Information and Software Technology 1995 37 (4) 203-211

MGA: Rule-based specification of
active object-oriented database

applications

Pete Sawyer and Ian Sommerville

Computing Department, Lancaster University, Lancaster LAl 4YR, UK

e-mail:sawyer@uk.ac.lancs.comp

This paper describes a model for developing applications of active object-oriented databases
based on three orthogonal concepts; methods, guards and actions and a tool which implements
these ideas called MGA. MGA objects are active; they have guards which constrain the object’s
state, actions which maintain database integrity when the object’s state changes, and methods
through which the object provides other services. These active components are implemented as
(collections of) rules and rules are in turn modelled as objects.

Keywords: active databases, object-oriented databases, rule-based, forms

This paper describes MGA (Methods, Guards and
Actions); a tool for the declarative specification of
applications of an active object-oriented database (OODB).
In MGA, an application is defined as an object class
encapsulating attributes and methods. Application classes
are active in the sense that they embody procedural
semantics through methods and through actions triggered
by write operations on attributes. In addition, guards
constrain the conditions under which attributes can be
accessed. Methods, guards and actions are all rule based
and MGA allows an application class, including its
behavioural semantics to be defined by form-filling.

Methods, guards and actions, along with the notion of
inheritance, are the major concepts which a user of MGA
needs to know. MGA conceals the low-level details of the
data model. It contains libraries of method, guard and
action classes which can be instantiated and composed to
form applications. Because applications are modelled as
classes, and because classes are themselves objects
(instances of meta-classes) they are stored in the database,
making them easily retrievable and tractable to reasoning.

In the remainder of this paper we present a brief
overview of active OODBs, followed by an introduction to
the MGA programming model and a detailed examination
of a small application’s implementation. We conclude with
a brief discussion of some of the issues surrounding the
integration of rules and OODBs.

Deductive OODBs

Deductive databases are those in which data has the

0950-5849/95/309.50 © 1995 Elsevier Science B.V. All rights reserved

ability to react to stimuli. One of the most useful features
of deductive databases is the ability to define integrity
constraints for entities and to have these maintained
dynamically in response to changes to the data. Such a
mechanism can be used to augment typing schemes
(perhaps by defining a constraint which imposes a subrange
on an entity’s type) and is also capable of expressing
relationships such as one-to-many mappings between
entities'. Active’ databases provide the additional capacity
to define arbitrary dynamic behaviour triggered by events
such as state changes.

This reactive behaviour is often encoded as rules of the
form <predicate, body> where the predicate represents
some event and the body specifies some action to be taken
in response to (triggered by) that event. For example, a
change to one item of data may automatically propagate
changes to other items of data to maintain a specified
relationship between them. Another example might be
where an attempted write operation is aborted if the
condition specified by the predicate is not satisfied.

An attractive feature of deductive and active databases
is that the semantics governing evolution of data are part
of the data. This contrasts with passive databases where
access rights to data are mediated only through the
standard application interface of the DBMS with any
additional semantics having to be defined in all the applic-
ations which access the data. As such applications are
necessarily external to the DBMS, change to the data
model and/or the application(s) can easily lead to mutual
inconsistency.

The general problem of capturing data semantics within

203

Active object-oriented database applications: P Sawyer and I Sommerville

the database is one of the motivations behind the
development of OODBs’. Here, data is modelled as
objects with access to objects and their components strictly
prescribed by the interface offered by that object. Object-
orientation is promoted as the answer to many of the
problems in ‘traditional” DBMSs such as the impedence
mismatch between application and database data models.
However, the maintenance of relationships between objects
or between object properties is supported in a quite
different way than through database integrity rules.

Access to objects’ state, to read or write an attribute, is
provided in most OODBs by attribute access methods. In
those systems which emphasize information hiding (such as
Vbase' and its successor, Ontos), the mechanism used to
constrain an attribute’s access is to overload the standard
attribute access method by writing a new method specific
to that class (and its subclasses). This is a low-level
mechanism which contrasts with the philosophy of
declaratively specified database rules monitoring database
events and being fired whenever their predicate parts
become true.

