
MODELLING REAL-TIME CONSTRAINTS

SJ. Bextyman and I. Sommerville

Lancaster University, UK

ABSTRACT
The obiective of the work described here is to Drovide a
softwak tool to, assist real-time system specifiers and
designers ta predict, at an early sta e of the develo men1
DKIC~SS, the timing behaviour of !e system devehed .
Our tool fSimulatioi of Real-time svstems-fSRT)) is usid to
model thk timing aspects of a red-time iystem and then
simulate the system to predict its behaviour.

I"
A real-time system is expected to interact with the
environment within certain timing constraints and the
software desinners must nroduce a svstem which can
guarantee to xiieet these cohstraints A'realistic real-tme
system will be composed of many interacting modules
which could bc executed with real or virtual concurrency
Real concurrency means each module executine on its o&n

Our tool SRT (Simulation of Real-time systems allows a
model of a real-ttme system to be copstructed'and then
evaluated by simulatton. The constructton of the model IS
achieved by using a raphical user interface (Figure 1).
Icons from the,controf panel are copied onto the desi n
anel and then oined together with lines $at represent tie

Zatabuses. Each icon has a number of attnbutes which can
be specified by selecting the form option on the icon menu.

This paper presents an overview of the system which is
implemented using Smalltalk-80 an object-oriented
programming language The Ian uaie was chosen because
of its rapid prototy'ing abijty, thus ideas can be
implemented and t e s d v e r y quickly.
The paper is split into five sections. The first section looks
at current tools and methods fo r , modelling timin
constraints. The second and third sections exDlain a rea!
time s stem whose timing characteristics can be modelled
using JRT. The fourth section describes how SRT evaluates
the model constructed in the Drevious two sections and
analyses the output data. The fifth section looks at future
versions of the tool and draws some conclusions about our
work.

There are various tools and methods for prototyping
formallv specifying and imnlementing real-time systems:
This section looks-briefly i t each ar<a and conclides by
showing where SRT fits in.

Rapid prototwing tools can be seen bv the desiencr and
user a d a wayof-viewing the roduct i t the des& stage.
The user can determine whet\er or not the prototype is
appropnate and, if not, the apnropnate alterations can be
mde.-thus avoidine wasted effort in the imolementation of
incorrect requiremEnts. The corn uter aided rototypin-
system proposed by Lu i et a1 [! 9. 10, l l f i s a ra i!
prototiping tool for rej-time iystem protot ping +he
system is composed of a software base whici coniajns a
number of components. These corn onents arc explicitly
given a set of uming constraints. Tge tools provides help
in constructing a prototype and determines its rcal-time
performance by the constrain& placed on each component.

Formal specification of real-time systems should enable the
system designer to verify mathematically that a s stem will
meet all its deadlines. However, formal methods are still
immature for software systems ,and introducing the notion
of time makes the issue of venfication even more cornplcx.

Various s ecification languages for real-time systems are
emerging !ut major restrictions are placed on the real-time
systems to reduce the complexity. For example the
s ecification Ian uage RT-ASLAN Auernheimer' and
temmerer [2] m%es the assumption' that each process is
on a dedicateh processor, thus avoiding any scheduling
issues.

Laubex's [SI approach is based on the fact that the design of
large complex real-time systems will use a s ecification
language. If timing constraints can be expresseg within the
specification then it can be us+ to test the behaviour of the
real-time system. The ,specification model re resents a
roueh DrotOtvDe which is evaluated. The metho& used are
basEd bn d%amic testing, of $e specification with data
being fed in by the systems designer or a simulatton of the
real world. -
Some real-time langua es sup ort facilities for the
re resenlation of time. &uclid, &german and Stoyenko
[4f is capable of expressing ttmine constraints but at the
cost of r6stricting other feaTures wxich are unpredictable
such as dynamic process creation and recursion. Thd
language supports exception handlin so that the
a pro nate action can be taken when deadihes are missed.
&e Panguage FLEX, Lin and Natarajan [6] su ports
facilities for imprecise computing which is a hetl!od of
arriving at an approximate, value 'and then improving the
result as much as time pemts .

