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ABSTRACT 
The obiective of the work described here is to Drovide a 
softwak tool to, assist real-time system specifiers and 
designers ta predict, at an early sta e of the develo men1 
DKIC~SS,  the timing behaviour of !e system devehed .  
Our tool fSimulatioi of Real-time svstems-fSRT)) is usid to 
model thk timing aspects of a red-time iystem and then 
simulate the system to predict its behaviour. 

I" 
A real-time system is expected to interact with the 
environment within certain timing constraints and the 
software desinners must nroduce a svstem which can 
guarantee to xiieet these cohstraints A'realistic real-tme 
system will be composed of many interacting modules 
which could bc executed with real or virtual concurrency 
Real concurrency means each module executine on its o&n 

Our tool SRT (Simulation of Real-time systems allows a 
model of a real-ttme system to be copstructed'and then 
evaluated by simulatton. The constructton of the model IS 
achieved by using a raphical user interface (Figure 1). 
Icons from the,controf panel are copied onto the desi n 
anel and then oined together with lines $at represent tie 

Zatabuses. Each icon has a number of attnbutes which can 
be specified by selecting the form option on the icon menu. 

This paper presents an overview of the system which is 
implemented using Smalltalk-80 an object-oriented 
programming language The Ian uaie was chosen because 
of its rapid prototy'ing abijty, thus ideas can be 
implemented and t e s d v e r y  quickly. 
The paper is split into five sections. The first section looks 
at current tools and methods fo r ,  modelling timin 
constraints. The second and third sections exDlain a rea! 
time s stem whose timing characteristics can be modelled 
using JRT. The fourth section describes how SRT evaluates 
the model constructed in the Drevious two sections and 
analyses the output data. The fifth section looks at future 
versions of the tool and draws some conclusions about our 
work. 

There are various tools and methods for prototyping 
formallv specifying and imnlementing real-time systems: 
This section looks-briefly i t  each ar<a and conclides by 
showing where SRT fits in. 

Rapid prototwing tools can be seen bv the desiencr and 
user a d a  wayof-viewing the roduct i t  the des& stage. 
The user can determine whet\er or not the prototype is 
appropnate and, if not, the apnropnate alterations can be 
mde.-thus avoidine wasted effort in  the imolementation of 
incorrect requiremEnts. The corn uter aided rototypin- 
system proposed by Lu i et a1 [! 9. 10, l l f i s  a ra i! 
prototiping tool for rej-time iystem protot ping +he 
system is composed of a software base whici coniajns a 
number of components. These corn onents arc explicitly 
given a set of uming constraints. Tge tools provides help 
in constructing a prototype and determines its rcal-time 
performance by the constrain& placed on each component. 

Formal specification of real-time systems should enable the 
system designer to verify mathematically that a s stem will 
meet all its deadlines. However, formal methods are still 
immature for software systems ,and introducing the notion 
of time makes the issue of venfication even more cornplcx. 

Various s ecification languages for real-time systems are 
emerging !ut major restrictions are placed on the real-time 
systems to reduce the complexity. For example the 
s ecification Ian uage RT-ASLAN Auernheimer' and 
temmerer [2] m%es the assumption' that each process is 
on a dedicateh processor, thus avoiding any scheduling 
issues. 

Laubex's [SI approach is based on the fact that the design of 
large complex real-time systems will use a s ecification 
language. If timing constraints can be expresseg within the 
specification then it can be us+ to test the behaviour of the 
real-time system. The ,specification model re resents a 
roueh DrotOtvDe which is evaluated. The metho& used are 
basEd bn d%amic testing, of $e specification with data 
being fed in by the systems designer or a simulatton of the 
real world. - 
Some real-time langua es sup ort facilities for the 
re resenlation of time. &uclid, &german and Stoyenko 
[4f is capable of expressing ttmine constraints but at the 
cost of r6stricting other feaTures wxich are unpredictable 
such as dynamic process creation and recursion. Thd 
language supports exception handlin so that the 
a pro nate action can be taken when deadihes are missed. 
&e Panguage FLEX, Lin and Natarajan [6] su ports 
facilities for imprecise computing which is a hetl!od of 
arriving at an approximate, value 'and then improving the 
result as much as time pemts .  