Consider the case of a derived value method® which
returns a result calculated from the value(s) of an object’s
attribute(s). The method will calculate and return this value
on receipt of the appropriate message. What is lacking in
most OODBs is a mechanism for generating that message
internally as a result of a change to one of the attributes
from which its value is derived. The integrity relationship
is one-way only; the attributes are unaware of any
dependency upon them. This poses problems for OODB
applications which access data through fine-grained
transactions but which nevertheless require their copy of
the data held in memory to be consistent with the data in
the database at all times.

For example, an application which displays an object of
the type just described and allows users to interact with it
may, on receipt of a user-generated event, forward a
message to the object resulting in a change to the state of
an attribute upon which the derived value method depends.
The application’s problem is that it does not know that the
change to the attribute renders the user’s representation of
the object inconsistent because the value returned by the
method when it was invoked before the change to the
attribute is now wrong.

Part of the problem is the perceived mismatch between
the object-oriented and rule-based or declarative
programming paradigms. There are, however, OODBs
which provide declarative database programming
languages, for example Adam®, Kiwi’® and Mokum®.
Each one of these systems is deductive in that they have the
notion of rules and internal events. In addition, Medeiros'
has implemented integrity rules in O,"; an OODB whose
database programming language is procedural (a flavour of
C). It can be seen therefore that active rules can co-exist
with object-orientation in database systems. In addition,
Adam and Medeiros’s work demonstrate that the object
model can be exploited by modelling rules as objects.

This is the approach taken by MGA where we also
distinguish between attribute access methods and other,
general methods. General methods are define as collections

204

of rule objects and are invoked by the receipt of the
appropriate message. Attribute access methods are fixed
but may be augmented by rules acting as pre and post
conditions; guards to filter out illegal update attempts, and
actions propagate consistency updates on the successful
completion of an update.

The MGA programming model

An MGA application is an object which the user
parameterizes by assigning values to its attributes and
invokes by sending it messages. The programmer specified
the application as an object class which encapsulates a set
of services (methods invoked on receipt of a message) and
a state space (attributes). Write access to attributes is
constrained by guards which intercept requests to assign or
delete values and disallow the update if some specified
condition is not satisfied. Actions are methods triggered
by the successful assignment or deletion of attribute
values. Methods, guards and actions specified for an object
class are inherited by subclasses but may be overloaded.
MGA applications are first-class objects and are therefore
persistent so application states can be stored in the
database.

An example MGA application: bbe

Before describing methods, guards and actions in more
detail, we illustrate MGA by describing how an interactive
application called bbe (browse-by-example) has been
implemented. Bbe is an object class which mimics, in an
object-oriented manner, by-example tools of the QBE'>"
family. Bbe allows users to retrieve and manipulate
database objects. The user supplies the name of the class in
which they are interested and bbe returns the set of all the
instances of that class. The user can then further constrain
this set by filling in a template of the class and bbe will find
all the objects which match the template. For example, bbe
allows a user to find all objects of the expenses class whose
payee attributes have the value ‘F.Smith’.

Our MGA implementation uses a dynamic forms user
interface metaphor (described in Sawyer and Sommer-
ville') in which objects are represented as graphical
forms. Attribute update messages are invoked by typing
values into fields labelled with attribute names, and other
methods are invoked by ‘pressing’ buttons labelled with
method selectors. “Set’ attributes (those which accept
multiple values) are indexed with the total number of values
and the index of that currently displayed, indicated
numerically beneath the attribute name. Additionally, a set
of values may be viewed in a scrollable pop-up window
(invoked from a pull-down menu attached to the attribute
name).

