
deployment

Abstract: Viewpoint oriented verification and
validation (VOCAL) is a novel technique for the
identification and application of a structured life-
cycle based software testing process to a broad
array of systems. Application of the technique
can be specfically tailored to embedded,
interactive and multimedia applications, as well
as those systems requiring a well defined
approach in the quality assurance process. The
authors introduce an approach for performance
enhancement during the testing process. Problems
faced uhen construct ing solware systems in t ime-
constrained, market-driven development processes
are highlighted. Emphasis is given to test process
improvements by stressing sorne of the 'failures'

encountered when using traditional test models.
Traditionally, testing follows the stages of specify,
develop, test and release in a standard waterfall
based approach. The use of viewpoints will be
introduced as a technique for structuring,
identification, organisation and deployment of
test infomation. Finally, the method is illustrated
with a small example using a bank ATM
machine. In conclusion, the authors evaluate
VOCAL" and outline areas of future work.

1 lntroduction

Cuts in development time and the imposition of tight
deadlines between project initiation and release have
become commonplace during system development.
Companies know that they must be first to market a
new product, or the first to release an enhanced version
mirroring a competitor's product, thus retaining their
existing customer base [1]. Furthernore, it is not only
tight deadlines that pose problems, but also the notion
that the finished product must be reliable, responsite
and easy to learn and r.ise, whilst providing customer
satisfaction through use of the product. Testing, there-
fore, is not just the pfocess of looking for defects, but
also that of judging quality and validating products
with customers' personal requirements.

o IEE, 1997
IEE Prcceedings online no. 199'71(43
Paper first rcceived 3rd June and in revised form 16th September 1997
The autho$ a-re with the Co-operatrve Systems Engineering Gmup
(CSEG), Department ol Computing, I-ancaster University, Lancaster
LAl 4YR, UK

IEE Proc.-So/i||. Ens, Vol. 114, No. 5 6, Octohet Decenbet t997

VOCAL: A framework for test identification and

D. Pemberton
l . Som merv i l le

ln,Lr'n,'r,rm.: t,nA,rtian. l/,liJ,rton. Soltuart te,tne. QLnli^ a,.uton,p vipwront, Soh\ar develo1me litb.t,L tcttn4
T,area6ilnl. Iuteubilitl ,. upit s I iavpoit'l nfumltui n-,tpptig. |,.t proc?* nbd?llinl i'lultqle rev per'pecrite"

As development practices are changing, so must test-
ing practice. It is no longer leasible to build a product
from the ground up. Reuse of existing code, especially
through component libraries, is increasing as a stand-
ard method of improving productivity [21. Testing
needs to embrace reuse by the capture and creation of
distributable, reusable test specifications.

Releasing a product ahead of competition, meeting
customer requirements, and ensuring that code is relia-
ble, requires a carefully stlxctured verification and vali-
dation (V&V) approach. We propose a method based
around life-cycle testing viewpoints, guiding expertise
and test identification to achieve these goals.

Viewpoints can be considered as a set of test process
perspectives. Typically, we can observe three such per-
spectives during V&Y:
(r) A development perspectbe, that focuses on defect
detection and removal, system performance and relia-
bility.
(n) A customer perspective, foqusrng on robustness, usa-
b i l i t l and conformance wi th ' rea l ' requi rements.
(lll) An organisational perspective, dealing with sched-
ule, cost, standards and conformance with the captured
specification.

There is a clear relationship between requirements
viewpoints [3 7] and test viewpoints. Both are con-
cerned with understanding a system by looking at its
services and constraints whilst identifying and resolving
relationships between perspectives. Test, like require-
ments viewpoints, reflect stakeholder needs by the
organisation and separation of concerns. Requirements
viewpoints that specifically deal with end-user perspec-
tives are particularly valuable during validation
because they are available lrom the project's outset.
Similarly, requirements viewpoints that consider inter-
facing with external systems are valuable to system
testers lbr the same reason. Non-functional constraints
placed on requirements filter through to the production
of the quality specification, thus providing a base for
assessing product quality.

2 Revising approaches to testing

Traditionally, testing has been seen as a single phase,
or step, in the life-cycle; that is, errors, coded into pro-
grams, are detected and corrected. For example, to
quote Myers [8],

'[software testing is] ... the process of
executing a program or system with the intent of find-
ing errors', typifles the traditional narrow view of veri-
Ilcation. The definition appears to imply that

249

verification is, in itself, limited to executing a program
and checking results produced against some form of
expected output (program specification). Such a
restricted view does not aid location and removal of
specification errors, and cannot properly validate a
product against customer needs, requirements and
expectations of quality. Our preferred dehnition of
software testing has been proposed by Hetzel [9]:

'...

the process of establishing confidence that a program
or system does what it is supposed to do.'This implies
that tests take into account user requirements together
with the broad based remit of correctness.

There have been some previous attempts to define
testing as a life-cycle activity, such as the approach
proposed by Perry [0]. Other work in the area of test-
ing matudty assessment I l] has come some way to
characterising the goals and objectives required for life-
cycle testing, although without defining a framework to
implement this. Burnstein et al. 11.11, states that a test-
ing process model should be acceptable to the software
development community, and based around agreed
software engineering principles and practices, whilst
remaining industrially practicable. Our proposed solu-
tion addresses these problems through the construction
of an integrated test and quality assessment process
applicable throughout software development. VOCAL
and its use of test viewpoints assists the creation of well
planned and clearly defined test life-cycle policies that
can be used and reused throughout an organisation.

The verification point of view, popularly described
by Boehm [2], states: 'Are we building the product
right?' (i.e. assessment of product-to-specification con-
formance); Boehm also describes validation succinctly
as'Are we building the right product?'(i.e. assessment
of user-to-specification conformance). These two views,
linked to stakeholder perspectives, add program cor-
rectness and stakeholder involvement issues" resoec-
l ive ly . to dere lopment . Ver i f icar ion is . rhere lore, the
procedure of checking the product against its specified
requirements. Validation, on the other hand, is con-
cerned with checking the specified requirements against
their originators, being the system stakeholders, and
ultimately the users of the product.

Some studies [3, 14] have gone to great lengths to
make a point of stressing the costs of poorly forrnu-
lated, untested requirements. They suggest that errors
at the front-end of the life-cycle are the most numerous
in software systems, and on average as many as 640lo of
all faults are attributable to specification and design
defects. With only 34ok of faults being attributable to
coding errors, it can be seen that improving front-end
delect detection will reap a large benefit in overall cor-
rectness and reliability. Defects undiscovered at their
point of injection increase project cost with the time
dilference between fault insertion and detection. Perry
[0] describes a four-fold cost increase through late
lault identification. Therefore, it becomes paramount
that we do not limit test activities to verihcation of the
executable system. A great deal of cost benefit will be
gained from an approach taking into account static
front-end teview as well as dynamic testing.

Stakeholder views are important sources of quality
information. According to Rhenman u5l:

'[Stakehold-

ers are] ... the individuals or groups dependent on the
company for the realisation of their personal goals and
on whom the company is dependent for its existence'.
It is because of the stakeholder associated view of oual-

250

ity that we use the tems 'verification' and 'validation'
lbr the process rather than 'testing' to indicate the wide
life-cycle view of defect detection. Such a process is
more than applying some form of test data selection
technique like white or black box testing [16, 17] to
achieve a specific level of code (white box), or require-
ments (black box) coverage. The process actively
rnvolves system usels.

