often
see that the teams of developers working on today’s
software development span many cities, regions and
sometimes across several continents. At present it is
common for even small to medium sized software
development projects to consist of two or more clus-
ters of developers working across several distributed
locations. Elder, Audet and Amboise [2,3] state that
current software process models and methodologies
do not address the issues of collaborative Multi-site
Software Development (MSSD). To successfully
deliver a large complex information system and to
reduce the cost of software development, we often
outsource in the sense that we use all global resources
presently available to be able to obtain the specia-
lised skills needed. This means that specialised
groups will have to work together from remote sites
to achieve common integrated development goals.

The following examples illustrate the need for a
MSSD methodology:

• In outsourcing situations the analysts who pro-
duce the problem definition, system specification
or IT solution may be physically far removed
from the design and programming teams on
either a regional or international basis. This
physical distance could become a crucial issue if
the specifications are not complete or ambiguous
or continually evolving.

• If each implementation group resides at different
sites, different interpretation of component spec-
ifications or software requirements can lead to
incompatible components or sub-systems. This
will cause severe integration problems.

• Another example is that if a component-based
approach is adopted; components may be devel-
oped by multiple remote teams. Although work-
ing on the same software, different expert groups
have different terminologies and they often find
this hard to overcome without face-to-face
communication.

• A further example is that customers and testers
may be at different sites from the programmer.

Most of the existing software process models
assume a centralised approach to software develop-

ment. As shown in the above examples there are
many situations where such an assumption is inap-
propriate. This assumption is also present in many
of the current software engineering methodologies
which do not address multi-site software develop-
ment. Most project management approaches do not
consider multi-site software development manage-
ment either. Lastly, we see that many technologies
have not yet become mature enough to facilitate
multi-site development [4]. Those process models,
methodologies, technologies and approaches cannot
be followed linearly for a multi-site situation.

In the remainder of the paper we firstly state the
issues in the multi-site software development envi-
ronment (Section 2) and in the existing global soft-
ware development approaches (Section 3). Our
methodology, utilising ontology-based multi-site
software development, is given in Section 4. The
paper progresses on to the software engineering
ontology in Section 5 which is followed by its imple-
mentation in Section 6. Section 7 presents multi-
agent based informatics engineering and Section 8
discusses engineering of multi-agent based systems.
Section 9 discusses the deployment of the ontol-
ogy-based multi-agent system. The paper ends with
our conclusions in Section 10.

2. Issues in multi-site software development (MSSD)
environment

We define MSSD as that which involves a soft-
ware development project that is carried out by
multi-teams over multi-sites. With the advent of
the Internet, we often see that the system specifica-
tion is done in one city and the design or implemen-
tation or testing is done in another city or cities. We
classify five major issues in multi-site software
development, namely

1. different concepts and terminologies used in dif-
ferent teams about the principles of software
engineering and project management,

2. different level of understanding about the prob-
lem domain they are dealing with,

3. different training, different levels of knowledge
and skills that exist among teams,

4. issues raised and that cannot be solved in time,
and

5. no sense of ownership about the project and the
implication that it is always somebody else’s
fault; time is wasted on arguments rather than
on the project.

P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653 641

Aut
ho

r's

pe
rs

on
al

co

py

With advent of the Internet, the management
tasks get more complex for these Internet-based
multi-site projects and their intrusion into the soft-
ware development paradigm. This emphasises the
need for a new software development paradigm
and continuing research in the field of software engi-
neering and project management.

3. Issues in existing global software development

approaches

In this section we give a brief overview of current
global software development approaches. The sur-
vey has been focused on the recent initial proposals
on multi-site approaches for which our work will be
based on.

Computer-Supported Cooperative Work
(CSCW) [5] is a well known approach to support
group design work in the manufacturing environ-
ment. It focuses on person-to-person interaction
and communication between the teams. We find
that this approach has not been applied to the soft-
ware development situation and has not addressed
group-to-group interaction and communication. It
is noted that software production is much more
complex than manufacturing problems because
software development is a very dynamic process.
There are constant changes in requirement, design,
and implementation and it is frequently seen that
new situations, new terminologies and new concepts
appear during the software development period.
Software development needs to constantly deal with
changes and needs to carry out person-to-person as
well as group-to-group interaction. The extension of
CSCW by adding the semantics of group-to-group
discussion, negotiation and collaboration, and
semantic based CSCW will help and support the
multi-site multi-team environment for the software
development methodology.

Carmel and Agarwal [6] examine how distance
contributes to the complexity within organisational
processes. Coordination, control, and communi-
cation are considered as crucial challenges of dis-
tance. They describe three tactical approaches that
can be applied across a range of geographical
projects:

• Tactic 1: Reduce intensive collaboration. Two or
more development units are working together on
the same project. This is found to not be the case
often in the multi-site software development envi-
ronments because software tasks are distributed

to multi-teams and each team has sole responsi-
bility for its own tasks; so it is often unlikely a
task is carried out by two teams in different loca-
tions. This would create even more communica-
tion traffic between multi-site teams.

• Tactic 2: Reduce cultural distance. For example,
American firms generally situate development
units in foreign locations where cultural distance
is less; such as Ireland, or where language barri-
ers are minimal such as in India or the Philip-
pines. However, we need to use all global
resources available to be able to acquire the spec-
ialised skills, not only from countries like Ireland
or India.

• Tactic 3: Reduce temporal distance. This pre-
scribes using synchronous communication over
distance such as videoconferencing and conversa-
tions over the telephone. However, it has been
found that videoconferencing is expensive for
small and medium enterprises and telephone con-
versations usually cause misunderstanding
because one developer may not understand or
cannot see a particular error on the screen when
the other party talks about something wrong in
the user interface on the screen.