As shown in Figure 1, bbe consists of the following
components:

Attributes

Bbe has three attributes which allow the user to supply the
required class name and which return references to
instances of the class:

Information and Software Technology 1995 Volume 37 Number 4

Active object-oriented database applications: P Sawyer and I Sommerville

' date
text
payee 'F.Smit.h'.
text
{a,b..} sub_claims
object ga:8
total
¥
poe poe
|
class expenses i
class
i
{3:‘3- } instances phys57_91 |
object 71 |
matches |
{a;b--} matches cs34_91 |= !
object 2 1 54 6L
cs34_91

Figure 1 Interacting with bbe

» class: Accepts the name of an object class. The user has
write access to this attribute but a guard rejects values
which are not class names. When a valid class name is
assigned an action automatically generates values of
instances.

e instances: Accepts references to every object which is an
instance of the class represented by the value of class.
Guards restrict external access to be read only and
constrain values to be references to instances of the class
specified in class. The action attached to class finds all
the instances of the class and assigns the set of
(references to) these to instances.

» matches: Accepts references to instances of the class
represented by the value of the class attribute but which
also match a ‘template’ object of the same class (created
by the remplate method). The set of values is a subset of
those of the instances attribute. Again, write access is
strictly local. Values are assigned by the march method.

Methods

Bbe has six methods which are used for browsing and
manipulating the objects referenced by the attributes. The
first three methods listed below are common to all objects
with which the user may interact directly:

o die: Deletes the instance of bbe from the database.

» open: Displays the bbe object at the user interface.

e shut: Removes the bbe object from the user interface.
The object persists within the database.

Information and Saftware Technology 1995 Volume 37 Number 4

cs36_91

o template: Creates an instance of the object class specified
in the class attribute. For example, if class contains the
value expenses, then template will create a new instance
of expenses to which the name ‘template’ is assigned and
whose attributes contain default values.

 maich: Once a template object has been created by the
template method, the user can use it to supply ‘example’
values to its attributes in order to select the set of objects
which have identical values. An unassigned attribute in
the remplate is taken as a ‘don’t care’ condition. The
match method performs the comparison between the
template and its sibling objects, assigning references to
matching objects to the marches attribute in bbe. For
example, if the user is interested in all expenses claims
from F.Smith, then match will return references to all
instances of expenses whose payee attribute contains the
value ‘F.Smith’.

« view: Sends an open message to a selected object
referenced by the matches attribute.

Using bbe typically entails the following order of actions:
A class name is typed into the class field and references to
all its instances are returned via the instances field. The
template method is invoked and a template object is
created. The user types example values into this object’s
fields and invokes bbe’s match method. The subset of
objects which match the template are returned via the
matches field and these can be opened using bbe view
method as required. '

205

Active object-oriented database applications: P Sawyer and I Sommerville

message X

[method X |
rule 1 —
rule 2 +——P»

rule 3 --..\

Figure 2 General form of method and rule invocation

Figure 1* illustrates an instantiation of bbe (forms are
labelled with the corresponding object’s id, in this case
bbe:bbel) being used to browse expenses objects. A
template for expenses objects (labelled expenses.template)
has been parameterized and bbe’s match method has been
invoked to select the two instances of expenses (cs34_ 91
and cs36_9]) whose payee attribute contains the value
‘F.Smith’ from a total of seven expenses objects.

Having illustrated bbe’s implementation, we now
describe the three main components of MGA’s pro-
gramming model.

Methods

MGA adopts a conventional view of methods but its method
implementation mechanisms are novel. In most object-
oriented languages, methods are indivisible sequences of
instructions executed on receipt of a message. Methods in
MGA are composed of discrete, individually executable
components. They allow applications to be prototyped
using a small set of high-level building blocks.

MGA views methods as sets of <predicate,action>> pairs
called rules. The set of a method’s rules is ordered in a
script. The first rule’s predicate is a message requesting the
method’s invocation. Subsequent rules’ predicates are
defined as the successful termination of the preceding rule’s
execution. Because rules are modelled as objects, they are
typed (as classes); the programmer builds a rule script by
parameterizing instances of rule classes and appending
them to the script. When a message is received by an
object, the appropriate method script is executed, each rule
being evaluated in order. Figure 2 illustrates the general
form of a method invocation where arrows represent
messages.

