
Disambiguating Availability Specification through the use of OWL

Glen Dobson Ian Sommerville
Computing Department

Lancaster University
School of Computer Science

St Andrews University
g.dobson@comp.lancs.ac.uk ifs@dcs.st-and.ac.uk

Abstract

Many Quality of Service (QoS) languages exist.
However, not only do few encompass dependability,
none acknowledge the semantic complexity of the
vocabulary they provide. This paper presents a Quality
of Service ontology which provides not only an
extensible syntax for expressing dependability, but also
rich, well-defined semantics. These semantics avoid
ambiguity and misunderstanding as well as facilitating
translation where possible. To demonstrate these
features, this paper examines in depth how to use our
QoS ontology along with the built-in capabilities of the
Web Ontology Language (OWL) to capture the
semantics of availability.

1. Introduction

In service-based systems there are a number of
stakeholders who wish to express, record and
communicate about Quality of Service (QoS):

• The service provider may wish to advertise

their service QoS to potential customers or
make use of QoS measurements internally for
quality assessment and planning.

• The service integrator may wish to express
their QoS requirements. These may be applied
at the traditional requirements stage of a
development process, or, due to the possibility
of late binding, may be applied at runtime.
Equally the integrator may wish to advertise
the QoS of their application to its potential
users.

• The end user may also wish to express their
QoS requirements.

• Where some guarantee of required QoS levels
being met is desired, an integrator or end user
may wish to negotiate a Service Level
Agreement (SLA) with the provider. A chain
may even be formed where an integrator’s

SLA with their customer depends upon the
SLAs that they have agreed with one or more
providers.

As well as these, many other communications

regarding QoS may need to be performed such as to
initiate and perform measurements, to signal breach of
an SLA, to discover or differentiate services, etc. All of
these tasks require a concrete means of expressing
aspects of QoS.

 Many languages have been developed which
provide a concrete syntax for exactly these purposes
(e.g [1], [2], [3], [4]). However, such languages often
have a focus on performance and efficiency and
therefore fail to encompass the full spectrum of non-
functional properties which may be used to judge
service quality. In particular, few allow the
specification of service dependability – with most
having a general bias towards network performance
characteristics. Moreover, in this paper we demonstrate
that the semantics of service dependability are complex
enough that, in many cases, a concrete syntax is
insufficient to successfully perform the tasks listed
above. Therefore, extending an existing language may
not be a sufficiently powerful solution to fill this gap.

To focus the discussion we concentrate on service
availability in particular. The solution we present
makes use of the Web Ontology Language (OWL) to
provide a QoS ontology, i.e. an extensible vocabulary
for expressing QoS (including dependability) with rich,
well-defined semantics. We demonstrate the
advantages of this solution in terms of accurately
specifying availability metrics and interrelating them.
We also consider how the machine interpretable nature
of OWL makes tasks such as metric conversion and
requirements matching possible.

The paper is structured as follows: in the following
section we look at existing work on QoS specification
languages. In Section 3 we move on to discuss OWL in
order to set the scene for explaining our QoS ontology.
The core of this ontology, which we call QoSOnt, is
the subject of Section 4. Section 5 contains the crux of

our argument - demonstrating the complexity of
expressing availability and how our ontology aids in
this. In Section 6 we draw conclusions and suggest
future directions for this work.

2. QoS Specification Languages

There is a wide range of research which touches
upon Quality of Service specification. At one end of
the spectrum languages suitable for specifying the
requirements of multimedia applications regard QoS as
concerned largely with network performance and
synchronisation issues. At this level, protocols such as
IntServ (Integrated Services) [5], DiffServ
(Differentiated Services) [6] and RSVP (Resource
Reservation Protocol) [7] allow packets in a flow to be
differentiated and prioritised allowing an IP network to
offer levels of service beyond best-effort. These
protocols essentially provide a means to specify
required bandwidth, latency and jitter.

On top of these, languages such as XQoS [1] and
QuAL [2] allow the specification of the QoS
requirements of a multimedia application and
encompass synchronisation of streams. These
application-level specifications can be mapped onto the
underlying QoS protocols mentioned above with the
aim of ensuring that the network meets the
application’s requirements.

In the case of these QoS languages the network is
seen as providing the service of which the quality is
being judged. However, for service-based applications,
the services being consumed are software services. The
quality issues are therefore much wider, including
performance in a broader sense and service
dependability.

