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ABSTRACT

The objective of the work described here is to provide a
software tool to assist real-time system specifiers and
designers to predict, at an early stag‘e of the develorment
gocess. the timing behaviour of the system developed.

ur tool (Simulation of Real-time systems (SRT)) is used to
model the timing aspects of a real-time system and then
simulate the system to predict its behaviour.

INTRODUCTION

A real-time system is expected to interact with the
environment within certain timing constraints and the
software designers must produce a system which can
guarantee to meet these constraints. A ‘realistic real-time
system will be composed of many interacting modules
which could be exccuted with real or virtual concurrency.
Real concurrency means each module executing on its own
rocessor and virtual concurrency is where many modules
gproccsscs) are executed on one processor, Allworth [1].
here can also be a combination of these, where many
processes are distributed between many processors. The
smallest real-time systems can, therefore, present
considerable timing problems which could be greatly
reduced by using systematic methods supported by software
tools, Orret al 13{

Our tool SRT (Simulation of Real-time systems), allows a
model of a real-time system to be constructed and then
evaluated by simulation” The construction of the model is
achieved by using a ﬁraphical user interface (Figure 1).
Icons from the coatrol panel are copied onto the design

anel and then joined together with lines that represent the

atabuses. Each icon has a number of attributes which can
be specified by selecting the form option on the icon menu.

This paper presents an overview of the system which is
implemented using Smalltalk-80, an object-oriented
programming language. The language was chosen because
of its rapid prototyping ability, thus ideas can be
implemented and tested very quickly.

The paper is split into five sections. The first section looks
at current tools and methods for modelling timin
constraints. The second and third sections explain a real-
time sgstem whose timing characteristics can be modelled
using SRT. The fourth section describes how SRT evaluates
the model constructed in the previous two sections and
analyses the output data. The fifth section looks at future
vcrsll(ons of the tool and draws some conclusions about our
work.

RELATED WORK

There are various tools and mecthods for prototyping,
formally specifying and implementing real-time systems.
This section looks briefly at each area and concludes by
showing where SRT fits in.

Rapid prototyping tools can be secn by the designer and
user as a way of viewing the product at the design stage.
The user can determine whether or not the prototype is
appropriate and, if not, the a'p ropriate alterations can be
made, thus avoiding wasted e fgrt in the implementation of
incorrect requirements. The computer aided prototypin

system, proposed by Luz}\ et al, (8, 9, 10, 11] is a rapi

prototyping tool for real-time system prototyping. The
system is composed of a software base which contains a
number of components. These comgonents are explicitly
given a set of timing constraints. The tools provides help
in constructing a prototype and determines its rcal-time
performance by the constraints placed on each component.

Formal specification of real-time systems shouid enable the
system designer to verify mathematically that a system will
meet all its deadlines. "However, formal methods are still
immature for software systems and introducing the notion
of time makes the issue of verification even more complex.
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Various sgecificqtion languages for real-time systems are
emerging but major restrictions are placed on the real-time
systems to reduce the complexity. For example, the
specification language RT-ASLAN, Auernheimer and

emmerer [2], makes the assumption that each process is
on a dedicated processor, thus avoiding any scheduling
issues.

Lauber's [S] approach is based on the fact that the design of
large complex real-time systems will use a specification
language. If timing constraints can be expressed within the
specification then it can be used to test the behaviour of the
real-time system. The specification model represents a
rough prototype which is evaluated. The methods used are
based on dynamic testing of the specification with data
be;Pg feﬂi in by the system's designer or a simulation of the
real worid.

Some real-time languaﬁes support facilities for the
representation of time. Euclid, Kligerman and Stoyenko
[4], is capable of expressing timing constraints but at the
cost of restricting other features which are unpredictable,
such as dynamic process creation and recursion. The
language supports exception handling, so that the
_ﬂpro riate action can be taken when deadlines are missed.

¢ language FLEX, Lin and Natarajan [6], supports
facilities for imprecise computing, which is a method of
arriving at an approximate value and then improving the
result as much as time permits.

All the approaches described above have a particular place
in the software development cycle. The prototyping
%pproqch concentrates on modelling all the requirements.

0 build a complete prololf'pc the design would need to be
decomposed into modules and then these modules
implemented in the protolyging language. Thus, to
determine the feasibility of ‘the timing constraints from
this method would require a complete prototype of the
system (o be built.