For example, bbe’s template method contains two rules.
The first rule is of a type which creates a new object (by
sending a new message) and the second is of a type which
sends a programmer-specified message. These rules are
parameterized by the programmer to specify the class and
name of the object to create, and the selector and ‘target’
object of the message to send, respectively. When remplate

*Note that a button for the open method is absent — open is an idempotent
operation so an object which is already ‘open’ cannot be re-opened.

206

is executed a new ‘template’ object is created which is then
sent an open message.

Method rules and their effects currently defined in MGA
are as follows. Where:

c:i represents an
<class>:<instance>.
class:c means the object representing the class c; an
instance of the class meta-class.

object id of the form

The syntax
<target object id>.<message selector>(parameters®)
is used for MGA messages.

create_ instance__rule(c,i)->class:c.new(i)
create a new instance i of class ¢

delete__instance__rule(c,1)->c:1.die()
delete the object c:i

assign__ value__rule(c,i,a,v)->c:i.value(a,v)
assign value v to attribute a in object c:i

delete__value__rule(c,i,a,v)->c:i.delete(a,v)
delete value v from attribute a in object c:i

send_message__ rule(c,i,s)->c:i.s()
send message s to object c:i

Methods are represented as objects of class method
detail, one multi-valued attribute of which (called rules)
represents the rule script. Rules are also objects whose
attributes act as formal parameters. Rules’ formal
parameter attributes encode the literal value or the source
of the actual parameters. Where parameters are not
specified by literals, the actual parameter value is given by
a reference to an attribute from which it is evaluated at run
time. Hence method parameters may be primitive values or
object identifiers.

For example, the create instance__rule (described
below) belonging to bbe’s template method creates a new
object of a class specified by bbe’s class attribute. The fact
that this is the source of the actual parameter value is
encoded by the value of the rule’s class _domain attribute.

The effect of executing a rule is to generate a message.
In most cases, the generated message is fixed and bound to
the rule type - a create instance _rule generates a new
message, for example. Send message rules differ
because the name of the message to send is supplied by the
programmer as a parameter.

Figure 3 shows the message template being received by
the object bbe:bbel. The class attribute contains the name
of the expenses class and the instances field contains
references (indicated by the arrow) to all extant instances
of expenses. On receipt of the femplate message, the
template method is invoked. Figure 4 illustrates how the
method rules are evaluated and executed.

The template method’s rule script contains the two rules
mentioned above. The first rule is the creare instance
rule, and the second is a send__message__rule.

Execution of the method results in the evaluation of the
rules as follows:

Information and Software Technology 1995 Volume 37 Number 4

Active object-oriented database applications: P Sawyer and I Sommerville

bbe:bbel.template()
_ _| die| open| shut
die | open | shut approve
QYRS match] view expenses: comp2_91
bbe: bbel e
| date: 3/3/91
class: expenses 'd payee: R.Bloggs
instances: P o sub_claims:
matches: s total: 2.50
totarToo oo l

Figure 3 An example method invocation

create_instance rule

class_domain: VALUE OF.bbe.class
instance_domain: template

send_message_rule

class_domain: VALUE OF.bbe.class
instance_domain: template
message_selector: open

class:expenses.new(template)

By

class: expenses

expenses:template.open()

/v/

die m shut
expenses: template

date:
payee:
total:

Figure 4 Method rule evaluation

Rule 1: create instance rule

The rule’s two parameter attributes, class domain and
instance _domain specify the class of the new object to
create and the name to be assigned to the new object. Their
actual parameters are derived as follows:

class__domain parameter: The actual parameter value is
derived from the formal parameter value VALUE
OF.bbe.class. This specifies that the actual parameter is the
value of bbe’s class attribute, expenses (the syntax of rule
parameters includes tests for equality, set and subrange
membership and basic arithmetic relationships).