QML (Quality Modelling Language) [3] is a
language which allows QoS specification in this
broader sense, although it is not designed with services
in mind specifically – but as a general-purpose means
of describing the QoS properties of software
components. The basic element in a QML specification
is known as a contract. Each contract is of some
specified contract type. The contract type specifies the
dimensions that can be used to specify QoS properties
within some category (e.g performance, availability,
security, timing). The simplified section of QML
below is an example defining a Dependability contract
type with a single dimension (availability), which is a
numeric value where an increasing value indicates
increasing quality. A contract of this type is then
specified (systemAvailability) stating that availability
> 0.9 is required.

type Dependability = contract {

 availability : increasing numeric;
};

systemAvailability = Dependability contract {
 availability > 0.9;
};

In practice the contract is often bound to a software
interface, operation, operation argument or operation
result using the language element known as a profile.
This example shows however, that despite being
generic and extensible enough to encompass
availability, it is only really possible to specify it in a
very shallow way – basically as a bound on a number
about which you know nothing other than its value
(See Section 5 for more discussion of this).

QML also attempts to rigorously define its
semantics and therefore has much in common with our
QoS Ontology. However, it perhaps leaves too much to
be specified by a user, whilst not giving them enough
power to specify everything they should. We seek to
provide foundation layers providing common
conceptual building blocks to minimise user effort,
whilst maximising expressivity. Also, by seeking to
make use of semantic web technologies we enable
much closer integration with the web services for
which QoS is being specified.

On this note it is worth questioning what QoS
specification technologies exist in the field of web
services. WSLA [4] is an XML-based specification
language for (Web) Service Level Agreements (SLAs).
A section of WSLA might look like:

<Expression>
 <Predicate xsi:type="Less">
 <SLAParameter>Availability</SLAParameter>
 <Value>0.9</Value>
 </Predicate>
</Expression>

Again, this expression could be tied to a particular
operation (through the service’s WSDL). A great deal
of other detail is also missing from this snippet. For
instance, for each QoS parameter a metric is defined
and for each metric a Measurement Directive is
specified. This is a step in the right direction in terms
of providing sufficient detail in the specification of a
given attribute (compared to, e.g. QML). However
WSLA only applies to SLA specification and therefore
cannot be easily applied to the other tasks mentioned in
the introduction. It also remains difficult to interrelate
metrics.

In this section we noted the need for a QoS
specification language with richer semantics than
existing ones provide. To create something like this, a
descriptive meta-language with its own formal

semantics is highly desirable. In the next section we
discuss a language which is exactly this: the Web
Ontology Language (OWL).

3. OWL

An ontology is a machine interpretable description
of the terms which exist in some domain and the
relationships between them. The aim of an ontology is
to give machines some depth of domain
“understanding” beyond the syntactic. The degree to
which this is achieved depends upon success in
eliciting domain knowledge and representing it in some
formal way. Numerous ontology languages have
developed to facilitate such formal description, of
which OWL is a relatively new example. Its emphasis
is on providing a way of distributing and sharing
ontologies via the web.

To this end, OWL is built upon RDF (the
Resource Description Framework) [8]. RDF is an
XML (eXtensible Markup Language) [9] vocabulary
for describing resources on the web, and as such has
certain commonalities with ontology languages.
Statements about resources in RDF are expressed using
triples, which consist of:

• The resource being described (the subject)
• The specific property (the predicate)
• The value of that property for that resource

(the object)

RDF vocabularies can be specified using RDF

Schema (RDFS). The chief concepts introduced for
this purpose are Classes (i.e. the types of things which
can be described) and their Properties. OWL builds
upon RDF and RDFS to add a greater level of
expressivity and machine interpretability as well as
providing formal semantics for the language. It gains
from RDF the ability to distribute an ontology across
many systems (as resources are identified and accessed
by URI).