Overall this methodology addresses miscommu-
nication and concerns but still has not fundamen-
tally solved the communication problems, even
though tactics 2 and 3 are utilised. However, we
can see the budget may not be high, especially for
the third party small and medium enterprises’
(SME) regional companies and remote town teams.

Mockus and Weiss [7] propose a technique of
using code change history to compute the degree
of relatedness of the work item at two sites. Work
could be transferred from a primary site with
resource shortages to a secondary site that has
under-utilised development resources. They use an
algorithm to find the best possible work transfer.
The following approaches are being considered in
this methodology:

• Transfer by functionality, in which the ownership
of a subsystem or a set of subsystems is trans-
ferred. A drawback is that if a new functionality
is added, it might require using more experts
from several sites, thereby increasing the need
to coordinate feature work between sites.

• Transfer by localisation, in which develop-
ers modify the software product locally for
a local market. A drawback is that this

642 P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653

Aut
ho

r's

pe
rs

on
al

co

py

approach requires maintainability experts in all
the domains that might require change when
adapting the system to the local market.

• Transfer by development stage, in which develop-
ers perform different activities at different
locations. A disadvantage is the need to commu-
nicate and coordinate between sites to proceed
to the next development stage.

• Transfer by maintenance stage, in which develop-
ers transfer older releases, primarily for the main-
tenance phase, when they no longer expect to add
new features to the release. A disadvantage is a
potential decrease in quality and increase in prob-
lem resolution intervals because the maintenance
stage has not been at the same site as the design
and implementation stage. Communication needs
between the original site and the maintenance site
might increase when difficult maintenance prob-
lems require the original site’s expertise.

The methodology still does not address the issue
of communication between groups over multi-sites.

Repenning et al. [8] proposed using component
architecture to support work distributed across
sites. They developed the Component-Oriented
Rapid Development (CORD) process that is similar
to XP. There are two phases in the CORD process:

• Phase 1: Centralised analysis and design: A large
group of users, domain experts, designers, and
developers analyse project requirements and cre-
ate application mock-ups and interoperability
specifications.

• Phase 2: Distributed analysis, design, implemen-
tation and testing: Development is distributed
by the group to independent teams.

On the negative side, no detail is given of distrib-
uted team work different from the centralised team.

Heeks et al. [9] shows three interesting case studies
and captures their successful outsourcing strategies
to maximise team value. They consider relationships
between central office and outsourcing teams or
developers and clients or customers. When successful
relationships occur between these parties they call it
Synching. In turn, when unsuccessful relationships
occur they call it Sinking. They define cocpit dimen-
sions to minimise gaps between the central office,
outsourcing teams or developers and clients or cus-
tomers: coordination/control, objectives and values,
capabilities, processes, information, and technology.
They show that the three following issues influenced

the above six cocpit dimensions: tacit knowledge,
informal information and culture. However, we
find the description about the methodology and
approach are very abstract and at a high level. There
is not enough detail to describe the processes, tasks
or actions so that the software teams can follow
and execute these details, strategies and approaches.
We also note that this approach may create pressures
and tensions between the clients or customers and
the developers which might be acute or chronic [9]
rather than improve the development process.

4. The ontology-based MSSD methodology

An ontology provides an important mechanism
to facilitate producing high-quality software under
multi-site environments. Since an ontology has been
used to express formally a shared understanding of
information [10], it enables the sharing of an agree-
ment among teams distributed across the sites by
making assumptions explicit. The key idea is to have
agreement explicitly interpreted by software tools
rather than just being implicitly interpreted by
human developers. The representation of software
engineering concepts, software development tasks,
software development models, software develop-
ment processes as well as software development
documentation using an ontology and sub-ontol-
ogy, will provide intuitive, clear, precise concepts
and ideas, knowledge and classified issues.

Ontologies are utilised as part of a communica-
tion framework for multi-site distributed software
development environments. Software engineering
concepts, ideas and knowledge, software develop-
ment methodologies, tools and techniques are
organised into a software engineering ontology
and used as the basis for classifying the concepts
in communication thereby enabling questions, prob-
lem solving and sharing solution development and
knowledge to be shared between multi-site teams.
We propose the use of ontologies in conjunction
with intelligent software agents to support multi-site
software development. A methodology framework
for ontology-based MSSD is illustrated in Fig. 1.
As the figure indicates, the system has a software
development resource that is for software agents
to consult or refer to.

The software development resource consists of

• a generic software engineering ontology,
• a specific software engineering ontology, and
• a knowledge base repository.

P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653 643

Aut
ho

r's

pe
rs

on
al

co

py

Generic software engineering ontology represents
knowledge in the software engineering discipline
which is concerned with all processes of software
production from the stages of software require-
ments through software verification and validation.
The software engineering discipline covers many
aspects of software development. Since each project
is different from another, they may only need a sub-
set of the software engineering ontology. Therefore,
this information resource allows one to generate a
subset of ontological knowledge about software
engineering. Specific software engineering ontology

represents the project specific knowledge and that
specifically meets a particular project need. The
ontology is to be used for a particular project. Note
that the specific software engineering ontology can
also be tailored and customised, and once it is cre-
ated, it should be available to share among the
teams. All team members are encouraged to obtain
knowledge from it though software agents and
studying, and obtaining answers, classifying knowl-
edge and using it as the basis of any conceptual dis-
cussion and questions arising, including
specification, design and implementation, as well
as documentation. The knowledge base stores the
ontologies along with actual data or project data
in an ontology repository. Set in the multi-site dis-
tributed software development environment, these
resources can be used for sharing of intra and inter
project communications of both common knowl-
edge in the software engineering area and project

knowledge that have been established by consensus
agreement by different project members in dispersed
locations. In particular, the specific software engi-
neering ontology fosters a seamless and virtual intra
project environment for internal browsing, search-
ing, sharing, and authoring ontological project data
across sites.