All the ap roaches described above have a articular place 
in the software development cycle. T i e  prototyping 
a proach concentrates on modelling all the requirements. 
l% build a complete protot pe the design would need to be 
decomposed into moduLs and then these modules 
implemented in the prototy ing language. Thus to 
determine the feasibility of t!e timing constraints from 
this method would require a complete prototype of the 
system to be built. 

Current formal methods are not mature enough to represent 
the complexities of realistic real-time systems. Lauber's 
method involves a detailed specification, much of which is 
melevant when dealing with timine issues. The real-time 
languages offer the facility ,to ex Gss and evaluate timing 
constraints but determinin t!e feasibility of these 
constraints is necessary welf before the implementation 
stage. 

All these methods are concerned with modelling both the 
functionality and timing aspects of the systems whereas 
SRT deals only with the timing,aspects. T i e  s stem 
designer can therefore model the timn behaviour gefore 
significant implementation effort is tevoted to system 
prototyping. 

Real-time s stems can be considered, at an abstract level, 
to consist o! three basic entities namely sensors processes 
and actuators. SRT uses these real-time entities td model the 
process structure and proposed hardware devices. The 
rocess structure is made up of a fixed number of rocesses 

gccause dynamic process creation causes unpred?ctability: 
The time constraints which the software designers must 
adhere to will be d e h e d  by the system designers These 
timing cdnstraints will be determined by the environment 
so that the systems designer has to calculate how quicklj! 
the system must respond to changes in the environment. 

This section presents an example of a temperature 
monitorin system with real-time constraints, to illustrate 
the capabfities of SRT. 

A real-time system is required to monitor and control the 
temperature of a piece of equipment. This system must 
respond to any change of temperature which is outside the 
allowed range wlthin the defined tinung Iinuts. 
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The roposed system requires three processes each with a 
num&r of associated sensors and actuators bonnected to 
them. The sensors measure the tem rature convert the 
analogue si nal to digital and re!ay !oforhation to the 
process. d e  actuators are cooling devices which can be 
switched on or off by the process. 

W e s s A  qaintains the average temperature of the whole 
piece of e uipment The process has three sensors and two 
actuatnrs ?coolins devices) connected to it. When the 
i i ~ - - e t e & ~ ~ ~ G e ~ g o e s  cast a particular point then the 
ac tuxrs  change state (on or ofl): The.system desi ners 
have detcrrmned that t tus Drocess is m u i d  to Sam& the 
sensors 400 times a second so that the Muired temperature 
is tpintainep. ROCCSSB a+ c are lower priority processes 
which monitor a subsection of the equipment. Table 1 
defines the specification of all three processes. 

RocessB and C must succeed to meet their deadlines 80% 
and 50% of the time regpectively because processA can deal 
with any serious e m  erature changes ProcessA must 
always meet its deadl?ws failure to do so could cause 
serious damage to the equiphmr 

The sensors an all of the same type that is they all take 
loops to respond to a sam ling sigial. A d  the actuators 
take 1 OOOps to achieve &e transition from one state to 
another. It has been determined that the actuators on 
average switch 20 times r second ProcessA has a rate of 
400 thus on avera e tR", actuatir is activated 1 in. 20 
samkles. This .can%, modelled b havin a robabilit 
which has a uniform distribution of 1 to h. firocesses.8 
and C on avcra e send a signal to the actuatpr every ! ?n 
12.5 samples. h i s  is rounded down to 1 in 12 as it IS 
better to overestimate aod leave space for error, than 
underestimate. 

The buses all take one unit of time to transmit and receive 
the required information. The scheduler has an overhead of 
10 units. The cumntl roposed processor has a clock 
sped  of 0.1 MHz (100 dbd units per second). 

SRT can model this timing inforpation and evaluate the 
prototype by simulation to detcrmoe whether or not these 
~ c e s s e s  can meet the set deadhnes with the proposed 

&Ware. 

This section describes how a real-timc systcm protot pe 
can be constructed using the SRT m l .  The f i t  part of Lis 
scction des+bes the types of timin attribute associatcd 
wth the entitles. The second part 100%~ at each entity type 
and the attributes associated with them. 