An OWL ontology consists of Classes and their
Properties. Instances of OWL Classes are called
Individuals. OWL Individuals are very much like
resources described using RDF although they may
have further OWL-specific facts expressed about them
- namely:

• That the URI indicated and some other URI

actually refer to the same Individual (the
OWL sameAs construct)

• That the URI indicated and some other URI
do not refer to the same Individual (the OWL
DifferentFrom construct)

• That each URI in a specified list refers to a
different Individual (the OWL AllDifferent
construct)

An OWL Class is a specialisation of RDFS Class,

which can be specified in new ways beyond simply
stating its name. These added means of class
description are:

• Enumeration of all Class members (i.e. OWL

Individuals) using the OWL oneOf construct.
• As an anonymous Class of all Individuals that

satisfy a Property restriction using the various
OWL value and cardinality constraint
constructs: allValuesFrom (!),
someValuesFrom ("), hasValue,
maxCardinality, minCardinality, cardinality

• By combining existing Classes using set
operators (the OWL intersectionOf (#),
unionOf ($), and complementOf (¬)
constructs)

These Class descriptions can be nested to create

arbitrarily complex new descriptions. Descriptions can
then be combined into a Class definition using the
OWL subClassOf (%), equivalentClass (&) and
disjointWith constructs. The Class definition specifies
all of the necessary and/or sufficient conditions for
Individuals to be members of a Class. A Class can
therefore be viewed as defining a set of individuals (the
class extension).

A key feature of OWL is that it takes the form of a
Description Logic (DL) [10] and therefore has formally
stated semantics. A Description Logic is a logic that
focuses on concept descriptions as a means of
knowledge representation and has semantics which can
be translated to first-order predicate logic. Some of the
DL notations for various OWL constructs are shown in
parentheses above. The nature of DLs means that
classification, subsumption and satisfiability can be
automatically computed by a reasoner. OWL can be
seen as a trade-off between expressivity and
decidability. In this context decidable means that
inference algorithms exists for the language and are
known to terminate.

In DL reasoning, an open world assumption is
made. This means that no assumptions are made about
anything which is not asserted explicitly. This contrasts
with the closed world assumption used in data
modeling, where anything unstated is taken to be false.

4. The QoS Ontology

Our QoS Ontology (QoSOnt) [11] should be
regarded as an “upper ontology” for QoS. That is, its
aim is to provide the definition of the general concepts
of QoS without reference to any particular domain.
These general concepts can then act as a common
foundation for describing particular QoS attributes,
metrics, etc. (i.e. for building one’s own QoS
vocabulary). QoSOnt was developed by a process of
examining existing QoS specification languages [12]
and represents many of the commonalities found.

From Section 3 one can see that an OWL ontology
consists of a group of Class (or concept) descriptions
which are reducible to predicate logic; a set of
combinatorial statements defining new Classes from
existing Classes (i.e. set operations); and a Class
hierarchy (or taxonomy). The asserted taxonomy is
formed from the use of the subClass construct
explicitly stated in the OWL, however a reasoner might
infer a different hierarchy based upon the properties of
a given Class. What this means is that, as long as you
have stated the relevant properties the reasoner can be
left to deal with classification where necessary.

The core of QoSOnt, from a taxonomical point of
view, consists of two hierarchies – one rooted at the
Class QoSAttribute and one rooted at the Class
QoSMetric (See Figure 1). Many actual attributes
would populate a complete hierarchy. Here we only
show Availability as it is the focus of this paper. The
same is true of metrics. Here, we show
DowntimeHistory as an example.

Figure 1. Core QoSOnt Classes

These two hierarchies are joined together by an

OWL ObjectProperty (a binary relation between
Classes) named hasMetric. The subclass
MeasurableQoSAttribute of QoSAttribute is

specifically defined in terms of this property as
MeasurableQoSAttribute & QoSAttribute #
!hasMetric.QoSMetric # "hasMetric.QoSMetric
(remembering that the ", and ! restrictions essentially
define anonymous Classes in OWL). In OWL
RDF/XML syntax this looks like:

<owl:Class rdf:ID="MeasurableQoSAttribute">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#QoSAttribute"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasMetric"/>
 <owl:allValuesFrom rdf:resource="#QoSMetric"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasMetric"/>
 <owl:someValuesFrom rdf:resource="#QoSMetric"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>

This gives some indication that, for human-to-
human communication of OWL, the DL notation is
more succinct and readable (once understood).
Therefore no more RDF/XML shall be presented here.
This example also shows that semantic rigour comes at
the cost of brevity and simplicity.