All the ap roaches described above have a articular place
in the software development cycle. T i e prototyping
a proach concentrates on modelling all the requirements.
l% build a complete protot pe the design would need to be
decomposed into moduLs and then these modules
implemented in the prototy ing language. Thus to
determine the feasibility of t!e timing constraints from
this method would require a complete prototype of the
system to be built.

Current formal methods are not mature enough to represent
the complexities of realistic real-time systems. Lauber's
method involves a detailed specification, much of which is
melevant when dealing with timine issues. The real-time
languages offer the facility ,to ex Gss and evaluate timing
constraints but determinin t!e feasibility of these
constraints is necessary welf before the implementation
stage.

All these methods are concerned with modelling both the
functionality and timing aspects of the systems whereas
SRT deals only with the timing,aspects. T i e s stem
designer can therefore model the timn behaviour gefore
significant implementation effort is tevoted to system
prototyping.

Real-time s stems can be considered, at an abstract level,
to consist o! three basic entities namely sensors processes
and actuators. SRT uses these real-time entities td model the
process structure and proposed hardware devices. The
rocess structure is made up of a fixed number of rocesses

gccause dynamic process creation causes unpred?ctability:
The time constraints which the software designers must
adhere to will be d e h e d by the system designers These
timing cdnstraints will be determined by the environment
so that the systems designer has to calculate how quicklj!
the system must respond to changes in the environment.

This section presents an example of a temperature
monitorin system with real-time constraints, to illustrate
the capabfities of SRT.

A real-time system is required to monitor and control the
temperature of a piece of equipment. This system must
respond to any change of temperature which is outside the
allowed range wlthin the defined tinung Iinuts.

165

The roposed system requires three processes each with a
num&r of associated sensors and actuators bonnected to
them. The sensors measure the tem rature convert the
analogue si nal to digital and re!ay !oforhation to the
process. d e actuators are cooling devices which can be
switched on or off by the process.

W e s s A qaintains the average temperature of the whole
piece of e uipment The process has three sensors and two
actuatnrs ?coolins devices) connected to it. When the
i i ~ - - e t e & ~ ~ ~ G e ~ g o e s cast a particular point then the
ac tuxrs change state (on or ofl): The.system desi ners
have detcrrmned that t tus Drocess is m u i d to Sam& the
sensors 400 times a second so that the Muired temperature
is tpintainep. ROCCSSB a+ c are lower priority processes
which monitor a subsection of the equipment. Table 1
defines the specification of all three processes.

RocessB and C must succeed to meet their deadlines 80%
and 50% of the time regpectively because processA can deal
with any serious e m erature changes ProcessA must
always meet its deadl?ws failure to do so could cause
serious damage to the equiphmr

The sensors an all of the same type that is they all take
loops to respond to a sam ling sigial. A d the actuators
take 1 OOOps to achieve &e transition from one state to
another. It has been determined that the actuators on
average switch 20 times r second ProcessA has a rate of
400 thus on avera e tR", actuatir is activated 1 in. 20
samkles. This .can%, modelled b havin a robabilit
which has a uniform distribution of 1 to h. firocesses.8
and C on avcra e send a signal to the actuatpr every ! ?n
12.5 samples. h i s is rounded down to 1 in 12 as it IS
better to overestimate aod leave space for error, than
underestimate.

The buses all take one unit of time to transmit and receive
the required information. The scheduler has an overhead of
10 units. The cumntl roposed processor has a clock
sped of 0.1 MHz (100 dbd units per second).

SRT can model this timing inforpation and evaluate the
prototype by simulation to detcrmoe whether or not these
~ c e s s e s can meet the set deadhnes with the proposed

&Ware.