A software agent is a small computer program
that is autonomously capable of getting answers
from user queries, making decisions based on
appropriateness, communicating with other agents
and conveying results to the system or the users.
Software agents are intelligent, autonomous prob-
lem solvers. They have their own goals, capabilities
and beliefs what allow them to act intelligently
within their field of expertise.

Ontologies coupled with a multi-agents system
allow greater ease of communication by aggregating
the agreed knowledge about the project and the
domain knowledge of software engineering into a
shared information resource platform and allow
them to be shared among the distributed teams
across the sites and enable the intelligent agents to
use the ontology to carry out initial communication
with developers when the problem is raised in the
first instance.

The system utilises software agents based com-
puting in the sense that the agent has knowledge
through consultation with ontologies in the ontol-
ogy repository. Due to agent capacities in reading
and reasoning published knowledge with guidance
of the ontology, the shared ontology enables agents
to have meaningful communications. We design a
set of agents cooperating with each other and inter-
acting with users or team members, and these are

• user agents which represent each team member
being provided with services,

• safeguard agent which represents system authen-
tication for user authorisation and access level,

• ontology agent which represents manipulation
and maintenance of the software engineering
ontology, and

• decision maker agent which represents decision
making on the matter of updating the software
engineering ontology.

At a remote site, a software engineer having and
working with their own repository of software com-
ponents, documents and codes, etc. interacts with
his/her user agent in the system when he/she wants
to enquire, to discuss a problem, to raise an issue,

Software DevelopmentResource

Software Agents

Software Engineer
Manager

Generic Software
Engineering Ontology

Specific Software
Engineering Ontology

The Ontology
Base Project Specific

Knowledge
Base

Ontology
Repository

Fig. 1. Methodology framework for ontology-based MSSD.

644 P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653

Aut
ho

r's

pe
rs

on
al

co

py

to make a decision, or to find answers in a multi-site
distributed environment. If he/she requests to
change or update project data and it is beyond his/
her user agent to decide then the user agent will com-
municate with the decision maker agent. The deci-
sion maker agent then gathers information from
the other team members as well as consults the
ontologies from the ontology repository. Making
the decision is based on the information obtained
from consulting ontologies. The final solution(s)
will then be raised up and sent back to the involved
software engineers. In case the decision maker agent
has difficulties coming up with any solutions, the
agent will put it through to the authorised person(s)
or team leader to make a decision. Once the agent
gets the solution(s) from the person or the team lea-
der, it will automatically reconfigure or update the
ontology, the knowledge base in the resources as well
as sending back the solution(s) to the involved soft-
ware engineers. Ontology-based contents and agent-
capability descriptions are machine-processable and
thus the ontology can be correctly reconfigured by
the agents.

5. Software engineering ontology

We have merged Gruber’s [11], Borst’s [12], and
Studer’s [13] definitions of an ontology as the basis
to define the software engineering ontology. Hence,
the software engineering ontology is a for-
mal,explicit specification of a shared conceptualisa-
tion in the domain of software engineering. Formal
implies that the software engineering ontology
should be machine-understandable. Explicit implies
that the type of software engineering concepts used,
and their constraints used are explicitly defined.
Shared shows that the ontology specifies consensual

knowledge of software engineering which means it is
public and accepted by the group of software engi-
neers. Conceptualisation implies an abstract model
of having identified the involved software engineer-
ing concepts.

An abstract view of creation of the software engi-
neering ontology is shown in Fig. 2 illustrating a
transformation to the software engineering ontol-
ogy. The whole set of software engineering concepts
are transformed into the generic software engineer-
ing ontology as domain knowledge in the area of
software engineering. A particular project or a par-
ticular software development probably uses only
part of the whole set of software engineering con-
cepts. For example if a project uses object-oriented
methodology only, then the concept of data flow
diagram will not be included instead it includes con-
cepts like class diagram, activity diagram and so on.
The specific software engineering concepts used for
the particular software development project are
transformed into the specific software engineering
ontology as sub domain knowledge. Thus the soft-
ware engineering ontology is divided into two sub-
ontologies which are the generic ontology and the
specific ontology. The generic software engineering
ontology represents all software engineering con-
cepts while specific software engineering ontology
represents some concepts of software engineering
for the particular project need. Then in each project
there will be project data or actual data or simply
some kind of project agreement. The project data
specially meet a particular project need and is
needed with the software engineering ontology to
define instance knowledge. Note that the instance
knowledge varies depending on its use for a partic-
ular project. Once all domain knowledge, sub
domain knowledge and instance knowledge are

Class1

Class1 Class1

Domain
Knowledge

Instance
Knowledge

Concepts Project Specific
Data

InternetSerialised
knowledge

Software Engineering Ontology

SpecificConcepts

Sub Domain
Knowledge

Fig. 2. Schematic overview of software engineering ontology.

P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653 645

Aut
ho

r's

pe
rs

on
al

co

py

created it is available to be shared among software
engineers through the internet. All team members,
regardless of where they are, can query the semantic
linked project data and use them as the common
communication and knowledge basis of raising dis-
cussion matters, questions, analysing problems, pro-
posing revisions or designing solutions, etc.