We highlight the MeasurableQoSAttribute in
particular as for most applications it is important that
there is an unambiguous way of measuring a specified
QoS attribute. The aim of the above definition is to
state that a MeasurableQoSAttribute is any
QoSAttribute where all metrics are QoSMetrics and
there is at least one of these (i.e. there exists at least
one metric which is a QoSMetric). If not constrained
any ObjectProperty in OWL can have zero or more
values in any given Individual.

A QoSMetric is essentially defined as having a
numerical value, or alternatively a
QoSMetricComplexValue. The latter allows for
arbitrarily complex values to be defined using OWL.
For instance the example metric in Figure 1 is intended
to model the case when a provider may simply
advertise their complete history of downtime and no
other metric. This would require the use of a
QoSMetricComplexValue rather than a single number.

 This situation is depicted in a simplified form in
Figure 1 by the box “Value”. Where a simple value is
used, a unit can be associated with it. It is useful, e.g. if
you are stating Mean Time to Repair to know what
units of time you are using. In fact we define our own
time ontology since relating concepts of time is such a
pervasive issue in QoS. An acceptability direction

QoSMetric

QoSAttribute

MeasurableQoSAttribute

is a has a

Availability

is a

UnitValue

has a

DowntimeHistory

is a

has a

(equivalent to increasing/decreasing in QML) can also
be associated with a QoSMetric Class, which would
indicate to somebody unfamiliar with the metric
whether a higher or lower value was better. The issue
of non-linear variance of quality where a “sweet spot”
may exist is not yet handled.

In the original version of the ontology we also have
ConversionRate classes which can be used for
conversion purposes when specifications are stated in
different units. However, these rely on associating
some external meaning with the Class in question,
which is not the aim of an ontology. As an alternative,
we have found that the Semantic Web Rules Language
(SWRL) [13] allows us to explicitly state the semantics
of conversion, as it adds built-in arithmetic functions
as well as implication.

On top of QoSOnt we have also created a
dependability ontology based upon the IFIP Working
Group 10.4 taxonomy [14]. This provides the general
concepts for describing dependability. Full descriptions
of particular attributes of dependability (i.e. reliability,
availability, security) should be provided at another
layer still. In Section 5 we begin to demonstrate how to
do this for availability in particular. On top of these it
is still expected that many people will have their own
vocabularies and their own metrics in particular.
However, one reason for creating an ontology for a
particular attribute is to allow the concepts that metrics
of that attribute refer to, to be defined. For instance, the
concept "failure" comes in useful in order to define
Probability of Failure on Demand (POFOD) and
allows POFOD to be defined for specific types of
failure rather than just referring to failure in some more
nebulous way.

As an example of the advantages of the formal
semantics of OWL – consider the task of matching a
QoS requirement on some metric to that advertised by
a provider or QoS monitor. A QoS requirement might
take the form: !"#$%&"'()*%+*,%+%-./0 /123"()*%+*,%+%-.4"-&%5/
6 /7 8*9:*+$";!"#$%&"':*+$"!*<=";/This could be read as
RequiredAvailability is anything that is a
SomeAvailabilityMetric and also has all values in the
required value range. This range is actually stated as a
custom XML datatype in practice (i.e. by restricting
the range of a built-in XML datatype). An
advertisement essentially takes the same form (replace
“required” with “advertised” in the above piece of DL
notation). It can be seen that checking whether a
requirement is met by an advert is simply a case of
checking whether RequiredAvailability is a subclass of
AdvertisedAvailability, which can be answered by a
reasoner. The nature of requirements matching remains
the same with complex values although the class
descriptions involved will become more complicated.

5. The Semantics of Availability

The basic problem our work highlights with
existing QoS languages is that they make use of fixed
syntactic tokens to represent complex concepts. For
instance there may be a single token for availability as
in the QML given in Section 2. There is an obvious
difficulty with this: the attribute availability may be
measured in many ways. The first level of distinction
necessary is therefore between a dependability attribute
and a specific metric of that attribute. As discussed in
the previous section this distinction is provided by
QoSOnt.

The next, and perhaps the most important, level of
distinction required is precisely what availability
metric is being used. Generally, if only a single token
exists for availability in a language then it is taken to
refer to the ratio uptime/(uptime + downtime).
However, without knowing something more about it,
this ratio may be meaningless. In the worst case one
may misunderstand the meaning of the specified
availability metric entirely and it may not be a ratio at
all – but, for instance a probability distribution. In
specifying an ontology for availability based upon
QoSOnt we seek to avoid this ambiguity, whilst also
providing a richer availability vocabulary. The
following subsections highlight various aspects of the
semantics of this vocabulary before an OWL model of
availability is presented at the end of the section.