This section describes how a real-timc systcm protot pe
can be constructed using the SRT m l . The f i t part of Lis
scction des+bes the types of timin attribute associatcd
wth the entitles. The second part 100%~ at each entity type
and the attributes associated with them.

Each of the three Real-Time
m s e s and actuators have a number of
attribu&s. Th& define the timing rkguirements of the
prototype and are of two types:

1 Actual Time 4. IS tuning attnbute represents the actual mcasurement of
time in the real world which is ty ically used to simulate a
delav for an 10 device. The actua! time in SRT is saecified
in &cro seconds.

2) Unit Time
This is the number of units clock cycles) a process requires
from the processor to simuIte the execution of a piccc of
code. This type of timing is processor dependent, so that
changing the processor speed w.iI1 result in lhc unit time
takmg different values of actual t~me.

SRT consists of five RT cntities
!&%%%$kntcd as icons on the simulation coouoi

panel (Figure 1). Senrots rocwlses and actuators am used
as the basis for construcd& the real-time prototyp6. TWO
other processes, scheduler and background are y@ types
of process that must alwa I be present. nhhes are
connected by databuses whit% an represented as MOWS on
the simulation control banel.

Each. r+ti.me enti has a lab$ attribue, so that the can
be distin uished. %e followm explaiar other attriiutcs
associad with each entity and Aationship (databus).

1 Sensors
TIl ere are two typcs of sensors, event driven and polling.

The llmg lcnsor device rcceivea a signal from a process
and & replies with its . cupnt s v . As shown in fiurc
2. the sensor has two ttmng attnbutes, sensor time and
minimum polling rate. The sensor time attribute is the
actual tim in nucm seconds that a sensor takes to receive a
signal from the bus convert the sensor reading from malo
to digital and put be result back onto the bus. The seu~n!
atuibute sets out how often the sensor should be polled per
second.

Event driven sensors p meelled by usin probability
&stnbutloar. Both m u g a m b u m arc left hank and the
arrival rate of events to a process is specified on the
incoming databur.

2) ACtU8tOrS
A process can trigger an actuator in one of Wo modes,
suspended or contlnuous. In suspended mode the proccss
sends a s' nal lq the actuator and wait^ for a reply
(suspends) %fore it continues. The contllluoup mode does
not wmt for a reply from the actuator but siypls to the
actuator and then continues. This modc may rem t la a queue
building up on the actuator if the process puls out more
signals than the actuator can W ~ S U M . The importaacc of
this varies depending on the device. For exa le if the
actuator is a display then losing a few sign% hay be
acce table.but in other situations a build-up of signals
wou& be disastrous.

The actuator has two timing attributes (Figure 3) actuator
timc md code time after actlon. Actuator tlme is b e actual
time i t will take the device to complete its task. Currently
this time is static so that the actuator always takes a set
amount. of time. kealistically, a device may vary in time
dependm on its current .state therefore a t~m ran e based
on a pro%ability distribution'should be used. T& 'Code
tim after action' attribute is e x y s e d .in unit time and wlll
be explamed m the process en ty secbon.

3 Buses rll e databuses that connect the various entities also have
timing attributes. The direction of the mow indicates the
flow of control. In fi ure 1 the sensors are bem polled.
Figure 4 shows the frm for the databus. The krst two
attributes specify the unit time it .takes $e information to
travel to and from the two connectlug enbtles.

The buses are also used tq specify any probability
distributions between two enhties. Tlus can only be set
between event sensor and m s s or Dmcess and actuator.
The bus fmm the event &+en sensor dan be used to simifv ~~~ ~~. . ._ _. ~~~ .. ~.~~ ..
thc arrival of events into the rocers. F i g m 4 showzthe
different distributions availabl!. The other values are the

arameters for the distributions. for exam le normal
$istribution will have two parame&, mean an8deviation.