6. Implementation of software engineering

ontology

In this section we present implementation of our
software engineering ontology. We will use UML–
OCL to represent the ontology and communication
architecture. The ontology will be transferred to a
software development resource using the web ontol-
ogy language, OWL, and can be accessed by multi-
site, multi-team and multi-development groups.
Note that this use of UML–OCL to model the
underlying ontology should be distinguished from
its use in software development to model the appli-
cation domain models.

The development of a software engineering
ontology basically consists of two processes. Firstly
it is the process of creating concepts or ontology
classes and relationships that hold among them.
The process of defining constraints of the relation-
ships or ontology restrictions is next.

A software engineering ontology class is a con-
crete representation of software engineering con-
cepts interpreted as sets that contain specific
project data. A software engineering ontology
instance represents actual data or specific project
data. A software engineering ontology property is
a binary relation on software engineering ontology
classes. Properties are used to create constraints or
restrictions that are used to restrict the instances
that belong to a class.

For illustration in the paper we show defining
concept of an ‘Activity’ in activity diagram in soft-
ware design – software engineering domain as an
example. Fig. 3 shows a Meta-meta model of an
activity diagram representing the activity concept
in software engineering domain knowledge. We
define class Activity as a collection of project data
with common characteristics that satisfy a restriction
expression of the class. Class Activity has its name
(Activity_Name which is a single string), has a rela-
tionship with the class Swimlane (In_Swimlane which
is a multiple object) and has a relationship with itself
– class Activity. As you can see from Fig. 3, in activ-
ity (itself) relationship there is an associated class
named Transition. It means transitions in the activity
diagram i.e., activity transition, branch transition,
concurrent transition, and special transition. Activ-

ity transition, refers to class Activity Transition in

<<Concept>>
Activity

Activity_Name Single String
<<Concept>>

Transition

<<Concept>>
Branch Transition

Guard_Expression_1 Single String
Guard_Expression_2 Single String
Related_Branch_Activity_1 Single {Activity , Branch
Transition, Concurrent Transition, Special Transition}
Related_Branch_Activity_2 Single {Activity , Branch
Transition, Concurrent Transition, Special Transition}
Relating_Branch_Activity Multiple {Activity , Branch
Transition, Concurrent Transition, Special Transition}
Relating_Branch_Activity >= 1

<<Concept>>
Activity Transition

Related_Activity Single Activity
Relating_Activity Single Activity

<<Concept>>
Special Transition

Related_Special_Activity Multiple Activity
Relating_Special_Activity Multiple Activity

<<Concept>>
Start

Related_Special_
Activity = 1
Relating_Special_
Activity = 0

<<Concept>>
Stop

Related_Special_
Activity = 0
Relating_Special_
Activity = 1

<<Concept>>
Object

Get_Object
_Flow

Set_Object
_Flow

0..* 0..*

<<Concept>>
Concurrent Transition

Related_Concurrent_Activity Multiple {Activity ,
Branch Transition, Concurrent Transition}
Relating_Concurrent_Activity Multiple {Activity ,
Branch Transition, Concurrent Transition}

<<Concept>>
Fork Transition

Related_Concurrent_Activity >= 2
Relating_Concurrent_Activity = 1

<<Concept>>
Join Transition

Related_Concurrent_Activity = 1
Relating_Concurrent_Activity >= 2

Set_Object
_Flow

Get_Object_Flow

0..*

0..*

<<Concept>>
Swimlane

Swimlane_Name Single String

In_Swimlane
0..*

Fig. 3. A meta-model of an activity diagram.

646 P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653

Aut
ho

r's

pe
rs

on
al

co

py

the meta-model in Fig. 3, is where the state of activ-
ity transits to another state of activity. We call trans-
iting activity as relating activity while calling
transited activity as related activity. The constraints
in the transition are that there is one relating activity
and one related activity. Branch transition, refers to
class Branch Transition in the meta-model in
Fig. 3, is where a decision needs to be made. The
constraints in the transition are that there is at least
one relating activity named, two related activities
and two guard expressions. As you can see from
the meta-model in the Fig. 3 a branch transition
can link between activities, branch transitions, con-
current transitions, and special transitions. Concur-

rent transition, refers to the class Concurrent

Transition in the meta-model in Fig. 3, is where some
activities occur simultaneously or in parallel. As can
be seen from the meta-model in Fig. 3, concurrent
transition can link between activities, branch transi-
tions, and concurrent transitions. Concurrent transi-
tion consists of join transition and fork transition.
The constraints in the join transition are that there
are at least two relating activities which join into
one related activity. In contrast the constraints in
the fork transition are that there is one relating activ-
ity split into at least two related activities. Special

transition, refers to class Special Transition in the
meta-model in Fig. 3, is where it shows the start
and the end of the activity diagram. It consists of
start transition and stop transition. The constraints
in the start transition are that there is only one
related activity and no relating activity. Whereas
the constraints in the stop transition are that there
is only one relating activity and no related activity.

7. Multi-agent based informatics engineering

In this paper we explore the use of software
agents for informatics engineering in the software
engineering ontology. Team members in the soft-
ware engineering projects have a natural interaction
with each other and share lots of project data/agree-
ment amongst themselves. Since they are not always
residing at the same place and face-to-face meetings
hardly happen, there is a need for a tool that facil-
itates effective communication. Traditional software
technologies have limitations in coping with distri-
bution and interoperability. Thereby we use agent-
based technologies as they were developed to cope
with distribution and interoperability [14]. Agents
are interoperating and coordinating with each other
in peer-to-peer interaction.