A final point concerns the importance of structured
quality checks throughout development. Technologies,
like the Internet, introduce many nonfunctional
attributes. Future Internet applications may include
home shopping and video-on-demand services. Look-
ing more closely at a video-on-demand service, impor-
tant nonfunctional attributes include reliabilitv and
per formance considerar ions. I f these at t r ibute: a ie not
verified so that they meet a specified minirnum stand-
ard, then the final production version of the applica-
tion software may sufler from dropped and corrupted
frames in the transmission, and a poor quality of serv-
ice. This is clearly unacceptable if a customer is
charged for the service. Such problems may only occur
under specific network load conditions. Therefore, we
must find a congestion limit, and ensure that it will
never be exceeded during normal operational use. A
similar violation of non-functional requirements
(NFRs) could arise in home shopping where customer
credit card details are fraudulently captured due to
inadequate security measures.

Having now identihed the three classes of software
test procadures (namely, verihcation, validation and
quality assurance) we can move on to define a more
structured testing approach by encapsulating and
applying the procedures via interacting viewpoints.

3 VOCAL viewpoints

The idea of using multiple, explicit, viewpoints initially
originated in CORE [6], and has been incorporated in
later work on requirements engineering by Finkelstein
[4], among others. Easterbrook has also encompassed
viewpoints in his work at NASA's independent V&V
facility during the WHERE project [Note 1]. Here
viewpoints are used to manage requirements evolution.
They trace how changes affect design objects and test
cases.

Viewpoints arise from the need to represent chunks
of a specification in a particular shareable representa-
tion and style. Viewpoints have been described [5] as
arising lrom the need to include many agents'diverse
perspectives in software processes. Each agent tends to
have a different, incomplete view of the system they are
modelling making a viewpoint the combination of the
agent and their outlook.

Viewpoint oriented test planning is based on the
notion of testing a system from dilferent stakeholder
perspectives. These stakeholder perspectives, or groups
of stakeholders, are represented by viewpoints. Each
viewpoint encapsulates information such as viewpoint
scope in relation to the product, test specifications rele-
vant to the vie*point, and traceable links to other
viewpoints. In short, applying viewpoints to testing
involves constructing a test plan by combination of test
specifications across viewpoints. While this is in
progress, any redundant tests discovered across view-

Note l: Futher infonnation on WHERE can be found at hitp://research.
iw.nasa. gov/projects,^ 4{ERE/

IEE Ptac.-Sofitr. Ens., Vol. 111, No.5-6, O(tobeFDecembet 1997

points are removed. DetecLed conflicts of concerns also
need to be resolved. Conflicts imply a different under-
standing of system requirements from separate perspec-
tives. Viewpoints improve the coverage of system tests
by reducing the chances that important attributes are
not considered.

As an example, testing viewpoints may be concerned
with quality assurance, helping to ensure that usability,
efficiency and reliability issues are considered through-
out development via a program of continuous assess-
ment. Additionally, viewpoints may be introduced for
customer evaluation with a specific group of users.
Other possible uses for viewpoints include system inte-
gration and compatibility viewpoints for use with, say,
an external database system or viewpoints focused on
defect detection and removal in a software module.
Therefore, viewpoints support complexity control, sep-
aration of concerns and distribution of work among
participants; they are also independent of any particu-
lar method or notation.

As with any methodology there are strengths and
weaknesses when using viewpoints. The major weak-
ness is the amount of information that can be produced
by such an approach, sometimes called viewpoint
explosion. Therefore any technique utilising viewpoints
requires careful management to ensure that this does
not occur. Prototype support tools [18] consisting of a
viewpoint test case browser to assist information man-

Table 1: Generic VOCAL viewpoint template

agement are under construction thus helping to avoid
such pitfalls.

3.1 VOCAL viewpoint notation
A viewpoint contains partial development process
knowledge. This knowledge has a source (the viewpoint
specifier), and is associated with a particular agent or
tole (test perspective). Viewpoints contain a number of
information holding slots [3, 4, l9]. Collectively slots
are grouped into viewpoint templates. Table 1
describes the generic viewpoint slots that occur in all
VOCAL viewpoint templates. When a viewpoint is
instantiated, appropriate slots are filled in.

Traceability is an important feature in VOCAL as it
allows linking of related information. Hence, users of
the method are able to cross-reference test cases to test
specifications; also, when necessaryr users can link
those test cases to other related viewpoints. A traceabil-
ity link can result from three different relations:
(1) Interviewpoint truceability occurs when it is neces-
sary to link information between different viewpoints.
For example, a link between a quality viewpoint, and a
functional viewpoint.
(ir) Intraviewpoint traceability occurs when information
is linked between slots of the same viewpoint. For
example, a particular section of the test plan will be
intratraceable to a test specification defining the work.

Viewpoint slot Slot contents Rationale

Viewpoint type

Style

Defines the class of viewpoint under consideration in the Each viewpoint needs to define;tself in rerms
of i ts core class. A VOCAL viewpoint must be
one of these types.

Test style is ref lected in the information
holding content of the test plan slots. Test style
defines the cri terion to which test information
i s se lec ted t o ach ieve ' cove rage 'o f t he
associated intra traceable test specif icat ion
slot.

ln most cases i t is necessary to restr ict a view
point to a subset of the rest of the system, or a
part icular stage in the l i fe-cycle.

Test concerns must be clearly and accurately
defined sothatthere is a consistenl base totest
agarnst.

This is the test information that is to be carr ied
out on behalf of the viewpoint authorls) by the
viewpoint testerls).
This is a record of test progress. Test out,
comes, i ,e. pass, fai l (inc. severity rat ing), or not
yet executed, are also recorded here
Somebody must be responsible for viewpoint
management, and resolut ion of changes to
ensure that both inter, and intra viewpoint
consistency is maintained.

People must be assigned to test cases. This slot
maps teslers onto groups oI tesl cases.
Traceabil i ty is importanl as i t provides a way to
ensure that al l requirements have a set oJ
defined test cases l intraviewpoint traceabil i ty),
and that consistency checking is clear (al l inter
traceabil i ty defined).

template. Types include group (organisational) viewpoints, and
those concerning veri f icat ion, val idation and quali ty (see Fig. 1)
The test notat ion used by the viewpoint. This is selected
according to the process model of the viewpoint. For example,
a qual i ty viewpoint may be represented by a qual i ty inspection
template; usabil i ty may concern interface design consistency,
or usabil i ty evaluation; black box test ing styles may include
equivalence parit ioning, boundary value analysis, etc.; developer
test styles may include desk checking, peer review, coding
standards, walkthroughs, intuit ive test ing, etc.
Concerns viewpoint scope. For example, a qual i ty viewpoint
such as rel iabi l i ty appl ies throughout the l i fe cycle, whereas
reusabil i ty need only be considered in des;gn. and
implementation phases. This helps to focus activi ty on areas of
the product that wi l l gain most benefi t from the viewpoint.
Defines test req u irements, i .e. what must be tested. The test pla n
defines how, according to the selected style of test ing.

Detai ls test cases associated (intratraceable) to the relevant
section of the test specif icat ion.

The currenl status of the test plan, and historical information of
past work carr ied out.

G;ves detai ls of the owner of the viewpoint (i .e. the test
specif ier). They are also responsible for change requests to the
viewpoint specif icat ion and test cases.

Detai ls the individual(sl assigned under this role to execute
the test plan.

Inter, intra and temporaltraceabil i ty is stored in this slot. This
makes consistency management easier, and also enables simple
application of NFR testing, when t.aceabil i ty relat ions between
viewpoints are showed to hold. Traceabil i ty therefore represents
how associated viewpoints are affected by actions in this
viewpoint.