Current formal methods are not mature enough to represent
the complexities of realistic real-time systems. Lauber's
method involves a detailed specification, ‘much of which is
irrelevant when dealing with timing issues. The real-time
languages offer the facility to exKrcss and evaluate timing
constraints but determining the feasibility of these
constraints is necessary well before the implementation
stage.

All these methods are concerned with modelling both the
functionality and timing aspects of the systems, whereas

T deals only with the timing aspects. The system
designer can therefore model the timing behaviour before
significant implementation effort is devoted to system
prototyping.

MODELLING TIMING CONSTRAINTS

Real-time systems can be considered, at an abstract level,
lo consist of three basic entities namely sensors, processes
and actuators. SRT uses these real-time entities to model the
process structure and proposed hardware devices. The
grocess structure is made up of a fixed number of processes,
ccause dynamic process Creation causes unpredictability.
The time constraints, which the software designers must
adhere to, will be defined by the system designers. These
timing constraints will be determined by the environment,
so that the systems designer has to calculate how quickly
the system must respond to changes in the environment.

This_section presents an example of a temperature
monitoring sysiem with real-time constraints, to 1llustrate
the capabilities of SRT.

Temperature Meonitoring Svstem

A real-time system is required to monitor and control the
temperature of a piece of equipment. This system must
respond to any change of temperature which is outside the
allowed range within the defined timing limits.



The proposed system requires three processes, each with a
numgcr of associated scnsors and actuators connected to
them. The sensors measure the temperature, convert the
analogue signal to digital and relay the information to the
process. e actuators are cooling devices which can be
switched on or off by the process.

ProcessA maintains_the average temperature of the whole
piece of equipment. The process has three sensors and two
actuators (cooling devices) connected to it, When the
averag’e temperature goes past a particular point then the
actuators change state (on or off). The system desxigners
have determined that this process is required to sample the
sensors 400 times a second, so that the required temperature
is maintained. ProcessB and C are lower priorily processes
which monitor a subsection of the equipment. Table 1
defines the specification of all three processes.

TABLE L - T, Monitoring S ,
RIOCESS requirements
rocess Prionity ate
bel Rate
%cessA 4 2 %,
oce: %
: TOCESS! 3 %

ProcessB and C must succeed to meet their deadlines 80%
and 50% of the time respectively because processA can deal
with any serious temperature changes. ProcessA must
always meet its deadlines, failure to do so could cause
serious damage to the equipment.

The sensors are all of the same type, that is, they all take
100us to respond to a sampling Signal. All the actuators
take s to_achieve the fransition from one state to
another. It has been determined that the actuators on
average switch 20 times per second. ProcessA has a rate of
400, thus on average the actuator is activated 1 in 20
samples. This can be modelled b havn% a gmbabilit
which has a uniform distribution of 1 to 20. Processes]
and C on average send a signal to the actuator every 1 in
12.5 samples. This is rounded down to 1 in 12 a8 it is
better to overestimatc and leave space for error, than
underestimate.

The buses all take one unit of time to transmit and receive
the required information. The scheduler has an overhead of
10 units. The currently proposed processor has a clock
speed of 0.1 MHz (100 units per second).

SRT can model this timing information and evaluate the
prototype by simulation to determine whether or not these
E;gdcesses can meet the set deadlines with the proposed
ware,

Constructing a_ Prototype

This section describes how a real-time systcm prototype
can be constructed using the SRT tool. The first part of this
section describes the types of timing attribute associated
with the entities. The second part looks at each entity type
and the attributes associated with them.

Timing _Attributes, Each of the three Real-Time
entiies; sensors, processes and actuators, have a number of
attributes. These define the timing requirements of the
prototype and are of two types:

_H,. Actual Time
Chis timing attribute represents the actual mecasurement of
time in the real world which is t};?ically‘used to simulate a
delay for an IO device. The actval time in SRT is specified
in micro seconds.

2) Unit Time

This is the number of units fclock cycles) a process requires
from the processor to simulate the ‘cxccution of a picce of
code. This type of timing is processor dependent, so that
changing the processor speed will result in the unit time
taking different values of actual time.