The agent based system architecture consists of a
set of agents in the multi-site environment shown in
Fig. 4. Team members, regardless of where they are,
connect to the server via a web browser. This will
enable team members to directly use the system
without having to download any software or install
any application. Each team member is assigned to
an individual user agent serving as the communica-
tion media for each team member. It uniquely iden-
tifies each team member on the system. This allows
direct communication between different team mem-
bers using a messaging system and allows monitor-
ing of the team members’ activities. The user agents
represent each team member being provided with
services, e.g., to query the software engineering
ontology. The user agents communicate with the
safeguard agent that represents system authentica-
tion for user authorisation and determination of
the access level. The safeguard agent communicates
with the ontology agent if the user agents want to
query or update the software engineering ontology.
The ontology agent manipulates and maintains the
software engineering ontology repository. The
ontology agent contacts the decision maker agent
if an operation needs to be certified. The decision
maker agent is responsible for decision making on
the matter of updating the software engineering
ontology including acknowledgement of the deci-
sion made to all involved team members.

As you can see from the model of the agents’ plat-
form only the safeguard agent has connection with
the user database. This means that the safeguard
agent records all user activities as well. All agents call
the safeguard agent and pass information to log all
the events that the agents carried out. Thus, tracking
can be accomplished by the safeguard agent if

Fig. 4. Model of agents’ platform.

P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653 647

Aut
ho

r's

pe
rs

on
al

co

py

needed. Not only allowing tracing, the safeguard
agent can determine bottlenecks if there is any occur-
rence with the use of the timestamp. The ontology
agent is the only one manipulating the software engi-
neering ontology. Thus it is the only one that has
access to the ontology repository. All agents contact
the ontology agent in the cases of wanting to view,
query, or update the ontology. The decision maker
agent has its own database to store data for decision
making occurring in the system.

8. Engineering of multi-agent based system

Jade [15] is used as the platform for building
intelligent agents in compliance with the Founda-
tion for Intelligent Physical Agent (FIPA) allowing
agents to communicate with the other agents in the
same standard. Jade implemented in Java simplifies
implementation of multi-agent systems through a
middleware. We use the Graphic User Interface
(GUI) provided by the platform [16] for monitoring
and controlling the status of agents while imple-
menting. For agent communication we use, as
provided by JADE, the Agent Communication
Language (ACL) [16]. We use communication
intentions like inform, propose, query, etc.

The agents themselves not only listen but can
decide on a course of action on their own. The
agents have some characteristics [17] that define
them which are:

• Reactive – the agents themselves perceive circum-
stances which are different and various e.g., a
user via a graphic user interface or other agents.

• Proactive – the agents themselves can have differ-
ent types of behaviors, they can either be the ini-
tiator by carrying out tasks with a goal in mind
or be activated by some external events triggering
them to do tasks.

• Social – since the agents are proactive, and there
are 2 types of agents, initiator and responder,
agents are able to communicate with one another
and accomplish their goals respectively.

We explain mapping the aforementioned agent
properties into design decisions, using an example.
The reactive property requires the agents to be
active objects with at least one java thread to pursue
goals. For example for the decision maker agent, its
goal is to sum up the final solution to update in the
ontology. It proactively starts from collecting a
number of possible solutions, carrying out negotia-

tions, and pursuing the final decision. Besides the
agents are social allowing interactions with other
agents to pursue their goals. For example the deci-
sion maker agent interacts with user agents to col-
lect team member ideas of updating in order to
pursue one of its goals: gathering possible solutions.

We also use the following functions JADE pro-
vided [16] to deploy a multi-agent system:

• Yellow page service – which provides a directory
service for agents to publish their service as well
as searching the directory for the services they
want.

• Agent life-cycle management – from the creation
of a particular agent to the termination of it.

• Message transport service – formats the message
with a certain tag and allows easier filtering of
different types of messages and easier searching
of messages.

• Security – JADE provides a set of security proto-
cols that can be implemented if a secure JADE
platform is required.

Details of the four groups of agents are given next.

8.1. User agents

A user agent is assigned to every team member
that is logged into the system after authentication
and provides different services to different access
levels for each team member. All team members
are provided with the service to query the software
engineering ontology. The list below shows the dif-
ferent access level:

• Querying level – only querying service allowed no
modification.

• Add and modifying level – restricted access to
add and modify service of the software engineer-
ing ontology instances (project data). At this
level some operations may be required to be
made through the decision making system e.g.,
request for revision of project design model. Sim-
ple updates like status of project or documenta-
tion update, this would straight away be
updated to the software engineering ontology.

• Full access level – unrestricted access to all ser-
vices provided.

These access levels are given according to the dif-
ferent status of the team members. We also use the
hierarchy of the software engineering sub-ontology

648 P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653

Aut
ho

r's

pe
rs

on
al

co

py

categories to determine the access to the status of
team members. For example the sub-ontology ‘soft-
ware design’ would require access for the designer
team or the sub-ontology ‘software requirement’
would demand access for the analyst team to access,
add, and modify their project data. Nevertheless,
the team designer can look up project requirements
through the sub-ontology ‘software requirement’
but no changes allowed, which means they are on
the querying level. The team leader will have full
access including monitoring team member activities.

All agents’ lifecycles reside on the server, and
each team member is assigned to a user agent when
a login is made. Each user agent is an initiator based
on the user actions; the agent will carry out the spe-
cific operations accordingly. All the operations have
different logic involved, but the structure of creating
a user agent is the same. Fig. 5 shows the user agent
execution model.