Doma in

Test
specif icat ion

Test plan

Test record

Vjewpoint

Viewpoint user

Viewpoint
traceabil i ty

ILL rrc. .sot" . r rq Iot ta! . N-) -a.O.tahiD,. , tut , , loa

(rir) Temporal yiewpoint baceability occurs when a
viewpoint is given scope lhrorrgh time within the devel-
opment cycle. Information is therefore traceable to
viewpoints whose activities are concerned with different
development phases. The temporal traceability link
maintains consistency with other life-cycle viewpoints
that may affect, or be affected by changes in the source
viewpoint. For example, a viewpoint concerned with
safety will most likely be applicable and therefore
traceable to all development life-cycle stages; whereas,
performance is normally only considered during design
and implementation stages.

3.2 Applying viewpoints to test activities
The process of applying viewpoints involves three
stages [5]: (i) choosing the right viewpoints model, (ii)
identifying the viewpoints and (iii) managing inforrr.ra-
tion from the viewpoints.

Currently, we have only explored the testing view-
point model proposed here, although clearly other
models are possible. Secondly, viewpoint identification
is tl.pically tightly coupled with the attributes of the
software under test. For example, a safety critical sys-
tem's primary concern may be with reliability, testabil-
ity and correctness; whereas a real-time system's
concerns may be placed in the direction of efhciency,
reliability and correctness issues. Hence, the idea of
viewpoint tailoring, by reuse of previously defined
viewpoini templates, comes into play. Collecting and
managing information from viewpoints will be dealt
with in the following Sections.

4 The VOCAL process

In this Section we aim to outline the VOCAL method,
descr ib ing lhe process by in t roducing a gener ic r iew-
point hierarchy that can be used to guide initial view-
point identification. This is followed by a description of
each viewpoint type necessary to construct a viewpoint
oriented test plan. After test plan construction but
before we start testing, conflict resolution of informa-
tion contained in viewpoints should be performed (see
Section 4.1.5).

I vartficadonlvatioathn "lcaling" vi€wpoint

SK Qlttty Yitnpdnt Grotip

f::l c.orp viesroht

Fig.l VOCAL viewpoint template hiemtch)

252

Viewpoints need not be limited to a single stage of
development. Non-functional tests and validation activ-
ities are often temporally scoped through the life-cycle.
For example, a usability viewpoint applies during pro-
gram development, but also may be traceable to front-
end activities. Here a paper-based or dialog-builder
assembled rnock-up of the interface can be reviewed,
possibly leading to cost saving if faults are detected
early. This emphasises the need to minimise time
between fault injection and removal.

4.1 Viewloint classification
VOCAL implements a hierarchical model that is used
to structure viewpoint templates (Fig. l). The Fipre
demonstrates how templates fit together providing test
activity coverage of the whole development cycle. A1l
templates are derived from the generic template at the
root of the hierarchy. Fig. 1 shows how child templates
of the same type cluster into parent templates creating
a group of 'like' templates (those concerned with simi-
lar activities). Viewpoint grouping avoids the explosion
of too many viewpoints. Templates are instantiated to
provide testing under a selected style. For example, a
black box template may be instantiated for equivalence
partitioning tests on a software component. Instanti-
ated templates are individual testing yiewpoints.

There are four fundamental viewpoint classes:
(r) Group viewpointr are organisational viewpoints hold-
ing no other purpose except viewpoint abstraction, dis-
tribution, clustering and integration.
(ir) Verification yiewpoints are concerned with demon-
strating that some domain information complies with a
test specification. These viewpoints are particularly use-
ful for representing the 'development perspective' of the
testing process (see Section l).
(irl) Validation yiewpoints ensure that the viewpoint
domain is reviewed with associated stakeholders. This
ties in with the 'customer perspective' of the test proc-
ess. Validation viewpoints can be used to provide a
framework for customef evaluation processes.
(w) Quality viewpoints ensure that nonfunctional
attdbutes are met. This viewpoint type ties in with the

l L f P to . . So f , r . lnB lo l 114 \o 5 -o O, tob \ r -De,cn tb r toa

'organisational software testing perspective'. A quality
template is used to define tests that ensure conform-
ance to standards. schedule and cost.

4.1.1 Group viewpoints: Group viewpoints are
used as an owner and tester distribution mechanism.
For example, quality viewpoints are the responsibility
of the quality assurance department; functional verifi-
cation viewpoints the responsibility of the test team.
Organisation of viewpoints around these groupings
aids the distribution of work creating clearly defined
responsibilities for each member of the development
team. Group viewpoints also form subsystem integra-
tion points for use during system testing. Individual
functional viewpoints contain logical groups of system
modules that are tested to meet conectness issues set
out in the viewpoint. If these tests are passed then the
viewpoint may be integrated with other functional
viewpoints that construct the system. The system is
built by collapsing down subviewpoints under a partic-
ular viewpoint grouping, hence proceeding with the
system build.

Group viewpoints contain no requirements, they only
help to confirm that interfaces between their subordi
nate viewpoint's implementation units match. Group
viewpoints therefore do not contain specification, test
plan, test record or traceability slots. Integration of
viewpoints under a viewpoint grouping is performed
through an incremental, regressive strategy. As each
viewpoint in the group is added any adverse affects of
the integration on previously integrated viewpoints is
detected. Thi. ir accomplished b1 progressive reer.ecu-
tion of test inforrnation held within formerly integrated
viewpoints of the group. A functional viewpoint con-
tains a set of test drivers and stubs necessary to individ-
ually test the functionality contained in the viewpoint.
As the viewpoint is integrated with others in the group-
ing we progressively replace test drivers and stubs with
the actual components. This is continued until all the
subordinate viewpoints in the group have been inte-
grated completing the subsystem. Integration errors,
therefore, may be easily traced to the faulty compo-
nent, and as the process is regressive, adverse affects on
previously integrated components can be located.

4,1.2 Verification viewDoints: Verification view-
points encapsulate domain knowledge of the product.
They test from a particular perspective, in a particular
style, and in a specified domain. Each verification view-
point is assigned to a test group consisting of either
multiple individuals or a single tester. As the test plan
(test cases) are executed, test results are recorded in the
test record slot and from this information process con-
trol metdcs may be calculated.

The developers' role in the software process is also
modelled using verification viewpoint instances. Devel-
opers are made responsible for producing code accord-
ing to program specifications, whilst ensuring that code
compiles cleanly, is free lrom obvious bugs, and well
commented. Associated with the develoner viewDoint
may be a coding s landards checkl is t to ensure compl i -
ance to company programming standards. Alterna-
tively, the viewpoint may include some form of peer
review. The developer test perspective can be seen as
the VOCAL counterpaft of traditional unit testing.

A specialisation of the verification viewpoint has
been designed for use with interactive systems [18].

IEE Ptoc.-SaJie. Eng., rol 141, No. 5-6, OcbbetDccenbet t997

These systems tend towards unstable specifications and
iteration. The model is introduced through two special-
ised user interface testing viewpoints, and helps fault
identification while the interface is built rather than
after constlxction. This helps to support an explora-
tory, incremental prototyping [7] based approach to
user interface development, and V&V.

4.1.3 Validation viewpoints: Validation view-
points are distinct from verification viewpoints as they
are concerned with helping to manage reviews [0].
Reviews may be undertaken using software inspection
[20 22] detecting issues in the product for resolution
with relevant stakeholder quality groups (see Fig. 1).
Validation viewpoints are also closely related to user
interface development and evaluation. Other instances
of validation viewpoints rnay arise during acceptance
testing, front-end life-cycle, or operational development
review. Hetzel [9] gives some key rules for software
revlew:
(i) Check for missing requirements.
(ii) Simplify, and eliminate requirements that are
redundant or extraneous.
(i i i) Check that the solut ion is the r ight choice.
(iv) Check that the solution fulfils requirements.