5.1. Temporal Issues

One key piece of information missing from the

simple ratio approach to stating availability is the
period over which it was calculated. One would
normally assume that it represented availability over
the lifetime of the system – but it is not obvious that
this will always be the case. Depending on the exact
period measured how useful it is as an indicator of
current (and future) availability will vary. If the period
over which availability was measured was a long time
ago, or only represents a very short period of time then
there can be little confidence in the figure as an
indicator.

The temporal pattern of downtime to uptime is also
important to most customers – but is completely lost
by stating availability as a ratio. For instance, the ratio
0.98 might mean that out of a whole year, the service
has only been down for a week. If this week was in a
contiguous period, and the customer only wishes to
perform a relatively short operation (in the order of
seconds or minutes) then this could potentially indicate
to them a lower risk. On the other hand if the 0.98

indicated a downtime of a second out of every minute
then this would appear more risky. If the customer’s
operation was to take longer than a minute then this
can certainly be seen to be the case, as a downtime
could be expected to occur during every service call.

In any usage scenario it would always be useful to
know of planned downtimes (or risk periods). If the
customer is making a single service call and it falls in a
planned downtime period then they can effectively
regard availability for that service as zero. In a more
common situation, a customer will know the likely
pattern of service usage. If a high proportion of this
usage falls in planned downtimes or “at risk” periods
this will significantly change the availability the
customer perceives. Another use of this planned
downtime information might be to anticipate the need
to switch to a backup service.

5.2. Measurement Issues

From different viewpoints, the way in which

downtime can be measured also differs. For a party
other than the provider to measure downtime it must
perform some kind of regular health check. The nature
of these health checks is of interest – e.g. is it a ping,
an attempted HTTP connection, a genuine call to a
service operation or some more indicative suite of test
calls? Also relevant is how frequently this health check
is performed (indeed it may not be done regularly, but
at some irregular time such as in the process of
performing a normal service call).

Even if the provider is stating their own availability
(ignoring the issue of why they should be trusted to do
so) then it is worth questioning how they are
distinguishing downtime from uptime. If it is based
upon based upon human observation then it may not be
entirely accurate, whereas if it is based upon, e.g.
server logs, it might be more so.

On the other hand, this brings up a further issue
about stating availability – stating server downtime
does not give the entire picture with regards to service
availability. Even whilst the web or application server
appears to be up the module specific to web services
may have failed. For instance if a provider is running
Apache Axis on top of Apache Tomcat then they may
make a configuration change which breaks Axis (the
SOAP implementation), whilst Tomcat still runs OK.
Further to this, the service implementation itself may
become unavailable due to some fault in its
implementation, change of configuration, etc.

From a customer’s point of view the situation is
even more complicated as the provider or QoS monitor
is unlikely to be able to tell them anything about the
availability of the network intervening between the
client and service – yet in terms of specifying the

availability of an entire system this might be important
to the customer. This is also one reason one must be
wary about the reports of availability from third parties
(i.e. QoS monitors). If they are including network
failures in their availability measurement then this will
not be particularly indicative of the availability that
will be achieved at a different location on the Internet.
In the ideal world it would therefore be nice to separate
out availability into a network, server hardware, server
software, and a service implementation part. There
seems to be no widely adopted solution to separate the
network and server-side components of availability out
from a third-party point of view however, and it may
be argued that it is only the aggregate figure of service
availability which will ever be useful anyway. On the
other hand, by not stating explicitly what part/s of a
system the availability stated refers to, a provider could
be misleading a customer.

Taking this granularity argument further, it may be
useful in some cases to state availability of a given
operation. For instance, a service may make use of an
unreliable subsystem (be it a database backend, some
mechanical control system, or whatever). The
availability of operations which make use of the
unreliable subsystem may vary from those which do
not. The variance may perhaps be more obvious if one
pictures some unreliable control system. Again, it is
hard to see this fine granularity being used in practice –
but to be able to state this level of granularity should
perhaps be available in a complete specification
vocabulary.