4) Processes
A process can be of two types depending on the type of
sensors connected to i t Dcnodic or smradic. A Dcriodic
process is one which o&furs at re ul& intervals to-sample
some devices and if required senf a signal to the actuator.
Within SRT a pkiodic p r o k t is one which only has
polling sensors connected to it. A sporadic process has a
number of event driven senson associated with it. This
type of process only comes into action when an event
occurs.

Either process when executing will receive data from its
sensors (either by polling or interrupt) do some
processing and finally if r e & d send a signal to the
actuator A process will suspend dhen waitin to receive
data frdm a sensor. During the execution o!code it is
possible for another process with a higher priority to pre-
empt it.

Fi ure 5 is a process activit view, which enables .the
so!twm desi ner define t i e process's characteristics.
The top anef contains the rocess3 attnbutes. The rate
attribute %fines how of@ $is process should be ,executed
per second. The priorit attribute determines, the
importance of the process. f h e middle panel contains a
number of selection list view, which are used to descnbe
the arocess's m o r cvcles. Fieure 5 shows that orocessA
fmtfy executes some-code to ;tart up then sensois12 and
3 are polled with a small amount,Af code execuied in
between them. The followinn code simulates the Drocess to
calculate the average tempkature of the three sensors.
Finally the actuators are achvated.

There may be situations when a process need not send a
signal to an actuator eve time. In the temperature
monitoring system, Procesfj; chan es the actuators state
once in every 20 samples. The % us running from the
process to the actuator can be used to specify a particular
probability distribution which determines how often the
process sends to the actuator a si nal. The actuator
attribute 'code time after action' specffies in unit time any
extra code that may have to be run before the actuator is
kicked off.

The information on the bottom of the panel is calculated
from the minor cycle of the process. The figures show the
amount of actual time a process will take the amount of
processor units required and finally the number of times this
process could feasibility be executep per second if it had
sole access to the processor This fi ure should be
significantly greater than the raie s p e c i d at the top of the
panel.

The minor cycles for ProcessB and ProcessC follow the
same lines as hocessA.

5 Background process
d i s process + executed only when nothing else can be run.
Generally this t e of rocess in real-hme systems will
carry out c h e c g on &e hardware. No attributes are
associated with this process.

6) Scheduler

Each process L -$,,, a priority 1 being thd
Priorities should e assigned using the rate-mon&onic
riority assignment rule in which a higher request rate

getermines a higher priirity.

The scheduler decides what process to run by the priority
and state of the process. A process can be one of four
states' Read Running Suspended (blocked) and Dormant.
Most'opera&n syste& will support the first three the
dormant stategbeing associated with real-time operhing
svstems. The dormant state is when a oeriodic orocess has
cbmpleted its major cycle and is now .waiting for its next
occurrence.

Figure 6 shows the two timing attributes associated with
the scheduler. The first attribute is to set the soeed of the
processor that is how many units or clock cycles can run
in a secdnd. d i s value sets a relationshi between the
actual time values and the unit time. &is following
formula is used by SRT to convert actual hme into unit
time.

unit time - (106 / actual time bs)) /
processor speed.

For example, the following calculates the unit time from an
actuator which has a delay time of 1 OOOp and a processor
running at 0.1 MHz.

1 OOO OOO / 1 OOO s
therefore 100 units = 1 OOOps

1 OOO per second
1000 / 1 0 0 d = . ? W u n i t s

The overhead attribute s ecifies the amount of processor
time the scheduler wilf take up when swopping two
processes. The overhead value is in unit time and this code
cannot be preempted.

SRT h+ two t es of timing constraints, process deadline
and devlce des ine .

Each process has a frequency rate which implicit1 defines
its deadline. The rocess must be completed before it is
next scheduled otl!erwise an overload will occur. The
scheduler deals with overloads by aborting the rocess so
that it can be restarted on its next occurrence. iuclid j4]
rovides an exception handling mechanism for deterrmnmg

Le action of a process when it fails to meet its deadline. As
other scheduling polices are implemented, so mechanisms
for re resenting timing dela s for exceptions raised by
misseldeadlines will be consiiered.