Validation viewpoints may have scenarios derived
from models produced during requirements engineer-
ing, and design. Scenarios can provide an invaluable
source of test cases for early customer review during
operational and acceptance testing (see Fig. 2). A
scenario [23] is a sequence of events occuring during a
particular execution of a system. For example, chang-
ing a TV channel with a remote controller (Fig.2).
Scenarios can be defined using Potts representation
[24], where each scenario has a setting, narrative and
evaluation slot (see Section 5.3).

Charnel Signal

Fig.2 .Flor ol .e.'ent, Jar an e.\dmple aprrational te,t \\'nario. - l..ting
a thannel on a I l/ temale tonltauet

The purpose of having acceptance testing and devel-
opment validation viewpoints as separate entities arises
from their differing aims. Development validation (user
operational testing) is similar to the concept of alpha
and beta testing where a user is given a set of tasks and
perforrns these with the system. Error observation is
therefore carried out under realistic conditions. This
form of operational testing helps to uncover faults that
only the end-user tends to frnd, ensuring that we pro-
duce a correct system irrespective of the requirements
captured during system specification phases. Accept-
ance testing, on the other hand, is used to prove that a
system is ready for operational use, hence ensudng that
contractual requirements are adhered to. Such testing
may require applying mandatory safety tests for certain
systems.

4.1.4 Auality viewpoints: Quality viewpoints are
non-functional attributes arising from viewpoint stake-
holder sources (see Fig. 1) placing constraints on
development [25]. Quality viewpoints, as well as being
concerned with procluct quality attributes, may also
concern p/oceJs issues. Process quality attributes may
arise as part of ISO9000 certification [26], CMM [27],
or SPICE [28] accredited software process.

253

Non-functional requirements can be clustered around same viewpoint may appear under more than one qual-
quality viewpoint perspectives (marked in light grey in ity viewpoint group. For example, a customer may
Fig. l). Clustering aids conflict resolution as a quality require performance throughput to be better than 30
viewpoint can mean different things to different groups transactions per second; whereas, the developer has
of people. For example, asking what quality means to specifred performance throughput as l0 transactions
users will more likely than not produce a different out- per second. This conflicting information needs to be
come than when asking a system tester the same ques- resolved during development so that it can be ensured
tion. A typical reply lrom a user could be 'a high that the product meets al1 stakeholders' quality con-
quality system is one that conforms to my expectations straints. Of course, this may not always be possible as
and needs as a user', whereas a system tester may reply, groups will insist that their requirement is more impor-'a quality product is one that conforms to its specifica- tant than others. We therefore require independent
tions'. Of course, both these perspectives are valid, and arbitration by the quality assurance department to
with each quality viewpoint there is likely to be a dif- ensure that a trade-off solution can be agreed between
ferent perspective to its application. Therefore, the parties.

Table 2i Example quality requirements and associated metrics

Ouali ty requirement Ouali ty requirement descript ion Example quanti f iable metrics*

Architecture f lexibi l ty Software should be developed with consideration (i) Flexibi l i ty/adaprabit iry I30l
{Preventative to future enhancement. l t may be necessarv to
maintenance) implement changes in a short t ime period to keep

the product ahead of competit ion. This should be
kept in mind during design and development.

Interoperabi l i ty Can the system communicate with another by (i) Communication commonali ty I25l
requesl ing operations to be executed, etc.; or, the (i i) Data commonali tv [25]
effort required to l ink a system with another.

Maintainabi l i ty Design and implementation of maintenance patches (i) Probabil i ty that fai led system is restored to
should be possible in a l imited t ime period. operable condit ion in a specif ied l ime [30]

(i i) Cyclomatic complexity [2. 7, 31]
Performance The system should be capable of meeting or (i) Operation throughput per second against

exceeding a specif ied throughput. Algorirhms taking increasing system load, e.g. FMV video frames/s;
an unacceptable amount of t ime to complete should no. of transactions/s [32]
be avoided. Acceptable completion t imes should be (i i) Device ut i l isat;on/resource consumption per unit
stated within this viewpoint. of work [32]

{ i i i } Event-action response t ime, e.g. screen redraw
rate after user operation [32]

Portabi l i ty The product should be portable to another target (i) % of code which contains platform dependant
platform within the system domain. Platform instruct ions [7,30]
dependant code should be avoided, or alternative (i i) No. of target systems [7]
code included using condit ional compilat ion when
this is not possible. Effort required to transfer code
to a new platform should be less than the effort
needed to total lv redeveloo i t .

Rel iabi l i ty The product should have a defined rel iabi l i ty in a (i) Mean t ime to fai lure [7]
specif ied t ime period. (i i)Avai labi l i ry 17,301

(i i i) Rate of fai lure occurence [7]
(iv) Probabil i tv of unavailabi l i tv I7l

Reusabil i ty Possible reusable components should be identi f ied, (i) Domain/range rat io (DRR) [33]
and design for reusabil i ty taken into consideration. (i i) Reuse benefi t [2]

(i i i) General i ty I30l
Security Securi ly r isks should be specif ied, and measures (i) Vulnerabi l i ty i34l

implemented to avoid breaches of security, (i i) Attack probabil i ty [30]
Safety Code must be fai lure tolerant. When a fault occurs (i) Fai lure tolerance [34]

error handlers must bring the system back to a safe
sIare.

Only testable requirements should be specif ied. (i) Domain/range rat io (DRR) t33l
Code should be desioned to be testable. { i i) Control labi l i ty [35]

{ i i i) Observabil i ty I35l
(iv) Sensit ivi ty analysis [36]

Requirements should be formulated with user (i)Totaltraining t ime I7l
needs and abi l i ty in mind. Reviews need to check (i i) No, of avai lable help frames Ul
interface designs against appropriate interface (i i i) Learnabil i ty (t ime required to reach a specif ied
style guidel ines. level of performance [37]

(iv) Throughput (speed of tasks by experienced
users and number of errors made [37]

* NFRs should be testable and quanti tat ive so that metrics can be easi ly appl ied and measured. For example. a poor nonfunctional
requirement (NFR) is one that cannot be easi ly tested and is unqLranti f iable: for example, 'An experienced user of Windowsgsft shal l
be able to operate the oroduct with ease'.

Testabi l i ty

Usabil i ty

IEE Proc.-Sa/iw. Ens., Vol. 144, Na. 5'6, OctoberDecenber 1997

Quality viewpoints have scoping rules applied to
them indicated by specifying within the viewpoint the
following types of scope:
(a) Temporal traceability scoping, the quality viewpoint
is traceable and therefore applicable throughout a
number of phases of the development life-cycle. The
viewpoint may be temporally scoped to apply through
specification, design, coding and acceptance testing or
to apply to a subset of these depending on the specific
viewpoint instance.
(b) Subsystem specific scoping, a quality viewpoint may
only apply to specified parts of the whole system at a
particular point in time. For example, usability is con-
strained to interaction with the user and is unconcerned
with other areas of system functionality. Subsystem
specific scoping rules can be summarised by the follow-
ing scheme,
(r) Unit specific quality viewpoints apply only to one
particular functional viewpoint (subsystem); for exam-
ple, usability applies to the user interface subsystem.
(|) Group scope quali1) viey,points apply to a defined set
of other functional viewpoints; for example, security
applies to all components dealing with communication
in a bank ATM machine.
(rii) Global scope quality viewpoints apply to the entire
set of functional viewpoints defining the system; for
example, safety applies to all components of an auto
pilot system on an aircraft.
Each quality viewpoint therefore has a defined time in
the life-cycle when it applies, and at this particular
time, specifies the parts of the system affected by it.

Table 2 shows a set of possible metrics [25, 29, 30]
for assessing product quality compliance. It should be
stressed that the quality requirements are given for
demonstration purpores onl) and are in no ua5 generic
for all systems. The Table though could feasibly be
used as a starting point to develop specific quality
viewpoints, reusing some of the requirements presented
in the table.