Each of the three Real-Time 
m s e s  and actuators have a number of 
attribu&s. Th& define the timing rkguirements of the 
prototype and are of two types: 

1 Actual Time 4. IS tuning attnbute represents the actual mcasurement of 
time in the real world which is ty ically used to simulate a 
delav for an 10 device. The actua! time in SRT is saecified 
in &cro seconds. 

2) Unit Time 
This is the number of units clock cycles) a process requires 
from the processor to simuIte the execution of a piccc of 
code. This type of timing is processor dependent, so that 
changing the processor speed w.iI1 result in lhc unit time 
takmg different values of actual t~me. 

SRT consists of five RT cntities 
!&%%%$kntcd as icons on the simulation coouoi 

panel (Figure 1). Senrots rocwlses and actuators am used 
as the basis for construcd& the real-time prototyp6. TWO 
other processes, scheduler and background are y@ types 
of process that must alwa I be present. nhhes are 
connected by databuses whit% an represented as MOWS on 
the simulation control banel. 

Each. r+ti.me enti has a lab$ attribue, so that the can 
be distin uished. %e followm explaiar other attriiutcs 
associad with each entity and Aationship (databus). 

1 Sensors 
TIl ere are two typcs of sensors, event driven and polling. 

The llmg lcnsor device rcceivea a signal from a process 
and & replies with its . cupnt  s v .  As shown in fiurc 
2. the sensor has two ttmng attnbutes, sensor time and 
minimum polling rate. The sensor time attribute is the 
actual tim in nucm seconds that a sensor takes to receive a 
signal from the bus convert the sensor reading from malo 
to digital and put be result back onto the bus. The seu~n! 
atuibute sets out how often the sensor should be polled per 
second. 

Event driven sensors p meelled by usin probability 
&stnbutloar. Both m u g  a m b u m  arc left hank and the 
arrival rate of events to a process is specified on the 
incoming databur. 

2) ACtU8tOrS 
A process can trigger an actuator in one of Wo modes, 
suspended or contlnuous. In suspended mode the proccss 
sends a s' nal lq the actuator and  wait^ for a reply 
(suspends) %fore it continues. The contllluoup mode does 
not wmt for a reply from the actuator but siypls to the 
actuator and then continues. This modc may rem t la a queue 
building up on the actuator if the process puls out more 
signals than the actuator can W ~ S U M .  The importaacc of 
this varies depending on the device. For exa le if the 
actuator is a display then losing a few sign% hay be 
acce table.but in other situations a build-up of signals 
wou& be disastrous. 

The actuator has two timing attributes (Figure 3) actuator 
timc md code time after actlon. Actuator tlme is b e  actual 
time i t  will take the device to complete its task. Currently 
this time is static so that the actuator always takes a set 
amount. of time. kealistically, a device may vary in time 
dependm on its current .state therefore a t~m ran e based 
on a pro%ability distribution'should be used. T& 'Code 
tim after action' attribute is e x y s e d  .in unit time and wlll 
be explamed m the process en ty secbon. 

3 Buses rll e databuses that connect the various entities also have 
timing attributes. The direction of the mow indicates the 
flow of control. In fi ure 1 the sensors are bem polled. 
Figure 4 shows the frm for the databus. The krst two 
attributes specify the unit time it .takes $e information to 
travel to and from the two connectlug enbtles. 

The buses are also used tq specify any probability 
distributions between two enhties. Tlus can only be set 
between event sensor and m s s  or Dmcess and actuator. 
The bus fmm the event &+en sensor dan be used to simifv .... ~~~ ~~. . ._ _. ~~~ .. ~.~~ .. 
thc arrival of events into the rocers. F i g m  4 showzthe 
different distributions availabl!. The other values are the 

arameters for the distributions. for exam le normal 
$istribution will have two parame&, mean an8deviation. 

4) Processes 
A process can be of two types depending on the type of 
sensors connected to i t  Dcnodic or smradic. A Dcriodic 
process is one which o&furs at re ul& intervals to-sample 
some devices and if required senf a signal to the actuator. 
Within SRT a pkiodic p r o k t  is one which only has 
polling sensors connected to it. A sporadic process has a 
number of event driven senson associated with it. This 
type of process only comes into action when an event 
occurs. 

Either process when executing will receive data from its 
sensors (either by polling or interrupt) do some 
processing and finally if r e & d  send a signal to the 
actuator A process will suspend dhen waitin to receive 
data frdm a sensor. During the execution o!code it is 
possible for another process with a higher priority to pre- 
empt it. 