When making timing estimates of the processin re uired,
the type of rocess should also be considered. %ar8 lime
orocesses whch are muired to always meet their deadline
Should be calculated ushg the worst-case IUO times, whereas
soft processes should be calculated with an average run
time, Bums and Wellings 131.

These are constraints placed on the system by the system
designer when determining the sam ling and action rate for
the system to function within $e requirements. The
computer system must be able to meet these constraints for
the system to function correctly.

The sensor has the attribute minimum polling times. After
the simulation the summary information will show whether
or not the sensors have been polled enough times.

The actuator constraint determines how often, in actual
time, the actuator must be updated. Currently SRT dis lays
for each actuator the amount of times an action hasteen
completed and whether or not a queue exists

Once a model of the real-time svstem has been constructed
then the tirping constraints-cai betested by simulation.
The simulation IS executed for the unit time specified by the
user. If the simulahon is executed in the trace mode then
every process reports its progress at every stage.

Every process including scheduler and background) has a
text window whch displays its actions and the mcessor
time at which the action was started Fi ure 7 s\ows the
scheduler, background and ProcessA texf windows. The
scheduler re rts to the text view every time processes are
swopped anrthe background rocess re rts the range of
times it was being executed. f n fi ure ?the process view
shows part of the activities oPprocessA during the
simulation. On the start uo of the 400th cvcle the
processor executes for 15 uniis 5 units for proctss code
time and 10 units for the .schkduling overhead (99751-
99765 inclusive). This is followed bv the Drocess
SusDendine while sensor1 is beine Dolled. Sensorf causes
RdcessA b suspend for 12 UDIIS r'for data transfer and 10
for the sensor dely. ,Thu is then' repeated for the other two
sensors. The fin oiece of code runs for 50 units. 40 units
for the code and 10 units for scheduling. This cycle does
not need to activate the actuators. After completion of the
cycle the process will lie dormant until its next occurrence.

The simulation is terminated when the processor time
reaches the amount defined on the simulation panel.

a ut--

A summ of the process activities is displayed in each
text vie,w%: IS information ' can be used to determine which
constra~~ts might be modified to improve performance.

During the simulation each process keeps a record of the
time spent in the four states, which are displayed
graphically Fi ure 8) Each process calculates how often it
msses its dea%line. 'All hard real-time processes should
have a 100% success rate.

The background process summary displays the percenta e
of time it was executed. This figure can give an idea on tie
amount of processing time that could still be used. The
scheduler summar displays the amount of actual
processing perf0rme.K. the rest of the time was taken up by
the scheduler process.'

The process summary includes a list of all the sensor and
actuator devices. Each device supplies information on how

167

oftcn it hor bccn activatcd so that the figure can be uscd to
check if the device timing'constraints have becn met. Each
scllsor connected to the process displa s how many times it
was pI!ed and whether or not it satisfied its device .timing
COOS amL The actuator dis Lays how often it was
activated and how many signals 8 any were waiting on the
aueue. The summpry informati& sho& is after one second
6ffrimu1~i&ii~-tlmc(lilb OOo units). because of the cyclic
nature of real-time systems runn'ing it for any longer
Deriod of time would uroba6lv not make any significant - -
aiffaence.

From the summ information each rocusA B and C met
their deadl incs~00% 98.8% ancf 58.8RD'of the time
respcctively. which is'within !he requirements. If any
changes w a e made to the requuements then the software
&si e' would need to @ow if all the timing constraints
c o u ~ s t ~ l l be met. If dunng the develo ment cycle it was
realised that anothe; reasor connectecf to proces;B was
rcyircd. then the initial SRT model could easily be adapted
an then reevaluated After re-evaluatin the s stem
y s c s A , B n d . C &t their deadlines l0Ok 86.44 and