Information and Sofiware Technology 1995 Volume 37 Number 4

instance__domain parameter: The formal parameter value,
template, is the literal value of the actual parameter.

Following evaluation of the rule’s actual parameters, the
new object expenses:template is created by sending a new
message to the expenses class object (an instance of the
meta-type class). Here the class__domain parameter
specifies the target of the message and the instance
domain parameter is the single parameter required by the
new message.

Rule 2: send__message__rule

The rule’s three parameter attributes specify the message to
generate and the object which is to be the message’s
recipient.

class__domain parameter: Again, the actual parameter is
expenses derived from bbe’s class attribute.
instance__domain parameter: As with the creare
instance__rule, the formal parameter value, template, is the
literal value of the actual parameter.

Taken together the class domain and instance _domain
specify the target of the message; the newly created object
expenses:template.
message_selector parameter: The formal parameter
value, open, is the literal value of the actual parameter and
represents the selector of the message to be generated.

Once the send message rule has been evaluated, the
message open is sent to the new expenses:template object.

Guards

Write access to objects’ state is provided by two attribute
access methods value and delete. Guards are a mechanism
for filtering and constraining value and delete messages on
a per-attribute basis. Guards range from blanket protection
from deletion or assignment, through statically defined sets
of acceptable values, to specifications of the context,
relative to the state of other attributes and objects, under
which an update may or may not occur.

Guards are boolean predicates which act as filters on
attribute update messages. As with method rules, guards

207

Active object-oriented darabase applications: P Sawyer and | Sommerville

number:

value(number,2)
value(number, 1)
value(number,7)

domain_member({1,3,5,7,9})

domajnﬁmember({x=5})

Figure 5 Guards as filters

are modelled as objects with one object class corresponding
to cach guard type. A similar approach is employed by
Medeiros and Pfeffer'® in their constraint mechanisms for
the O, OODB. They also model constraints as objects but
their processing of constraint specifications differs because
it includes an analysis phase which searches the database
schema, identifies all methods which update the attribute in
question and generates a S€parate constraint object for each
method. MGA generates single guard object per
constraint which remains ignorant of the source of
attempted updates. Messages are routed via the guard
object which forwards the message if it does not conflict
with the constraint.
Guard types implemented in MGA are:

Write access to the attribute is
strictly local, being performed
only by one of the object’s
methods or by an action attached
to a sibling attribute.

inaccessible()

domain_ member({v*}) The value (which may be of any
type) must be a member of the
given set of values {v¥}. If the
attribute is of a numeric type,
one of the arithmetic expressions
=, >,>=, <, 0r < = may be
used to specify the set.

The value must be 3 member of
the given set of class names.

class__member({c*})

instance_member(c,{i*}) The value (of form ¢:i) must be
an object of class ¢ whose
instance id is in the give set of
instance names.

The value must be a member of
the set of values held by the
given object’s (c:i) attribute (a).
If both the attribute being
guarded and the attribute a are of
humeric type, the parameter v
may be an arithmetic expres-
sion. If v is left undefined the
expression defaults to =,

val_member(c,i ,a,V)

208

fits_template(c:i) The value must be an object
whose state subsumes that of the

given object c:i.

instanceﬁdependent(c,i) Write access is only permitted if
the object ¢:i exists.

Va]ue_dependent(c,i,a,v) Write access is only permitted if
the attribute 2 belonging to
object c:i has the value v. If both
the attribute being guarded and
the attribute a are of numeric
type, the parameter v may be an
arithmetic expression. If v is left
undefined the expression de-
faults to =,

The formal parameters for guards are represented by the
guard objects’ attributes. Some parameters may be left
unassigned which specifies a ‘don’t care’ condition. For
example, bbe’s class attribute has an assignment guard of
type class__member which constrains the attribute to only
accept the name of a class from the sct specified in the
class__member guard’s single parameter. In the implemen-
tation of bbe, this parameter has no value assigned to it
which means that any class name is a valid value. The
existence of a class__memper guard is sufficient to con-
strain the set of valid values to be the set of extant class
names, its parameter serves to further constrain that
set.