Rﬁﬂlﬁ.ﬂm&‘fﬂﬂﬂ.ﬁ. SRT consists of five RT entities
which are all represented as icons on the simulation control
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panel (Figure 1). Sensors, processes and actuators are used
ag the basis for constructing the real-time prototype. Two
other processes, scheduler and background are special

of process that must always be present. Entities are
connected by databuses, which are represented as arrows on
the simulation coatrol panel.

has a label attribute, so that they can
e 1'ollowingl explains other attributes
ationship (databus).

Each real-time entil
be distinguished. |
associated with each entity and re

‘H: Sensors i .
erc are two types of sensors, event driven and polling.

The polling sensor device receives a signal from a process
and then replies with its current state. “As shown in figure
2, the sensor has two timing attributes, sensor time and

minimum polling rate. The sensor time attribute is the
actual time in miCro seconds that a sensor takes to receive a
signal from the bus, convert the sensor reading from analo;
to digital and put the result back onto the bus. The secon
ann'btate sets out how often the sensor should be polled per
second.

Event driven sensors are modelled by using probability
distributions. Both timing attributes are left blank and the
arrival rate of events to a process is specified on the
incoming databus.

2) Actuators .
A process can trigger an actuator in one of two modes,
pended or cont: In suspended mode the process
sends a signal to the actuator and waits for a reply
(suspends) before it continues. The continuous mode does
not wait for a reply from the actuator but signals to the
actuator and then continues. This may result in a queue
building up on the actuator if the process puts out more
signals than the actuator can consume. The importance of
this varies depending on the device. For qxax::lple, if the
actuator is a display, then losing a few signals may be
acceptable but in other situations a build-up of signals
would be disastrous.

The actuator has two timing attributes (Figure 3), actuator
time and code time after action. Actuator time is the actual
time it will take the device to complete its task. Currcatly
this time is static, so that the actuator always takes a set
amount of time. Realistically, a device may vary in time
depem‘lmg on its current state, fore a time range based
on a probability distribution should be used. ‘Code
time after action’ attribute is expressed in unit time and will
be explained in the process entity section.

3) Buses

[he databuses that connect the various entities also have
timing attributes. The direction of the arrow indicates the
flow of control. In fi‘;ure 1 the sensors are being polled.
Figure 4 shows the form for the databus. The first two
attributes specify the unit time it takes the information to
travel to and from the two connecting entities.

The buses are also used to specify any probability
distributions between two entities. This can only be set
between event sensor and, ss or process and actuator.
The bus from the event driven sensor can be used to signify
the arrival of events into the process. Figure 4 shows the
different distributions available. The other values are the
ggra;net_ers for the distributions; for example normal
istribution will have two parameters, mean and deviation.

4) Processes

A process can be of two types depending on the type of
sensors connected o it, periodic or sporadic. A periodic
process is one which occurs at regular intervals to sampie
some devices and, if required, send a signal to the actuator.
Within SRT a periodic process is one which only has
polling sensors connected to it. A sporadic process has a
number of event driven sensors associated with it. This
type of process only comes into action when an event
occurs.

Either process when executing will receive data from its
sensors (either by polling, or interrupt), do some
processing and finally, if required, send a signal to the
actuator. A process will suspend when waiting to receive
data from a sensor. During the execution of code it is
poss:b.lte for another process with a higher priority to pre-
empt it.



Figure 5 is a process agtivitz view, which enables the
software designer to define the process’s characteristics.
The top panel contains the process's attributes. The rate
attribute defines how often this process should be executed
per second. The priori!yr attribute determines the
importance of the process. The middle panel contains a
number of selection list views which are used to describe
the Frocess's minor cycles. Figure S shows that processA
firstly executes some code to start up, then sensorsl,2 and
3 are polled with a small amount of code executed in
between them. The following code simulates the process to
calculate the average temperature of the three sensors.
Finally the actuators are activated.

There may be situations when a process need not send a
signal to an actuator every time. In the temperature
monitoring system, ProcessA changes the actuators state
once in every 20 samples. The bus running from the
process to thé actuator can be used to specify a particular
probability distribution which determines how often the
process sends to the actuator a signal. The actuator
attribute ‘code time after action' specilies in unit time any
i)i&t]r‘adcodf? that may have to be run before the actuator is
cked off.

The information on the bottom of the panel is calculated
from the minor cycle of the process. The figures show the
amount of actual time a process will take, the amount of
processor units required and finally the number of times this
process could feasibility be executed per second if it had
sole access to the processor. This figure should be
sngni]l’icantly greater than the rate specified at the top of the
panel.