Associated with the quality viewpoints is a template
concerned with VOCAL deployment and process issues
(see Fig. 1). This viewpoint contains slots for inter- and
intraviewpoint consistency checking. Intraviewpoint
checks added here may include test coverage checking
and traceability validation. Checks are also required to
verify consistency and completeness of external tracea-
bility, and also to ensure test result consistency with
related viewpoints. It is also important to ensure that
quality measures accurately represent the attributes
they purport to quantify [38]. The above process checks
are amalgamated into the VOCAL deployment view-
point (see Section 4.2, describing a sample VOCAL
deployment checklist).

4.1,5 Viewpoint concern overlap and incon-
sistency resolution: The test plan for a system
developed with VOCAL consists of the set of identihed
viewpoints. Viewpoints may not be disjoint, and it is
often the case that there is some degree of overlap
between, say, quality viewpoints and functional system
viewpoints. This rnay be seen as an advantage when
testing, as we can determine if a quantified quality
requirement is too stdct because the actual measured
functional performance in the verification viewpoint
shows that the constraint cannot be attained. There-
fore, overlap can help to ensure and maintain view-
point consistency. Detected inconsistencies need to be

IEE Proc.-Saft||. Ens., rol. 141, No. 5-6, October Decenbet 1997

traded off between viewpoints where they occur (i.e.
those to which they are traceable). To aid management
of trade-offs between faults, VOCAL supports a three
point defect classification scheme where less critical
faults can be traded against those of a more crucial
nature. Sevedty of faults may be assigned as follows:
(r) Critical, a serious corrupting fault having the poten-
t ia l lo threaten the uhole pro ject .
(t) Major, a serious corrupting fault in a localised area.
(i.:Ll) Minor. a non-corrupting fault that is annoying
rather than threatening, and does not adversely affect
system operation.

Al1 overlapping and potentially conflicting test plans
are dehned by including traceability between the view-
points. This means having the .r/rft (target viewpoint) of
the overlap defined in lhe source viewpoint's traceabil-
ity slot, and yice yerse. Traceability is therefore bidirec-
tional. Traceability can be defined as [39],'... the ability
to describe and follow the life of a reouirement. in both
a foruards and backwards direction 1i.e. from its ori-
gins, through its development and specification, to its
subsequent deployment and use), and through periods
of on-going refinement and iteration in any of these
phases'. Bidirectional viewpoint traceability makes such
cross-referencing possible in VOCAL.

4.2 Viewpoint identification and deployment
Viewpoint identification is primarily determined by the
class of system under development (i.e. interactive, real
time, safety critical, multimedia, embedded etc.). We
have developed a checklist for viewpoint identification
and deployment as follows:
(i) Work through the VOCAL viewpoint hierarchy
(Fig. 1) in a top down manner, pruning and eliminat-
ing viewpoints that have no relevance to the system
under examination.
(ii) If any viewpoints are immediately apparent from
domain descriptions that are not present after stage 1,
add these to the hierarchy under the appropriate view-
point group in a bottom up manner.
(iii) Identify, and assemble all agents/participants/
actors/stakeholders, and associate them with the appro-
priate viewpoint identified in the hrst two stages (i.e.
associate them with viewpoints in which they have an
active concern in terms of authoring and use).
(iv) Map test requirements onto viewpoints, identifying
test information according to the viewpoint structure.
(v) Identify relationships (bidirectional traceability)
between viewpoints. Remove obvious conflicts of inter-
ests along the way. Regularly check viewpoint consist-
ency throughout development.
(vi) Start test activities at the front-end of the life-cycle.
Kick off with specification and design reviews. Make
sure that temporal traceability is established, especially
with the NFRS.
(vii) Continue V&V activities as categorised in the test
plan. Make sure that authors who implement change
requests follow all traceable links so that each affected
test plan is updated and retested as a result of the
change. Integrate the system according to the viewpoint
structure.
(viii) End with customer acceptance, and hand-over.
Identify for reuse any viewpoints or templates that may
be useful in the future. Store these in a library so that
they can be easily accessed.

Step (iii) associates participants to viewpoints (i.e.
maps agents onto roles). It should be noted that this is
not performed in an arbitrary manner. Testers exercise
their skill based on experience [40]. Therefore, partici-
pants should be mapped onto viewpoints with the aim
of reducing pretesting costs (e.g. training), thereby
choosing the 'right person for the job'.

5 Example: VOCAL application to a bank ATM
system

To illustrate the VOCAL process of Section 4.2 we
describe a simplified example where testing viewpoints

Fig,3 Simplified VOCAL t)ietrpoint shactwe for the ATM slstem

Fig.4 ATM black box soJit)are test riewpoint decomposition

256

are applied to the V&V of a bank ATM (automated
teller machine) 123, 4ll. The ATM is a classic example
of an embedded system where software within the
machine drives cash counting, card reading and receipt
printing hardware, etc. ATMs also commumcate exter-
nally with a central bank database. Typical operations
provided by an ATM include, cash withdrawal, state-
ment and chequebook reordering, changing a custom-
er's PIN (personal identification number), etc. The
ATM may also have to deal with different classes of
customer. each of whom sees a dilferent view of the
total functionality. Foreign customers (those without

Votif icrt ion Vlgw po lnt
Instan:lated Tom Dlate

l l ame : B lack gox So f twa re Tes t s
Tos t Cd re (4) Ou tcomr Oe ta i l 3 I

t€st Outcomo . (Not Run/Pass,tFah,
Fault Soverify | {Minar/Maja C t ical)
Staius : (,,tr wailrrg Repair/Fixed)
C o m m o n t r . . .

D6sc.ipt lor| i Ihis viewpoint is concerned
with black box tesl ing the A-lM software.
lests are id€nti t ied from ooeral ion
specif icat ions for i ie cash machine to provids
test cove,age o, the rarl thdraw cash, print
ba lanco f unc t i ons , e t c . u .de r a l l poss ib l e i npu t
cond i t i ona .

Te3 t Cas6 Spoc i l i ca t i o | t s
Cash W i thd raw a ! Sg rv i oe

Tolt Roo u lasm ents :

Tesi Caso Dofinlt ion l / t) : , , .

I n to r -V iowpo in : T raoeab i l l l y :
C€sh W i thd rawa l Se rv i ce - Tes t Case 4 .

c !s to ln . rQu. l l l y S iand€rd6
Por fo rmanca : Rssoons€ T in€ < 1 min .

Cu l romsr Qua l i l y S .3ndardB
R. l l .b i l i i y j Ava i lab i l i l y r 999/1000 { | |o .nB Cus loner } . . .

U3.r ha6.t c. : 6arh Wilbdrswal S€rvic€

Custorn.r Ou. l l iy Sta.drrd!
Sror. l ty : A aok Prct6bi t i iy . .

Op.r l t ional U3.r V. l ldat ion : Home & 1016isn Cusro.n€rs

ILE h-, -\oJin Lag. vul. 111 ^a)-6. O,,ohq Dpc.db.' loo-

an account at the bank) only see a subset of the facili-
ties available to home customers.

5"1 VOCAL application to the ATM
Following the rules of Section 4.2, we use the gereric
viewpoint template of Fig. I to derive the structure of
the ATM test plan. This produces a testing structure as
shom in Fig. 3. Note that we have simplified this by
excluding any front-end review, process and company
quality standards, although in practice they may apply
to such a system. The dotted lines in the Figure indi-
cate usability traceability between nonfunctional qual-
ity requirements and operational user validation.
Conflicts of concerns between these two viewDoints
must be managed and resolved. It should also be noted
how traceability indicates the close relationship
between user interface verification and operational val-
idation [18].