Every guard can be negated, so for example, a
—class__member guard constrains updates to occur only
if the values fall outside the given set of class names,
Guards are invoked on assignment or deletion. Attributes
therefore have two guard scripts; one containing guards
which filter assignments (value messages) and one for
filtering deletions (delete messages).

Figure 5 illustrates attempts to assign a value to an
attribute number being filtered by two guards of type
domain__member which simply specify the set of values
which the attribute may accept. When a request to update
an attribute is received, each relevant guard (depending on
whether the request is to add or delete a value) is evaluated
and only if all are satisfied may the update occur.,

The assignment guards attached to phe’s matches at-

Information and Software Technology 1995 Volume 37 Number 4

Active object-oriented database applications: P Sawyer and 1 Sommerville

number: [T ————=f" 516, script |
action rule [= gl

action rule 2 ——
action rule 3
T

Figure 6 Actions firing on assignment of an attribute value

tribute illustrate the implementation of MGA guards. There
are two guards, an instance__member and a fits__template
guard. These provide the bulk of the functionality for
the match method. Recall that this method’s job is to
copy (references to) all the objects in the instances attribute
to the matches attribute excluding those which do not
match the remplate object. In fact the job performed by
the match method is much simpler, it simply attempts
to copy every value in instances to matches by generating
a value message for each. The filtering of objects against
the template is performed by the fits template guard
and the instance _member guard guarantees that no
objects which do not appear in the instances attribute are
copied.

Actions

The objects involved in the execution of an application must
remain mutually consistent. Actions are a trigger mechanism
which permit dependencies between attributes to be
specified. They are simply scripts of method rules, but
unlike the methods described earlier actions are invoked
only by the attribute update messages value and delete.
Actions may invoke methods of any kind.

One useful function of actions is to maintain consistency
where values are derived from attributes whose states may
be subject to change. As discussed above, the use of a
method which needs to be explicitly invoked in order to
calculate such a derived value fails to ensure that such
consistency is maintained. This is because an external
stimulus is needed to invoke the method while the change
of attribute value is an internal event. Instead, an action
can be attached to the attribute which, on the occurrence
of a value or delete message, automatically causes the
derived value to be recalculated. This is analogous to value
changes propagating from a change to a cell in a spread-
sheet. Here, the user does not need to laboriously discover
and recalculate the values of all affected cells when one
cell’s value changes because an ‘action’ embodies the
relationship(s) and automatically recalculates related cells’
values.

Action rule types in MGA are the same as those for
methods and hence also implemented as objects. As with
guards, action scripts may be specified for both attribute
assignment and deletion. An action script is executed
after the successful evaluation of an attribute’s guards
and the value assignment/deletion has taken place. Fol-
lowing the assignment of the value 1 to attribute rumber
in Figure 5, for example, the actions in the assignment
rule script for number are invoked in order of definition
(Figure 6).

Information and Software Technology 1995 Volume 37 Number 4

An example action is the one bound to bbe’s class
attribute which assigns values to the insrances attribute. On
assignment of a valid class name to class, references to all
the instances of that class are automatically assigned to the
instances attribute. Because the action is bound to class, it
is only invoked following a successful assignment, so the
class name must have satisfied all of the guards bound to
class before the action is invoked.

Implementation

The current implementation of MGA includes a tool called
the form editor in which forms are the direct visual
mappings of the objects comprising a class definition.