This 'change. in
ukments has caused rocessc to fail to met its required

pcrfo-ffi leve! &fined in the requirements. This
information IS Immediatelv avalable. thus allow in^ the

5.2% of the hme respectively.

designers to makc early decisions, reguding ,the tlhing
behaviour of the system. n e decisions may involve the
use of faster hardware. reductloo of software m u ~ m e n t s or
the use of additional +son.
A small chmge in the requirements can radically change the
timing khaviour of the system. Thus, without the aid of
softfare tools i t beconies very difficult for software
designers to predict the effect of chan e on the tiqing
behaviour of a d - t i t i m e system . Especiab if the real-tlme
system has many orocuscs which are distriguted over many .. piicessors. -
The initial system is being used to test and develop new
ideas. This next section looks at some of the current ideas
under develo ment and also considers the long term
objectives of JRT.

sJuLuum
Currently processes only suspend when involved in IO
operations but a process may actual1 have to wait for the
completioh of another process bc&e it can continue.
Process-to-process communication is being implemented
using a semaphore notation, so that one process will wait
for a signal from mother.

The system designer must make estimates on the execution
times of roccsses which will robably be far from
accurate. k j e c t h a g e n , even after years of experience
don't Seem to make much better estimates. The estimate;
are general1 made and then multlplied b some factor
determined d; previous underestimates. SR% docs enable
changes to be made very easily so that the consqucnee of
iq roved estimates can be.se& instantly. One problem
wik these cyclic rocesses is that each cycle may not take
an equal amunt of tiqe. for example a process may have to
do SOM extra calculatlons after some determined number of
cycles. This flexibility could be modelled using a
probability distribution mechanism.

Sporadic processes are to be implemented into the fixed
priority scheduling policy. A sporadic process would be
given a priority as with the periodic process but not an
occurrence rate.' When an event occurs the scheduler will
service the interrupt and then execute the highest nority
m s s . All emergency interrupts could be modellecfin one

kghcst priority process.

L Q i L k n
A longer term aim is to provide modelling of multiple
processors. The simulation would provide information
about each processor such as its average load balance.
This would allow designers to manipulate processes
between processors to detemne the best configuration.

{robably be of limiteq use to the system and economic,
uman and ecological catastrophes could result,

St;mko;ic [14].

Tools arc renuired which h e h svstem desinom make the
co&ctad&is;oos-b having ihe' informati& available at
the desinn stage ra& than after the unplemu~tahon stage,
where TindiKg a fault would be far more CostIy,
Malcolm [121.

SRT CEO be U& throughout the devel0 m t of the real-
tilqe system, so tha: ,the consequences of improved timin
estlmates and addihonal requuements can be reflccte!
instantly. SRT has also shown that it could be used to
investigate various scheduling hcies to detemne the
a ropriatc olicy for a p m c u E process configuration.
8 T should \el to provide information which wlll assist
in determining Le feasibility of the timing cpnstraints at
an earlier stage in the development than previously would
have bccn possible.

ACKNOWLEDGEMENT
The authors wish to thank Paul Kearncy Bill Jones and
Morag Kel!awry, from British Acroipacc for their
constructlve ideas in the development of the cumnt vmion
of SRT.

S. T. Allworth. 1981. "Introduction to real time
%ware des@, &
[2]
A Speciecation Language for.Rc+Tmc S stems"

8. Aueraheimr and R. K e p , 1986, "RT-ASLAN

d 8 7 9 - d P

Wellings 1990, "RN-Tim Systems
languag2s".