Assuming a complete test stlxcture (i.e. completed
steps (i) and (ii) of Section 4.2), atd skipping step (iii)
as it is unimportant for demonstration purposes, we
can now move onto identification of test requirements
for each test viewpoint pictured in black in Fig. 3. This
is illustrated by expanding one test requirement (cash
withdrawal) associated with the ATM 'black box soft
ware tests'viewpoint (Fig.4). The test requirement is
traceable to many other viewpoints in the ATM system
and should provide enough diversity to represent the
main concepts of the technique. Additionally, an oper-
ational test scenario belonging to the user validation
viewpoint will be described to provide stakeholder eval-
uation coverage of the cash withdrawal functionality.

5.2 Test soecification: Verification ofthe cash
withdrawal service
Step (iv) of VOCAL involves the identification of test
cases from test requirements. In the case of cash with-
drawal, this was specified using an event-scenario
model based on the notation proposed by Rumbaugh
[23]. It is from this suitably formalised specification
that the cash withdrawal service's test cases in the
black box software test viewpoint can be identifred.
The model includes all exceptions that may arise from
this service. Testing must ensure that the colrect event
tlpe is tdggered under the proper set of conditions,
and that exception handlers perform the appropriate
action to bdng the ATM back to a valid state when an
error occurs. Preconditions that must hold are associ-
ated with transitions in the event-scenario model, hence
if a precondition is false there can be no transition. An
event is triggered on each state traversal that performs
some processing in the ATM.

Note that stubs are used for yet to be integrated
functions. The notation viey,point object::operqtion is
used to indicate the action to be taken by the stub
component. Stub emulation is required until integra-
tion with the ATM hardware and external systems.
Using this specification, test cases for the cash with-
drawal service include:
Viewpoint Black Box Software Tests
Test requirements Functional tests for the cash with-

drawal sen ice ' func t iona l i t l .

Cosh h,ithdrawal service: Test case specification I

Test requirement ATM must reject all expired bank
cards.

Initial state Idle ATM machine

Input sequence Insert an expired bank card
Precondition l(Central Database::get_expiry)

(AT M,H ar dw ar e : : car d I D 0) >
A T M _Harhv are : : date0)l

Expected a.ction ATM Hardware: ;eject_card0
Final slate ldle ATM machine

Cash withdrawal seritice: Test case specirtcqtion 2
Test requirement Vend cash when presented with an

unexpired bank card, PIN and valid
cash amount, with sulficient funds
available in the customer's account
and ATM safe.

Initial state Idle ATM machine
Input sequence Insert an unexpired bank card then

Input valid PIN number then
Select cash withdrawal then
Select cash amount

Precondition l(Cenftal Database:;get_expiry)
(AT M _H ar dw ar e : : c ar dI D0) <
ATM Hardware. : clate0) &&
(ATM Har dwar e : : get _P I N0 =
Central _D atqbase ; : get P IN(AT M -u
ardware::cadlD0) &&
(ATM _Har dware : : get -amount0 <
Central Database ; : customer bqlance
tATM H ardwqre:;card t D)l&&
(ATM _Hardware: : get amountj <
ATM FUNDS) &&
(AT M _Hardware : : get _qmount() mod
MIN VEND AMOUNT - 0)l

Expected zction ATM Hqrdware: :eject_card0
AT M _H qr hrqr e : : dispense cash
(ATM _Har dwar e : : ge t amountj)
Central Database : :update account
(.AT M Hardw ure : : ge t _qmount),
ATM Har dtvare: : cardlDj)

Final state Idle ATM machrne
For brevity, we have not presented total functional
coverage of the withdraw cash service. Each test speci-
fication represents an equivalence class of black box
tests. Additionally, test cases may be added at bounda-
ries of each equivalence class. For test specification 2,
such tests may include:
(i) Entry of a cash amount of f0.
(ii) A cash amount of, balance (balance mod MIN V-
END-AMOUNT), (i.e. a withdrawal of the maximum
possible amount of cash from the owner's account).
(iii) A value somewhere between these two, i.e. testing
the 'normal' case.

5.3 Test specification: Validation ofthe cash
withdrawal service
This Section outlines an operational test scenario for
stakeholder evaluation of the cash withdrawal service.
This test case will be contained in the operational user
validation viewpoint's test cases, and is specified as,
Viewpoint Operational user validation
Test requirement Operational user evaluation of the

cash withdrawal service's functional-
itv.

Scenario A home customer requires cash Jiom the ATM

ILL P 'a , Saf t t . LaB t . l t41 \o 5 -o O, tdb?LDa)n .b , ' lao

Episode 1
Goal Reading the customer's card ID number.
Action ATM displays insert card and welcome mes-

sage.
Action Customer responds by inserting card into

card reader.
Outcome Customer's card ID number is read by the

ATM. The ATM rejects expired, or unreada-
ble cards.

Episode 2
Goal Customer identity validahon.
Action ATM displays a message prompting the user

for their PIN.
Action The customer types in their numeric PIN.
Outcome The ATM checks with the central bank data-

base the PIN for the card. If the PIN has
heen incnrrcct Ir enter.-d 1l ' t1sq consecutive
times that day, the card is retained by the
ATM and the transaction terminated.

Episode 3
Goal Service and withdrawal amount selection.
Action The ATM displays a menu of available serv-

lceS.

Action The user selects cash withdrawal.
Action The ATM displays an option allowing the

user to enter an amount on the numeric key-
pad.

Action The customer selects an amount.
Outcome If the customer has sufficient funds, and the

amount selected is available in the ATM,
then the card is ejected, cash counted, dis-
pensed, and the account updated with the
amount withdrawn.

Eyaluation
Issue Design fault, the customer requires a record

of the transaction. Incorporation of a cash
with receipt option is required.

Issue Design fault, the customer would like an
opt ion lo wi thdraw a standard amount
instead of entering it each time on the
numeric keypad via the 'other amount' menu
option. This would save key-presses, time at
the machine, and mistakes therefore increas-
ing throughput and reducing queues.

lssue User interface design fault, the menu for cash
withdrawal amount selection does not display
available denominations of note. The user
therefore is not warned in advance of the
minimum amount of cash that can be with-
drawn from the machine, or the amount that
their sum must be divisible by.

This scenario then becomes the test plan for customer
evaluation of the service.

So far the example has illustrated use of multiple test
case representation forms found in VOCAL viewpoints.
Scenarios are defined to represent ATM actions and
interactions between user and machine. The scenario
describes a task that, if successfully cornpleted, must
achieve all identified subgoals. Issues arising from this
interaction are evaluated as part of customer appraisal.
Conversely, the black box test representation, defines
functional test cases carried out dudng system testing.

258

This requires a different representation to reveal faults
arising from nonconformance with the specification.

5.4 Traceability identification
Step (v) of Section 4.2 necessitates traceability identifi-
cation between viewpoints. Test cases dealing with sys-
tem testing of the ATM cash withdrawal functionality
in the black box software test viewpoint are inter trace-
able to the following viewpoints (see traceability sec-
tion of Fig. 4):

(1) Customer quality standards 1)iewpoint (performance
requirement) in terms of transaction response time
(specihed as (1 min). This quality requirement would
norrnally be included in the test specification for cash
withdrawal after integration with ATM hardware as
this is the point where actual end system performance
can be realistically measured. Adding temporal scope
(through life-cycle) traceability to performance aspects
of the product makes all testers, even those working
before hardware integration, aware of the intended per-
formance. Any doubts over final projected performance
can be rectified as soon as possible. Performance will
be held back by the slowest component in the system.
Therefore performance traceability is of the type global
(applies to all subsystems) temporal (throlghout devel-
opment) in t en)ian,poi n t t ruceabi I i t.,.