Figure 7 shows part of bbe’s definition. The form
editor:form__editor__5 form contains the declaration of bbe
and includes fields containing bbe’s attribute names and
method signatures (these include attributes and methods
inherited from the class declared in the superclass field).
To the top right of this, the method _detail: ‘bbe. template’
form contains the method’s rule script in the *set’ attribute
rules (there are three rules; the create instance rule and
send message rule as described ecarlier, and a delimiting
rule which simply marks the end of the script), and the
create _instance rule: 12 form below contains the
create__instance__rule’s formal parameters.

The use of a one-to-one mapping between forms and the
underlying MGA objects enables the user interface to
exploit the use of methods, guards and actions to guide the
programmer. For example, a new method is declared
simply by typing its selector into the form editor’s methods
field. An action attached to this field instantiates a
method__detail object and displays it to the user, prompting
definition of the rule script.

Another feature is dynamic help obtained by selecting the
label of a field with the mouse cursor; a pop-up menu of
possible values derived at run-time from the field’s type
and its assignment guards is presented from which the user
selects a value to assign to the field. For example, consider
the parameterization of the assign_ value__rule object for
the assignment action bound to bbe’s class attribute. The
help system is able to infer that INSTANCES OF. bbe.class
is a possible value for the value domain parameter from
the facts that:

(a) the class attribute has a guard constraining its value to
be a class name; and

(b) the target of the action (bbe’s instances attribute) has
a guard constraining it to accept only instances of the
class in the class attribute.

A list of such possible values is presented to the
programmer in a dialogue box. The programmer can either

select one of these ‘suggestions’ or assign a different value
to the field.

Discussion

We use the terms guards and actions rather than constraints

209

Active object-oriented database applications: P Sawyer and I Sommerville

method detail:

bbe.template"*

l
[(view_rule) (commit)
parent_class hhe.
class
form editor: form_editor selactor template
method
((view_attribute] ((view_method)
{a,b. } rules 'create_instance_rule.12'
t 3
class_name uhe - cre_instancerule; ~12
Eies -m -m __reistar rule
access_status unlocked
text parent_class bbe
class
superclass visible_objeq
class salector template
. method
{alb' } attributes matches
attrib 3:3 rule_ordinal HE
text
{a:b--} methods templatg
method B :5 class_domain 'VALUE DF.bbs.c]ass"
text
instance_domain template
text

Figure 7 The form editor programming tool

and triggers because they are special cases of constraints
and triggers as defined by Bloom and Zdonik'®, A trigger
is a predicate and a body; given some event execute the
body. A constraint is defined as a special case of a trigger
where the body is an exception to raise. In MGA, an
action is always triggered by one of two events; the
assignment to or deletion from a given attribute of a value.
An MGA action is therefore a trigger with only two
possible predicates. With an MGA guard, the guard types
permit a wide range of possible predicates (for example
the val__member type is a filter expressed as the con-
junction of an update event with a set of acceptable values)
but a default exception is enforced—the update is simply
disallowed.

Bloom and Zdonik identify two issues raised by con-
straints and triggers in OODB programming languages
which need to be addressed by a system like MGA. The
issues are:

o Implementation. Triggering an action from some event
can be viewed as a side-effect. They argue that this
potentially makes application programming error-prone
because an assumption that a trigger exists may prove
to be false, or conversely, a trigger may be imple-
mented twice under the mistaken assumption that none
exists.

e Exception handling. The desirable property of being able
to declaratively define exception handling once for an
attribute through a constraint causes potential conflicts
when individual operations require specific exception
handling.

210

We do not claim that MGA completely resolves either
problem, but the fact that guards and actions in MGA are
restricted forms of constraints and triggers does localize the
programmer’s problems. The principle virtue of MGA’s
guard and action mechanisms is simplicity. Decoupling
guards from actions by making the execution of the latter
dependent on the satisfaction of the former restricts the set
of operations which can have side-effects and makes
exception handling more predictable. In so doing we have
restricted the implications of the mismatch between good
practice in database and programming language design
identified by Bloom and Zdonik.