In the agent creation process, an agent object is
created when a user login is carried out. In the agent
listener process, the agent listens to any events based
on the user actions. After a fixed waiting time
expires, with no any (other) actions from the team
member the agent will terminate itself. The agent
will setup the required communication in the service
creation process setting based on user operation

e.g., setting the service type. Then the agent needs
to find the identical service type in the Directory
Facilitator (DF). The DF contains all the services
published by agents that provide their services.
The user agent will look up the DF for any ser-
vices that match the one it is looking for. If the user
agent cannot find the service, it deems that the ser-
vice is unavailable for now and the operation will
be terminated. In the process of ACL message setup
the user agent creates a message object and sets up
the content to be passed to the other agent. Nor-
mally it is a request for service. If the particular oper-
ation needs to communicate multiple times, or
additional tasks need to be carried out the ACL mes-
sage will then be setup again in a loop action. Once
the goal is achieved the user agent will call logger to
log all the activities. The user agent will then kill
itself if the team member decides to log off the system
or the team member is idle for too long otherwise the
agent will go back to the listener process.

This is typical behaviour of goal specific agents,
which exhibit one-shot behaviour. In other words,
the agent is created for a purpose, and once the pur-
pose is achieved, the agent will be terminated. The
life-cycle of the user agent listed above applies to
all the operations that the user does. And if the user
decides to use another operation, a new user agent
will be created for that specific operation.

8.2. Safeguard agent

To implement security features into the system, it
has been decided to appoint another agent, in this
case the safeguard agent. The safeguard agent will
be doing user authentication authorisation and allo-
cating access levels. The user identification will be
verified with the user database handled by MySQL
as well as access level allocation.

There will be a few security levels, mainly:

• Software engineers – they can be either
– Software engineers, who have no access in

updating, and can only do look up.
– Software engineers who have an access to

update project data.

• Team leader/project manager – who have unlim-
ited access to all functions like, updates, backups,
ontology maintenance and database access.

It should be noted that only the team leader/pro-
ject manager has access to the MySQL server. Team

User Agent
Creation

Listen to
events

Service
Creation based

on user
operation

Searching for
service in DF

ACL Message
Setup

More
messages

to send

Agent
Termination

Triggered event

No event

No

No

Found

Yes

Yes

Not find

Log off?

Call Logger
(logging all
activities)

Yes

No

Idle
timeout?

Fig. 5. The user agent execution model.

P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653 649

Aut
ho

r's

pe
rs

on
al

co

py

leaders, who do not have any of the access levels
stated, will not have the access to that specific sec-
tion of the ontology.

The safeguard agent is created when the Jade
platform is initialised and running. It cannot be ter-
minated by normal means, and only team leader/
project manager have access to do Jade platform
maintenance and also if due to certain circum-
stances force shutdown the platform or kill any
agent processes. This agent is the only one that con-
nects user agents to the ontology agent; therefore if
it is killed or terminated, the system will not be func-
tional at all. Fig. 6 shows the safeguard agents exe-
cution model.

In the safeguard agent creation process, the agent
is created when the Jade platform is initialised and
running. Then the services that are provided by
the safeguard agent are initialised, setup and posted
to the yellow page, which is the directory of the Jade
platform. From this directory, all agents will search
and find the service they are looking for. The safe-
guard agent will idle until another agent establishes
a link or makes contact with it. Once there is a con-
nection the service type is checked and if it matches
the service type the safeguard agent is providing,
further processing will be carried out otherwise the
message is discarded and the request is rejected.
There will be two possible cases. The first case is

that team member requests to view, add, and update
the software engineering ontology. In this case the
safeguard agent needs to verify the team member
account first. If the team member has an authorisa-
tion, the safeguard will retrieve the user access level
and then pass the request to the ontology agent. The
last case is that the safeguard is requested by any
agents to record team member activities. Because
the safeguard agent is the only agent that connects
to the user database thus if there is any action to
log into the database, it will be done by the safe-
guard agent. The safeguard agent will always be
alive unless it is killed by human intervention.

8.3. Ontology agent

The purpose of having an ontology agent is to
manage connections with the software engineering
ontology.

A team member can search in the generic soft-
ware ontology for clarification or classification of
certain concepts. It also serves as a searching tool
to help narrow down the vast amount of concepts
in the ontology. Through the use of the ontology
search function, the team member can re-classify
concepts to match with their project needs. This
leads to the specific ontology. Note that the infor-
mation provided by this function are all in XML
format, which means they can be easily manipulated
to display only a certain part of the information
retrieved or able to provide a different display inter-
face with the same set of information retrieved.

In the specific software engineering ontology
which has project data on it, the team member
can view, add, and update the project data. The
ontology agent will only allow direct updates for
the minor changes/updates. An example of a minor
change is an enumerated type where the changes
allowed are already fixed and team members cannot
put in other values. Another example of a minor
change is the changing of the status of a document
with the option of, for example, ‘verified’ or ‘pro-
cessing’. By default any updating apart from the
minor changes will be done by the decision maker
agent and is recorded. Nevertheless there will be
another option for a team member to select whether
these changes will go through the decision making
system or not. In the decision making system the
changes will not be updated to the specific ontology
straightaway. They need to be verified by all mem-
bers of the community and therefore need to be
stored in the decision making database. After all

Safeguard Agent
Creation

Publish service
to yellow page

Service
Checking

User
Authorization

User
verified?

Retrieve user
access level

Agent
Termination

Agent
killed?

No

No

Yes

Yes

Pass request to
ontology agent

No

Request to view/
update the ontology

Request to
log event

Wait for
connection

No connection

Link
established

Call Logger
(logging all
activities)

Fig. 6. The safeguard agent execution model.