(n) Customer quality standards vie\rpoint (reliability
requirement) has two definitions one for the home cus-
tomer, the other for foreign customers. Reliability is
specihed in terms of availability, which for home cus-
tomers is > 999/1000 transactions will succeed, for for-
eign customers this is) 900/1000. These two levels
apply to the same functionality but under different cir-
cumstances, therefore this is not a conflict. The tracaa-
ble link between cash withdrawal, and reliability
requirements is part of the reliability vrewpoint's global
temporal interriewpoint trqceebility. Traceability
between reliability and other functional viewpoints is
declared in this mannef for the early detection of relia-
bility problems, as is the case with the performance
viewpoint (above).

(ill) Customer qualit! standtffds viewpoint (securit)
requirement) is a global, and whole lifecycle applicable
rule concerning the application of security inspections
to all systems throughout all development activities.
The minimisation of security risks has therefore been
glen a global temporal interyiewpoint lraceabrlity
scope, therefore making security traceable to the func-
tional testing of the cash withdrawal operation.

(w) User interface viewpoint concerns verification and
integration with the 'front-end' of the ATM machine,
that is code providing the user interface for the cash
withdrawal service. Eventually the user interlace will be
linked with the service provision software. Traceability
between these two viewpoints is important as it allows
any changes made to the cash withdrawal service's
implementation to be reflected in the way the user
interface operates, and is tested. The traceability is
therefore defined as at interviev)point link between the
cash withdrawal service's user interface, and the code
implementing the service. The link has no temporal
scope as it only applies during the development phase
where operational validation activities may cause the
service's specification to change (see scenario evalua-
tion of the cash withdrawal service in Section 5.3).

IEE Prcc.Sortw. Ens., vol 144, No. 5-6, OctobebDe&nber 1997

(v) Operational user yaltulation riewpoint (home and Jbr-
eign customer evaluation requirements). Test case speci-
fications, especially their general descriptions can help
formulate operational test scenarios for cash with-
drawal. It is particularly important with an ATM
machine operated by casual users to validate that the
machine is providing the required services. The ATM
must provide these services in a manner that users
understand and are comfortable with. Therefore, inter-
viewpoint traceability between functional test case spec-
ifications and operational validation scenarios help to
ensure that functional service operation has suffrcient
user validation.

The scenario test case descrintion for cash with-
draual f rom the operat ional usei va l idat ion v ieupoint
(see Section 5.3) is traceable to the following:
(r) Functional veri:fication ricwpoint groap, especially in
terms of evaluating services provided by the user inter-
face. Traceable item (v) (see above) is reverse traceable
to this viewpoint according to the rules of VOCAL.
Therefore bidirectionality for item (v) is retained with
the functionality concerning cash withdrawal.
(ir) Quality requirements yieyrpoints grorlp assess the
results of user evaluation. Evaluation assessment
requires measurement [29]. Measurement is provided
by quality metrics to evaluate the users' aspect of prod-
uct quality, quantifying the evaluation. Important qual-
ity aspects to consider (to be made inter traceable)
from the operational user validation viewpoint are, per-
formance and usability assessment.
Note that traceability is always bidirectional thus the
sink viewpoint, in each of the above examples is always
traceable back to the source and. vke ver:u.

5.5 VOCAL ATM test DIan execution
Arriving at step (vi) of the process puts the test plan
into action. Ignoring front-end reviews for the sake of
brevity we start at the child viewpoint nodes of the test
plan and work our way toward the root whilst integrat-
ing subviewpoints as we proceed.

As stated in step (vii), change requests require man-
agement and update of all traceable viewpoints. For
example, changing the structure of the ATM withdraw
casf; software may require an associated change in the
user interface viewpoint. Finally, we hand over for cus-
tomer acceptanca. This is not the end of our process
though; it is important to identify viewpoints or tem-
plates that have reusable potential. As an example con-
sider interoperability. Interoperability concerns tests to
ensure readability of a foreign customer's bank card,
and ATM message exchange capability with foreign
banks, etc. Such a viewpoint has a high likelihood of
being useful in future development, therefore it should
be stored as part of the organisation's quality manual.

6 Conclusion

Utilisation of viewpoints in software engineering
acknowledges the roles played by the many individuals
in the software process. This paper has shown the his-
torical development of viewpoints from a requirements
elicitation technique, through to a method for verifica-
tion, validation, and quality attribute identihcation and
assessment. Inforrnation encapsulation of viewpoints in
terms of participants, method, and work activity, has
also been outlined. It is around this encapsulation that
the VOCAL framework is built to apply the benefits of

IEE Pt.,c.-So/lw. Ens., Ilol. 114, No. 5-6, OctaberDecenber 1997

multiperspective viewpoint methodologies to verifica-
tion, validation, and quality assessment processes.

The deliberate exclusion of prespecified methods for
testing helps integrate the methodology with specific
company working practices. VOCAL guides and identi-
fies V&V throughout the life-cycle providing an organ-
isational framework for controlled test distribution and
activity assignment among participants. This was
deemed a more appropriate route to follow rather than
trying to convey an unwieldy test strategy that con-
stricts the applicability and real-life value of the
method. Using VOCAL can lead to much greater test
coverage where it matters in a system. Traditional test
methods fail to identify and verify attributes that con-
stitute a system that not only does its job correctly, but
in a manner the customer wants. VOCAL addresses
this problem directly by including stakeholders in the
process wherever possible throughout development.
Stakeholders are in regular contact through front-end
reviewing, and operational product validation via sce-
nanos.

Emphasis has been given to the importance of the
three types of traceability (inter-, intra- and temporal
traceability) for conflict management and resolution of
product attributes. Conflicts should be detected as
early as possible in development to save later correc-
tion effort and unnecessary cost.

VOCAL approaches quality assurance and how this
integrates with V&V process activities by using view-
point stakeholder structuring methods. Attribute iden-
tification, conflict resolution, and example quality
requirements have been described to aid this process.
Stakeholder quality structuring assists nonfunctional
requirements verification, or if the requirement is not
feasible, its resolution to a satisfactory level. The
importance of making quality attributes quantifiable is
also stressed. Finally, to illustrate the VOCAL method
a simplified test plan using a bank ATM system was
developed.

Weaknesses of the method that need to be addressed
arise from the infornation overhead created by view-
point encapsulation. This, coupled with defining full
traceability, can place a greater focus on inforrnation
management than with traditional techniques. A proto-
type test case browser tool supporting VOCAL has
been implernented to aid efficient application of the
technique [18], and relieve some of the information
management overhead. In-process test management is
also at an early stage of development in VOCAL.
Implementing a well defined test management model
helps administer resources to areas of the project
requiring most effort to keep the product on schedule.
Ptocess management information collection is currently
being integrated in the tool to give visual indications of
problematic areas in the test plan. Defect tracking is
also an integral part of test management. Again proto-
type support for this has been implemented to further
research these issues. Current investigation is being
undertaken using tool generated defect tracking infor-
mation as a test exit criterion to determine the Doint
where test costs outweigh benefirs in rerms of qualiry
improvement. Cuffently the appfoach is undergoing
evaluation to assess validity and practicality of the
method. This further research is obviously crucial if the
approach is to be taken up in favour of more estab-
lished and mature methods.

7 Acknowledgments

This work is funded by an EPSRC CASE award in col-
laboration with the Software Engineering and Applica-
tions Group, Philips Research Labs., Cross Oak Lane,
Redhill, Surrey RHI 5HA, England.