The minor cycles for ProcessB and ProcessC follow the
same lines as ProcessA.

%»Backgro,und process
is process is executed only when nothing else can be run.
Generally this type of process in real-time systems will
carry out checks on the hardware. No atiributes are
associated with this process.

g} Scheduler

urrently only one scheduling policy has been built into

the system, which is a fixed priority scheduling algorithm
rate-monotonic) , as described by Liu and Layland (7].
ach process is given a priority, 1 being thé highest.

Priorities should be assigned using the rate-monotonic

gricm'ly assignment rule, in which a higher request rate
etermines a higher priority.

The scheduler decides what process to run by the priority
and state of the process. A process can be one of four
states: Readg. Running, Suspended (blocked) and Dormant.
Most operai ngbsystems will support the first three, the
dormant state being associated with real-time operating
systems. The dormant state is when a periodic process has
completed its major cycle and is now waiting for its next
occufrence.

Figure 6, shows the two timing attributes associated with
the scheduler. The first attribute is to set the speed of the
processor, that is, how many units or clock cycles can run
in a second. This value sets a relationship between the
actual time values and the unit time. is following
formula is used by SRT to convert actual time into unit
time.

unit time = (106 / actual time (us))/
processor speed.

For example, the following calculates the unit time from an
actuator which has a delay time of 1 000us and a processor
running at 0.1 MHz.

1 000 000 / 10&())61s= 1 000 per second
1000 / 100 = 100 units
therefore 100 units = 1 000us

The overhead attribute ‘chciﬁes the amount of processor
time the scheduler will take up when swopping two
processes. The overhead value is in unit time and this code
cannot be pre-cmpted.

Represepting Timing Constraints

SRT has two s‘?})es; of timing constraints, process deadline
and device deadline.
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Process Deadline

Each process has a frequency rate which implicitly defines
its deadline. The process must be completed before it is
next scheduled otherwise an overload will occur. The
scheduler deals with overloads by aborting the process so
that it can be restarted on its next occurrence. Euclid [4]
E:ovides an exception handling mechanism for determining

e action of a process when it fails to meet its deadline. As
other scheduling polices are implemented, so mechanisms
for representing timing delays for exceptions raised by
missed deadlines will be considered.

When making timing estimates of the processing required,
the type of process should also be considered. Hard time
procésses which are required to always meet their deadline
should be calculated using the worst-case run times, whereas
soft processes should be calculated with an average run
time, Burns and Wellings [3].

DRevice Timing Constraints

These are constraints placed on the system by the system
designer when determining the sampling and action rate for
the system to function within the requirements, The
computer system must be able to meet these constraints for
the system to function correctly.

The sensor has the attribute minimum polling times. After
the simulation the summary information will show whether
or not the sensors have been polled enough times.

The actvator constraint determines how often, in actual
time, the actuator must be updated. Currently SRT dis%lays
for each actuator the amount of times an action has been
completed and whether or not a queue exists

me

Once a mode} of the real-time system has been constructed
then the timing constraints can be tested by simulation.
The simulation is executed for the unit time specified by the
user. If the simulation is executed in the trace mode then
every process reports its progress at every stage.

Every process (including scheduler and background) has a
text window which displays its actions and the processor
time at which the action was started. Figure 7 shows_the
scheduler, background and ProcessA text windows. The
scheduler reports to the text view every time processes are
swopped and the background chess re7ports the range of
times it was being executed. In figure 7, the process view
shows part of the activities of processA during the
simulation. On the start up of the 400th cycle the
processor executes for 15 units, 5 units for process code
time and 10 units for_the scheduling overhead (99751-
99765 inclusive). This is followed by the process
suspending while sensorl is being polled. "Sensorl causes
ProcessA to suspend for 12 units, 2 for data transfer and 10
for the sensor dcl:{. _This is then repeated for the other two
sensors. The final piece of code runs for 50 units, 40 units
for the code and 10 units for scheduling. This cycle does
not need to activate the actuators. After completion of the
cycle the process will lie dormant until its next occurrence.

The simulation is terminated when the processor time
reaches the amount defined on the simulation panel.

Analysing_a process's characteristics

A suquar%hqf the process activities is displayed in each
text view. This information can be used to determine which
constraints might be modified to improve performance.