650 P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653

Aut
ho

r's

pe
rs

on
al

co

py

members have agreed with the changes, the update
will then proceed by the decision making system.
The decision making system is handled by the deci-
sion maker agent whose details are given in the next
section.

The ontology agent acts as a responder by pub-
lishing it services to the yellow page and allowing
other agents who are looking for the service it is
publishing to communicate with it. As the ontology
agent is a service provider, it does not terminate
itself after finishing a communication with another
agent. It will always be executed again whenever
an agent communicates with it. This type of behav-
ior is classified as cyclic under Jade and the agent
will only terminate if the Jade platform is termi-
nated or forced to be terminated through the Jade
GUI. Fig. 7 shows the ontology agent execution
model.

In the ontology agent creation process, the ontol-
ogy agent is created when the Jade platform is ini-
tialised and running. Then the services that are
provided by the ontology agent are initialised, setup
and posted to the yellow page, which is the directory
of the Jade platform. From this directory, all agents
will search and find the service they are looking for.
The ontology agent will be idle until another agent
establishes a link or make contact with it. Once
there is a connection the service type is checked
and if it matches the service type the ontology agent
is providing, further processing will be carried out
but if not the message is discarded and the request
is rejected. There will be two different services i.e.,
viewing and updating services. For the viewing ser-
vices, the ontology agent simply carries out query-
ing. Another service, the updating service, the
ontology agent considers whether it is a minor
change or major change. For a minor change the

ontology agent updates the ontology straightaway
and also records the changes. For a major change,
the ontology agent checks whether the update
request had been authorised. Basically for major
changes, the ontology agent will pass the request
of changes to the decision maker agent to precede
further processes, for example, gathering informa-
tion and consulting the ontologies in the ontology
repository. On passing through the decision maker
agent, the updating can be done by ontology agent.
Every activity will be recorded by the call logger
process. The results of the process are sent to the
user agent that made the enquiry. The ontology
agent will automatically wait for another connec-
tion and will only be terminated if it is forced to
be terminated, either by a kill process or a Jade plat-
form collapse.

8.4. Decision maker agent

As the name itself states, the job of the decision
maker agent is to make decisions on the matters
of major updates requested. The major updates
must be agreed upon by every member in the team.
The decision maker agent is in charge of sending
messages to every team member of the major update
requests, gathering and storing possible solutions,
making decisions by consulting ontologies and from
the rule base, and advising all team members of the
solution. Every team member in the project can
respond to the debate message but the decision
maker agent will give more credit to some involved
members and the team leader when it comes to
determine what action is needed for the update.
Once the decision maker agent gets all the
responses, the agent will proceed with decision mak-
ing and finalising the solution. The following exam-
ple gives an idea of how the agent progresses the
processes. A member requests to update the project
design which is consider as a major change. The
decision maker agent sends this request to all team
members. This will brainstorm all the ideas from
analysts, programmer, tester, and everyone. The
decision maker agent gathers all possible solutions;
for example, there are three possibilities: A, B, and
C. A is agreed to by two designers, B is agreed by
an analyst and a tester, and C is agreed by a team
leader and two designers. As the debate is about
project design the decision maker agent gives more
credits to the designer (say two credits) and team
leader as well (say two credits). For all team mem-
bers who are not involved in design, the decision

Ontology Agent
Creation

Publish service
to yellow page

Sends back
results to user

agent

Agent
Terminated

Agent
killed?

No

No

No

Minor

Authorised
Update

Pass update
request to

decision maker
agent

Yes

Minor/Major
changes

Call Search
function

Generate Search
Result in XML

Major

Updating

Viewing

Wait for
connection

Service
Checking

No
connection

Link
established

Update
Ontology

Yes

Call Logger
(logging all
activities)

Fig. 7. The ontology agent execution model.

P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653 651

Aut
ho

r's

pe
rs

on
al

co

py

maker agent gives less credit (say one credit).
Accordingly, solution C gets more credits, six cred-
its whereas solution A and B get four and two cred-
its respectively. The decision maker agent then
makes the decision that solution C will be updated
in the ontology and acknowledges this to all team
members. In the case of getting equal credits in all
the possible solutions, the decision maker agent
defers to the team leader. Fig. 8 shows the decision
maker agent execution model.

In the decision maker agent creation process, the
decision maker agent is created when the Jade plat-
form is initialised and running. Then the services
that are provided by decision maker agent are initia-
lised, setup and posted to the yellow page, which is
the directory of the Jade platform. From this direc-
tory, all agents will search and find the service they
are looking for. The decision maker agent will idle
until another agent establishes a link with it. Once
there is a connection the service type is checked
and if it matches the service type the decision maker
agent is providing, further processing will be done,
if not the message is discarded and the request is
rejected. Once the service is activated, the decision
maker agent broadcasts messages to all team mem-
bers. After that the agent gathers responses and
makes a decision on which possible solution will
be finalised and be updated to the ontology. Updat-
ing the software engineering ontology is done by the
ontology agent by the decision maker agent for-
warding the request to the ontology agent. Then

the decision maker agent sends the final decision
message to all team members and records this event.
The process of the decision maker agent making a
decision has been given in an earlier example. Also
the agent can decide to abort the update if there
no one agrees upon the update requested. The deci-
sion maker agent will automatically wait for
another connection and will only terminate if it is
forced to be terminated, either by a kill process or
a Jade platform collapse.

9. Deployment of ontology-based multi-agent
system

We have designed and developed man–machine
interactions into three platforms i.e., question plat-
form, suggestion platform and solution platform.