f]
R. J. Lauber, 1989, "Forecasting Real-Time

ehaviour During Software Desi n using a CASE
environment", m u
61-76

61 K.-J. Lin and S. Natarajan 1988 "Ex ssin and
baintaining Timing constraints IO hlX: d96-h

Luqi, 1988. "Knowled e-Based Support for Rapid
kyftware Prototypmg", & 9-18

9) Lu i and V Berzins, 1988. "Ra idly Prototyping

1101 Luai. V. Berzins and R. T. Yeh. 1988. "A

k d - T k iystems"; 25-3&

Prohyping I%I uagc for Real-Time Softwke"
-14&9w

Lu i and M Ketabch' 1988, "A Computer-Aided

B. Malcolm, 1989, "A Large Emkdded S stem

k % t y p i n g % y s t e m ' * ; ~ 66-72

b g , for
lsevier Apphed iemx,

131
R. A. Orr, M. T., Noms, R. Tinker q d C. D. V.

ouch 1988. "Systemahc method for realtime system
design& lzllz 391-393- and -

J. A. Stankovic 1988 "A Serious Problem for Next-
10-18 841 . eneratlon ~ystems",

The correctness of real-time systems involves not only the
verification of the logical ste s of the software but the
comDletion of the SEDS inside &e eiven time limits. If the
timC limits are not 'met then th; work carried out will

imulation Panell

bar chart view
activate sensor

remove

P,
i

lii
process view

bar chart view
ramova

trace on

\ I

bar chart view
remove

trace on

Sensor Form -
Name: Sonsom

SenSorTLne: 100

llhirmmPoUingRats: 0

close views

Figure 1 Simulation Panel

Lctuator Form -
N m : Actuator4

Code lime With Action: 10

Actuator Time: 1000

DataEus

p-1
&Is Time To: 1

BllrTineFrom: 1

Dirtrib&”: Binomial
RangeFran: n Exponential

Geomerric
Normal

Range To: Poisson
Uniform
soar

Figure 2 Sensor Form Figure 3 Actuator Form Figm 4 Databus Form

Scheduler Form

Name: Scheduler

Proc+rror Clock Speed: 100000

m e s a d : 10

I R o c e r s A Monitorl

Figure 6 Scheduler Form Figure 8 Summary of ProcessA

Figure 5 Rocess Activity View

99563 Received D a t a from: Sensor2
99564 S t a r t Code Time
99578 End Code Time
99579 S t a r t Polling Sensor3
99590 Received D a t a from: Sensor3
99591 S t a r t Code Tima
99640 End COdQ Time

s t a r t o f cycle: 400
99751 S t a r t Code Time
99765 End COdQ TimR
99766 S t a r t Polling Sansorl
99777 Received D a t a from: Sonsorl
99778 S t a r t Code Time
99792 End Coda Time
99793 S t a r t Polling Sensor2
99804 Received D a t a from: Sensor2
99805 S t a r t Code Tima
99819 End Code Time
99820 S t a r t Polling Sensor3
99831 Racaived D a t a from: Sensor3
99832 S t a r t Code Time
99881 End Code Time

Sensor1 Polled: 400
Potling const ra in t ok
Sensor2 Polled: 400
Polling const ra in t ok
Sensor3 Polled! 400
Polling const ra in t ok
Ac tua to r2 Actions appl ied 23
queue: 0
A c t u a t o r ? Actions applied: 32
queue: 0
Overloads: 0
Poformanco: 100.0%
Ready: 18.277%
Suspend 14.23%
Dormant: 44.943%
Running: 22.55%

Figure 7 Process Text Views

99832 RccessB 2 Raady

99832 Scheduler Overhead
99842 RocessA 1 Running
99882 RocersA 1 Dormant

99882 SChRdUlPr OVPrhRad
99892 RocessB 2 Running
9992 1 RocersB 2 Dormant

9992 1 Schadulor Overhead
9993 1 RocesrC 3 Running
99951 RacessC 3 Dormant

99961 Scheduler Overhead
9996 1 Background 1000 Runnlng

93971-94000
94712 - 94750
94776 - 94777
96470 - 95471
95562 - 95563
95589 - 95590
96961-96000
96712 - 96750
96776 - 96777
97490 - 97491
97974 - 98000
98712 - 98750
98776 - 98777
99470-99471
99562- 99563
99689 - 99690
99961 - 100000