During the simulation each process keeps a record of the
time spent in the four states, which are displayed
graphically éF: ure 8). Each process calculates how often it
misses its deadline. All hard real-time processes should
have a 100% success rate.

The background process summary displays the percentage
of time it was executed. This figure can give an idea on tﬁe
amount of processing time that could still be used. The
scheduler summary displays the amount of actual
processing performed; the rest of the time was taken up by
the scheduler process.

The process summary includes a list of all the sensor and
actuator devices. Each device supplies information on how



often it has been activated, so that the figure can be uscd to
check if the device timing constraints have been met. Each
sensor connected to the process displays how many times it
was polled and whether or not it satisfied its device timing
constraint. The actuator displays how often it was
activated and how many signals, if any, were waiting on the
queue. The su information shown is after one second
of simulation time 2100 000 units); because of the cyclic
nature of real-time systems, running it for any longer
¢ frfwtl of time would probably not make any significant
ifference.

From the summnr{ information each processA, B and C met
their deadlines 100%, 98.8% and 58.8% of the time
respectively, which is within the requirements. If any
changes were made to the requirements then the software
designer would need to know if all the timing constraints
could still be met. If, during the devek:})mcnl cycle, it was
realised that another sensor connected to processB was
uired, then the initial SRT model could easily be adapted
and then re-evaluated. After re-evaluating the system
RmcesmA, B and C met their deadlines 100%, 86.4% and
5.2% of the time respectively. This change in
uirements has caused &rocessc to fail to met its required
50% performance level defined in the requirements. " This
information is immediately available, thus allowing the
designers to make early decisions regarding the timing
behaviour of the system. The decisions may involve the
use of faster hardware, reduction of software requirements or
the use of additional processors.

A small change in the requirements can radically change the
timing behaviour of the system. us, without the aid of
software tools it becomes very difficult for software
designers to predict the effect of change on the timing
behaviour of a real-time system . Especially if the real-time
system has many processes which are distributed over many
processors.

EUTURE WORK

The initial system is being used to test and develop new
ideas. This next section looks at some of the current ideas
under development and aiso considers the long term
objectives of SRT.

Short_term

Currently p only pend when involved in IO
operations, but a process may actually have to wait for the
completion of another process before it can continue.
Process-to-process communication is being implemented
using a semaphore notation, so that one process will wait
for a signal from another.

The system designer must make estimates on the execution
times” of processes, which will probably be far from
accurate. ject managers, even alter years of experience,
don't seem o make much better estimates. The estimates
arc generally made and then multiplied by some factor
determined by previous underestimates. SRT does enable
changes to be made very easily, so that the consequence of
improved cstimates can be séen instantly. One problem
with these cyclic processes is that each cycle may not take
an equal amount of time, for example a process may have to
do some extra calculations after some determined number of
cycles. ~This flexibility could be modelled using a
probability distribution mechanism.

Sporadic processes are to be implemented into the fixed
priority scheduling policy, A sporadic process would be
given a priority, as with the periodic process, but not an
occurrence rate. When an event occurs the scheduler will
service the interrupt and then execute the highest J)riority
Rgocess. All emergency interrupts could be modelled in one
ighest priority process.

Long Term

A longer term aim is to provide modelling of multiple
processors. The simulation would provide information
about each processor, such as its average load balance.
This would allow designers to manipulate processes
between processors to determine the best configuration.

CONCLUSION

The correctness of real-time systems involves not only the
verification of the logical steps of the software but the
completion of the steps inside the given time limits. If the
time limits arc not met then the work carried out will
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robably be of limited use to the system and economic,
uman, and ecological catastrophes could result,
Stankovic [14].

Tools are required which help system designers make the
correct_decisions l:g having the information available at
the design stage rather than after the implementation stage,
where Tinding a fault would be Ffar more costly,
Malcolm [12]. :

SRT can be used throughout the development of the real-
time system, so that the co uences of improved nmms
estimates and additional requirements can be reflecte
instantly. SRT has also shown that it could be used to
investigate various scheduling policies to determine the
g};{mpﬁate g‘olicy for a particular process configuration.

T should help to provide information which will assist
in determining the feasibility of the timing constraints at
an earlier stage in the development than previously would
have been possible.
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Process Activities
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