9.1. Question platform

The question platform stage is basically for rais-
ing issue(s) within teams or just querying project
data. Team members can use the platform just to
query project data to clarify project agreement. If
a user has an issue to raise he/she will need to for-
mulate a question elucidated by clarifying the pre-
cise project data he/she wants to discuss.
Therefore retrieving project data is the main func-
tion of this platform. As the user has progressed
the querying its diagram is shown and called the ori-
ginal diagram. It could be a UML-like diagram if
the debate is on the UML diagrams. The diagrams
will help them to have a clear understanding as well
as help them recognise the instance knowledge or
project data. This is particularly useful when team
members work on many projects simultaneously.

9.2. Suggestion platform

The suggestion platform is fundamentally for all
team members to propose potential solutions of the
discussion. Thus this platform mainly involves mod-
ifying project data or instance knowledge. In the
platform all proposed solutions are pending. After
a certain time of gathering some feedback from
team members the system (by decision maker agent)
determines what action is needed or which solutions
will be updated. The updating process is made
through the solution platform. After the user has
progressed the changes through the platform its dia-
gram is shown and called the suggested diagram. It
could be a UML-like diagram if it is about UML

No

Yes

Decision Maker
Agent Creation

Publish service
to yellow page

Send update
request to all

Making
decision

Send finalized update
to ontology agent

Abort update

Agent
killed?

Agent
Terminated

Not agree to update

Agree to update solution

YesNo

Send finalized
update to all

Get possibility
solutions

Wait for
connection

Service
Checking

No
connection

Link
established

Call Logger
(logging all
activities)

Fig. 8. The decision maker agent execution model.

652 P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653

Aut
ho

r's

pe
rs

on
al

co

py

diagrams. The diagrams will help them to have a
clear understanding on what they have proposed
for the solution.

9.3. Solution platform

The solution platform is simply used to reveal a
final solution for the discussion. The solution gets
updated in the ontology repository at this stage.
As the same level with the other two platforms, it
shows the solution as a diagram called the solution
diagram. It could be a UML-like diagram if it is
about UML diagrams.

10. Conclusion and future work

We have described how software engineering
ontology models provide an approach to transform-
ing explicit semantic knowledge to conceptual
knowledge representations and formalise consensus
agreement between project team players to approve
knowledge as the common communication language
and project knowledge across all sites. Also we have
shown work on utilising multiple software agents to
access and manipulate data from ontologies in an
ontology repository and performing reasoning etc.
Simple functions like system authentication and
complex functions like making decisions have also
been carried out by agents. Future work could
aim at identifying ways of how agents aggregate
knowledge from other ontology repositories in net-
worked systems to reconfigure a generic ontology,
which can automatically grow and establish a larger
scale of common communications and domain
knowledge without human intervention. This con-
cept can also extend to a generic ontology that
can self generate and maintain the knowledge.

References

[1] R. Capasso, Keeping Geographically Distributed Develop-
ment Team in Sync. 2000, Rational Software.

[2] J.D. Elder, Multi-Site DIVIMP Development: Some Orga-
nizational Suggestion, University of Toronto Institute for
Aerospace Studies, 1998.

[3] J. Audet, G. Amboise, The multi-site study: an innovative
research methodology, An online journal dedicated to
qualitative research and critical inquiry 6 (2) (2001).

[4] E. Chang et al., Analysis and development methodology for
corporate-wide IS development, in: SCI2003 Orlando, USA,
2003.

[5] A. Crabtree, T. Rodden, S. Benford, Moving with the Times:
IT research and the boundaries of CSCW, Compter Sup-
ported Cooperative Work (CSCW) The Journal of Collab-
orative Computing 14 (3) (2005) 217–251.

[6] E. Carmel, R. Agarwal, Tactical approaches for alleviating
distance in global software development, IEEE Software 18
(2) (2001) 22–29.

[7] A. Mockus, D.M. Weiss, Globalization by chunking:
a quantitative approach, IEEE Software 18 (2) (2001) 30–
37.

[8] A. Repenning et al., Using components for rapid distributed
software development, IEEE Software 18 (2) (2001) 38–
45.

[9] R. Heeks et al., Synching or sinking: global software
outsourcing relationships, IEEE Software 18 (2) (2001)
54–60.

[10] T.R. Gruber, Toward principles for the design of ontologies
used for knowledge sharing, in: International Workshop on
Formal Ontology in Conceptual Analysis and Knowledge
Representation, Kluwer Academic Publishers, Padova, Italy,
Deventer, The Netherlands, 1993.

[11] T.R. Gruber, A translation approach to portable ontology
specification, in: Knowledge Acquisition, 1993.

[12] W. Borst, Construction of Engineering Ontologies, Centre of
Telematica and Information Technology, University of
Tweenty, Enschede, The Netherlands, 1997.

[13] R. Studer, B. VR, D. Fensel, Knowledge Engineering:
Principles and Methods, in: IEEE Transactions on Data
and Knowledge Engineering, 1998.

[14] M. Wooldridge, Introduction to MultiAgent Systems, first
ed., John Wiley & Sons, 2002.

[15] F. Bellifemine, A. Poggi, G. Rimassa, JADE: a FIPA2000
compliant agent development environment, in: The fifth
International Conference on Autonomous Agents, ACM
Press, Montreal, Quebec, Canada, New York, USA, 2001.

[16] F. Bellifemine, JADE Java Agent DEvelopment Framework,
Telecom Italia Lab, Torino, Italy, 2001.

[17] M. Wooldridge, N.R. Jennings, Intelligent agents: theory
and practice, The Knowledge Engineering Review 10 (2)
(1995) 115–152.

P. Wongthongtham et al. / Journal of Systems Architecture 52 (2006) 640–653 653