8 References

I MOLLER, K.H.- and PAULISH, D.J.: 'Soft\,r,are metrics- a prac-
titioner's guidc to improved product development' (Chapm,u &
Hall, 1993)

2 DEVANBU, P.. KARSTU, S., MELO, W., and THOMAS, W.:'Analytical and empirical cvaluation of soltwafe reuse mctrics'.
Proceedings of the 18th international conlerencc on So/irr.r.e
enginearing, Berlin, cermany. July 1995, pp. 189 199

3 FINKELSTEIN. A., KRAMER. J.. and GOEDTCKE, M.:'V'eqn.inr o-ienled .oftsarc dc\elopnre||r ' . Prnceedrrg. ot rhird
' ir ler lrariolral sork(hop on S.r\trh . npinc.t iag antt ; t ' . tppl i i l -
tlorr, Toulouse, Fmnce, Decernber i990, pp. 337 351

4 FINKELSTEIN, A., KRAMER, J., NUSEIBEH, B.. FINKEL-
STEIN, L., and GOEDICKE, M.: 'Viewpoints : a lramework lbr
i n reg r r r i ng m . r l l i pe pe r \pe . . i \ c s i n i . t em oe \e lop 'ne r t . , , i . J .
So t t , f g Knu \ l t , P fu . , . ' . . l q , r 2 2 . (l l . pp . . l l 58

5 FINKELSTEIN, A., erld SOMMERVILLE, L: 'The viewpoints
FAQ', Sb/trL,. Eng. 1.,1996,11, (1), pp.2 4

6 MULLERY, G.P.: 'CORE A nethod for conrrolled rcquire-
ments specification'. Proceedings of the 4th IEEE Conputer Soc;
ety international conlerence or Sortvate engineering, Mnitch,
Germany, 1979, pp. 126 135

7 SOMMERVILLE, l . : 'Software enginecring' (Addison-Wesley/
Longman, 1996, 5th edn.)

8 MYERS. G.: 'The art ol software testing' (Wiley Intcrscience,
1979)

9 HETZEL, W.C.: 'The complete guidc to software testing'(QED
Information Sciences, 19E8, 2nd edn.)

10 PERRY, W.E.: 'Effectivc merhods for soilware tesring' (John
Wiley & Sons, 1995)

l l BURNSTEIN, L. SUWANASSART, T., and CARLSON, R..'Developing a testirlg rnaturity model for soltware test process
evaluation and irnprovement'. Intcnutional Test conference, ITC
1996, W:rshington, DC, Oct. 1996, pp. 581 589

12 BOEHM, B.W.: 'Software engineering economics' (Prentice-Hall,
1981)

13 BOEHM, B.; 'Models and meffics lor software management and
engineering' (IEEE Computer Society Press, 1984)

14 BOEHM, B.: 'Induslrial software metdcs top l0 list', /E t
SoJi\'., 1981, 4. (5). pp. a-9

15 RHENMAN, E.: 'lndustrial democracy and inclustrial managc
menr ' (l av i . r o r l . I o rdon . l 0o i) . p . 2)

16 BEIZER, B.:'Soflware testing techniques'(Van Nosrmnd Reir-
hold. 1990, 2nd edn.)

l7 ROPER, M.: 'Soltware testjng' (Mccraw-Hill Intemarional
Quality Assurance Series, 1994)

18 PEMBERTON, D.: 'VOCAL intenctive system & tool support'.
CSEG Technical Report, Computing Dept.- Lancaster University.
Lancaster, UK. LAI 4YR

19 NUSETBEH, B., and FINKELSTEIN, A.: 'Viewpoints : A vehi-
cle tbr mcthod and tool integration'. IEEE Proceedings ol inter
national workshop on C.,lSl CASE'92, Montreal. Canada, July
1992, pp. s0 60

20 FAGAN. M.E.t 'Design and code irlspections to reducc errors in
program development' , IBM Syn. "/ . , 1976,3, (15), pp. 182-211

21 FAGAN. M.E.: 'Advances in software inspections', IEEE Truns.
So t i ' r Lue . l ') 86 .7 . r 2 r . pp . - 41 -5 .

22 GILB, T., and GRAHAM, D.r 'Sollwarc inspection' (Addison
Wesley, 1993)

23 RUMBAUGH, J., BLAHA, M,, PREMERLANI, W,. ANd
LORENSEN, W.:'Object-oriented nodelling and design' (Prcn-
tice Hall hlternational Editions, l99l)

24 POTTS, C.: 'Using schematic scenarios to understand uscr needs'.
Symposium on Desig ing inteructiye systens: Prccesses, pructices,
methods & techniques, DtS '95, University of Michidn, USA,
1995, pp. 247 2s6

25 KITCHENFIAM, B-: 'Towards a constructive quality modcl',
Soliu,. Eng. J., 1987,2, (4), pp. 105 l13

26 SADGROVE, K.: 'ISO9000/BS5750 made easy : A pmcrical
guidc to quality'(KogaD Page, 1994)

27 PAULK, M.C., CURTIS, B.. CHRISSIS. M.B.. and
WEBER, C.V.: 'The capability maturity model for software',
IEEE SoJ^r., 1993, 10, (,{), pp. 18-27

28 KONRAD, M.D., and PAULK, M.C.: 'An overvicw ol l SPICE's
model ibr process management'. Proceedings of the 5th interna
tional confirence on SoJ'ivtare quatity, Aust;, TX, October 1995,
pp. 291 301

29 FENTON, N.E.: 'Softwarc metrics, r r igorous approach'(Chap-
man & Hall , 1991)

30 GILB, T-: 'Software metrics'(Chartwell-Bratt, 1976)
3l MCCABE, T.J.: 'A complexity mcasurc', 1E E Trdns. Softw.

Ens., 1916,2, (4), pp. 30E 320
32 PERLIS, A.J., SAYWARD, F.G.. and SHAW, S. (Eds.): 'Sofr-

u,are rnetrics' (MIT Prcss, l98l)
33 VOAS, J.M., and MILLER, K.W.: 'Semantic metdcs for soft,

ware testabi l i ty ' , 1 S1st. SoJir. , 1993,20, (3), pp. 207-216
34 VOAS, J.. 'Tcsting soflware for characteristics other than correct

ness: Safety, feilure tolerance, and security'. Proceedings of the
intematioial conference oi Tertinll Lomputer soJivarc. 1996

35 BINDER, R.V.: 'Design lor tcstability in ob.ject-oriented sys-
tems', Commun. ACM, 1994,37, (9), pp.87-l0l

36 VOAS. J.M.. MORELL, L., and MILLER. K.W.: 'Predict inq
where faults can hide from tesling', lrtt SolrL., 1991, 8, (2). pp.
41-46

37 PREECE, J.A. (Ed.): 'A guide to usability, human factors jn
computing' (Addison-Wesley, 1993)

18 KITCHENHAM, 8.. and PFLEEGER, S.L.: 'Towards a liame
wor ' k f o r so f t ua re mearJ remcn l \ d . . d : t i . r n . /F f t T ton , . S " t r u .
Ens.,2r, (12), pp.929 943

l9 GOTEL, O.. and FINKELSTEIN, A.: 'An analysis of rhc
requircmenls traceability problcm'. Proceedings of ist interna-
tional conference on Requitaments engirceing, April 1994, pp.
94 101

40 CORNELISSEN, W., KLAASEN, A,. MATSINGER, A., ANd
VAN WEE, G.: 'How to make intuitive testing rnore systematic',
IEEE SoJ^t,. , 1995,5. (12), pp. 87 89

41 KOTONYA, G., and SOMMERVILLE, l.: 'Requirements engi-
neering with viewpoints , SoJtu. Eng. "r.,, ll, (l), pp. 5 18

l rL h - , - \o f t , L rB t . l t44 . N" 5 -a . O, t "]a D. ' . r t l .d lao-