5.3. Adding Availability Concepts to QoSOnt

Sections 5.1 and 5.2 highlighted the following
requirements about what should be specifiable for
availability metrics:

• The period of measurement.
• The actual downtime periods.
• Planned downtime periods.
• The party responsible for the measurement.
• The method of measurement

o Including timing of health checks
where relevant

• The system component/s that the
measurement applies to.

Note that, at this stage, no attempt has been made to

investigate the availability metrics people use in
practice beyond noting that the ratio method (how
much of a given time period is uptime) is widely used.
We have named this class of metric
ProportionOfUptime for want of a more succinct

description. Given the temporal issues mentioned in
section 5.1 we suggest just one more broad class of
“metric”, which may in fact not be regarded as a metric
at all. We introduce the DowntimeHistory as a means
of supplying all downtime data without summarising it.
The reason we introduce this in particular is that this
could then be used to infer the values of other more
specific metrics which do summarise the data.

A UML sketch of the structure of our availability
ontology is shown in Figure 2. This is an overview of
some of the relevant taxonomical and relational aspects
of the ontology (the logical Class definitions are not
shown).

To QoSMetric we have added the property
measuredBy to indicate who measured it. We have
added it at this generic level as it could be of interest
for any metric, and this does not make the use of this
property obligatory. AvailabilityMetric is defined as a
convenience Class, allowing the options of defining
planned downtimes, how downtime is distinguished
from uptime, and the time interval over which this
metric was computed. This means that we have nothing
to further distinguish the ProportionOfUptime Class
other than its restriction to have only decimal (or float
or double) values.

Figure 2. Classes in the Availability Ontology

Note that the PlannedDownTimes Class is shown as
a subclass of DownTimeHistory. The information
missing from the diagram is the Class definition:
>+*<<"'?2@<-%3"9/ 0 / ?2@<A%3"B%9-2&./ 6 /
7 8*9?2@<-%3";>+*<<"'?2@<-%3", where >+*<<"'?2@<-%3"/
0 / ?2@<A%3"/ 6 / 7 %9>+*<<"';-&$", i.e. a
PlannedDownTimes is any DownTimeHistory
containing only planned downtimes.
DownTimeHistory is defined such that there must be at
least one Downtime listed – but is essentially an
Interval (of time) that can be labelled as either planned
or not planned.

The Interval, Duration and Instant classes come
from the OWL-Time ontology [15] (to which we add

only a few extensions to allow us to represent extra
time units). One advantage of using this ontology is the
formal definition of the notions of temporal relations,
e.g. before, after, and for intervals: overlapped-by,
contains. We envision that together with a rules
language such as SWRL [13] this would give a good
basis for evaluating indicators of the effective
availability a service might offer in practice, by e.g
comparing a customer’s usage intervals with planned
down time intervals. Similarly one can imagine rules
being written to translate from the complete
DownTimeHistory to some specific summary metric,
including the ProportionOfUptime.

We have not gone into the level of describing health
tests or other downtime indicators in detail. A health
test may either be periodic (i.e. regular). Specific
subclasses of this might be Ping or other heartbeat-type
tests. The health tests may also occur sporadically.
This is specified by stating the test times as an OWL-
Time Instant. This applies in the situation where, e.g.
the health tests are performed whilst proxying actual
service calls (and therefore at unpredictable times).

The one thing missing from this picture is the
indication of which system component/s the metric is
relevant to. The reason this is not shown here is that
this is a feature that can be achieved through the use of
the concepts in the core QoSOnt ontology. Here,
metrics may be associated with system components
through the use of other Ontologies. For instance,
metrics can be associated with web services by making
use of the OWL-S ontology [16] – an ontology for
service specification. There are facilities in QoSOnt
which provide this link (a lightweight Service ontology
provides the linkage layer). For an example of this see
[11].

6. Conclusion and Future Work

In this paper we have discussed the shortcomings of
existing QoS languages, firstly with regards to their
lack of coverage of dependability, and primarily with
regards to their lack of semantic depth. Our work uses
OWL to explicitly describe the semantics of
dependability. OWL’s formally defined semantics
(reducible to fragments of predicate logic) lead to
unambiguous meaning, whilst providing a framework
for describing the domain in question. No attempt is
made to relate the ontology to details of providing the
levels of QoS specified, which itself is an open
research area.