As described, guards in MGA implement static constraints
(those expressed on the state of the data at a given time).
Because we model guards as objects we could trivially add
new predicate classes providing two-stage constraints (a
restricted class of dynamic constraint) on single attributes.
Evaluating a two-stage constraint requires that the state
before and after a transaction be compared, for example to
ensure that a new attribute value is greater than its existing
value. Guards simply intercept a request to update an
attribute so a two-stage constraint greater _than would
have both the existing value and intended value available to
carry out the comparison. The more general class of
dynamic constraint, where a sequence of updates is
described, is far more difficult as it requires a history
mechanism and we have no plans to support them.

Conclusions

MGA is a prototype system designed to explore the poten-

Information and Softiware Technology 1995 Volume 37 Number 4

Active object-oriented database applications: P Sawyer and | Sommerville

tial of rules to embody object-oriented databases with active
properties. We have adopted an orthogonal programming
model where all objects’ functional properties are modelled
as rules and rules are modelled as objects. This both augments
OODBs with an active capacity and exploits the object
model for the rule mechanisms’ implementation. In addition,
graphical or form-based browsing tools can be used to
browse not only data but also objects’ active components.

Methods and actions are implemented as scripts of rules
while guards are implemented as boolean predicates con-
straining write access to objects’ attributes. Method/action
rules and guard predicates are modelled as objects whose
attributes represent parameters. New object classes are speci-
fied as named collections of methods and attributes with
appropriately instantiated rule and predicate objects defining
the object class’s functionality. Rules/predicates are typed
and the set of types is extensible by adding appropriate new
rule/predicate object classes to the system. This is not an
application programming task, however, but one which may
be used to tailor MGA to a particular application domain.,

References

1 Orman, I ‘Constraint maintenance as a data model design criterion’
Computer J. Vol 34 No 1 (1991) pp 73-79

Information and Software Technology 1995 Volume 37 Number 4

Ll

n

|

oo

=3

Dayal, U ‘Active database management systems’ SIGMOD Record
Vol 18 No 3 (1989) pp 150—169

Zdonik, S B and Maier, D (eds) Readings in object-oriented database
systems, Morgan-Kaufmann (1990)

Andrews, T and Harris, C ‘Combining language and database
advances in an object-oriented development environment” Proc.
OO0PSLA 87 (October 1987) pp 430—-440

Kim, W [Introduction to object-oriented databases MIT Press
(1990)

Diaz, O and Paton, N ’'Sharing behaviour in an object-oriented
database using a rule-based mechanism’® Proc. 9h BNCOD,
Butterworth-Heinemann (1991) pp 17-37

The Kiwi team ‘A system for managing data and knowledge bases’
Proc. 1988 Esprit Technical Week (1988) pp 594—603

Laenens, E, Staes, F and Vermeir, D ‘Browsing a la carte in object-
oriented databases’ Computer J. Vol 32 No 4 (1989) pp 333340
van de Riet, R ‘"MOKUM: An object-oriented active knowledge base
system’ Data and Knowl. Eng. Vol 4 (1989) pp 2142

Medeiros, C B and Pfeffer, P ‘Object integrity using rules’ Proc.
ECOOP '91 Geneva (July 1991) pp 219-230

Deux, O er al. ‘The 02 system” Comm. ACM Vol 34 No 10 (October
1991) pp 3448

Zloof, M M ‘Query-by-example: a database language’ IBM Systems J.
Vol 21 No 3 (1977) pp 324-343

Ozsoyoglu, G and Wang, H ‘Example-based graphical database
query languages’ IEEE Computer Vol 26 No 5 (May 1993) pp 5—
38

Sawyer, P and Somerville, I ‘Direct manipulation of an object store’
Soft. Eng. J. Vol 3 No 6 (1988) pp 214-222

Bloom, T and Zdonik, S ‘Issues in the design of object-oriented
database programming languages’ Proc. OOPSLA 87 Orlando
(October 1987) pp 441451

211