In previous papers we have detailed the QoSOnt
ontology, i.e. that providing the basic concepts of QoS
and dependability. Here, by concentrating on
availability we have shown how to build upon this

ontology to describe metrics in greater detail. We have
provided one particular availability vocabulary which
we by no means regard as exhaustive – but in doing so
have demonstrated the concepts of extending QoSOnt
and perhaps provided a number of building blocks for
other availability vocabularies.

Given that OWL is a logic-based language, with a
somewhat obscure syntax (partly due to its
concentration on machine interpretability) it cannot be
expected that there will be many experts in a position
to extend upon QoSOnt as we describe here. Therefore,
a future direction of this work is to provide an interface
for non-experts to define their own dependability
vocabulary. This should insulate them entirely from the
details of OWL if possible. Such a tool, along with the
ontology should provide an excellent framework to
develop a widely usable set of QoS vocabularies which
are easily translated and interrelated. We see this as a
key to enabling QoS in service-centric systems due to
the inevitable involvement in such systems of multiple
organisations.

7. Acknowledgements

This work is funded as part of the Service Centric
Systems Engineering (SeCSE) EU Integrated Project
511680. With regards to the initial work on QoSOnt
the authors also acknowledge the support of EPSRC
award no. GR/S04642/01, Dependable, Service-centric
Grid Computing; and particularly the initial
contribution of Russell Lock to the ontology.

8. References

[1] Ernesto Exposito et al, “XML QoS specification language
for enhancing communication services”, in Proceedings of
the 15th International Conference on Computer
Communication, pp. 76-90, 2002

[2] Patrícia Gomes, Soares Florissi, “Quality of Service
Management Automation in Integrated Distributed Systems”,
in Proceedings of the Conference of the Centre for Advanced
Studies on Collaborative Research, p. 18, 1994

[3] Svend Frolund, Jari Koisten, “QML: A Language for
Quality of Service Specification”, HP Labs Technical Report,
http://www.hpl.hp.com/techreports/98/HPL-98-10.html,
1998

[4] Alexander Keller, Heiko Ludwig, “The WSLA
Framework: Specifying and Monitoring Service Level
Agreements for Web Services”, in the Journal of Network
and Systems Management, vol. 11, No. 1, pp. 57-81, 2003

[5] R. Braden, D. Clark, S. Shenker, “Integrated Services in
the Internet Architecture: an Overview” (IETF RFC1633),
http://www.ietf.org/rfc/rfc1633.txt, 1994

[6] K. Nichols, S. Blake, F. Baker, D. Black, “Definition of
the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers“ (IETF RFC2474),
http://www.ietf.org/rfc/rfc2474.txt, 1998

[7] L. Zhang,S. Berson, S. Herzog, S. Jamin, “Resource
ReSerVation Protocol (RSVP) - Version 1 Functional
Specification” (IETF RFC2205),
ftp://ftp.isi.edu/in-notes/rfc2205.txt, 1997

[8] W3C, “Resource Description Framework”,
http://www.w3.org/RDF/

[9] W3C, “Extensible Markup Language (XML)“,
http://www.w3.org/XML/

[10] Franz Baader, Ian Horrocks, and Ulrike Sattler,
“Description logics for the semantic web”, in Künstliche
Intelligenz, Vol. 16, No. 4, pp. 57-59, 2002

[11] Glen Dobson, Russell Lock, Ian Sommerville, “QoSOnt:
a QoS Ontology for Service-Centric Systems”, 31st
Euromicro Conference on Software Engineering and
Advanced Applications, pp. 80-87, 2005

[12] Glen Dobson, "Quality of Service in Service-Oriented
Architectures”, http://digs.sourceforge.net/papers/qos.pdf

[13] Ian Horrocks et al, “SWRL: A Semantic Web Rule
Language Combining OWL and RuleML”, W3C Member
Submission, http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/, 2004

[14] Jean-Claude-Laprie, Brian Randell, Carl Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing”, in IEEE Transactions on Dependable & Secure
Computing. Vol. 1, No. 1, pp. 11-33, 2004

[15] Jerry R. Hobbs, Feng Pan, “An Ontology of Time for
the Semantic Web”. In ACM Transactions on Asian
Language Processing (TALIP): Special issue on Temporal
Information Processing, Vol. 3, No. 1, pp. 66-85, 2004

[16] DAML, “DAML Services”,
http://www.daml.org/services/owl-s