Fi ure 5 is a process activit view, which enables .the 
so!twm desi ner define t i e  process's characteristics. 
The top anef contains the rocess3 attnbutes. The rate 
attribute %fines how of@ $is process should be ,executed 
per second. The priorit attribute determines, the 
importance of the process. f h e  middle panel contains a 
number of selection list view, which are used to descnbe 
the arocess's m o r  cvcles. Fieure 5 shows that orocessA 
fmtfy executes some-code to ;tart up then sensois12 and 
3 are polled with a small amount,Af code execuied in 
between them. The followinn code simulates the Drocess to 
calculate the average tempkature of the three sensors. 
Finally the actuators are achvated. 

There may be situations when a process need not send a 
signal to an actuator eve time. In the temperature 
monitoring system, Procesfj; chan es the actuators state 
once in every 20 samples. The % us running from the 
process to the actuator can be used to specify a particular 
probability distribution which determines how often the 
process sends to the actuator a si nal. The actuator 
attribute 'code time after action' specffies in unit time any 
extra code that may have to be run before the actuator is 
kicked off. 

The information on the bottom of the panel is calculated 
from the minor cycle of the process. The figures show the 
amount of actual time a process will take the amount of 
processor units required and finally the number of times this 
process could feasibility be executep per second if it had 
sole access to the processor This fi ure should be 
significantly greater than the raie s p e c i d  at the top of the 
panel. 

The minor cycles for ProcessB and ProcessC follow the 
same lines as hocessA. 

5 Background process 
d i s  process + executed only when nothing else can be run. 
Generally this t e of rocess in real-hme systems will 
carry out c h e c g  on &e hardware. No attributes are 
associated with this process. 

6 )  Scheduler 

Each process L -$,,, a priority 1 being thd 
Priorities should e assigned using the rate-mon&onic 
riority assignment rule in which a higher request rate 

getermines a higher priirity. 

The scheduler decides what process to run by the priority 
and state of the process. A process can be one of four 
states' Read Running Suspended (blocked) and Dormant. 
Most'opera&n syste& will support the first three the 
dormant stategbeing associated with real-time operhing 
svstems. The dormant state is when a oeriodic orocess has 
cbmpleted its major cycle and is now .waiting for its next 
occurrence. 

Figure 6 shows the two timing attributes associated with 
the scheduler. The first attribute is to set the soeed of the 
processor that is how many units or clock cycles can run 
in a secdnd. d i s  value sets a relationshi between the 
actual time values and the unit time. &is following 
formula is used by SRT to convert actual hme into unit 
time. 

unit time - (106 / actual time bs)) / 
processor speed. 

For example, the following calculates the unit time from an 
actuator which has a delay time of 1 OOOp and a processor 
running at 0.1 MHz. 

1 OOO OOO / 1 OOO s 
therefore 100 units = 1 OOOps 

1 OOO per second 
1000 / 1 0 0 d = . ? W u n i t s  

The overhead attribute s ecifies the amount of processor 
time the scheduler wilf take up when swopping two 
processes. The overhead value is in unit time and this code 
cannot be preempted. 

SRT h+ two t es of timing constraints, process deadline 
and devlce des ine .  

Each process has a frequency rate which implicit1 defines 
its deadline. The rocess must be completed before it is 
next scheduled otl!erwise an overload will occur. The 
scheduler deals with overloads by aborting the rocess so 
that it can be restarted on its next occurrence. iuclid j4] 
rovides an exception handling mechanism for deterrmnmg 

Le action of a process when it fails to meet its deadline. As 
other scheduling polices are implemented, so mechanisms 
for re resenting timing dela s for exceptions raised by 
misseldeadlines will be consiiered. 

When making timing estimates of the processin re uired, 
the type of rocess should also be considered. %ar8 lime 
orocesses whch are muired to always meet their deadline 
Should be calculated ushg the worst-case IUO times, whereas 
soft processes should be calculated with an average run 
time, Bums and Wellings 131. 

These are constraints placed on the system by the system 
designer when determining the sam ling and action rate for 
the system to function within $e requirements. The 
computer system must be able to meet these constraints for 
the system to function correctly. 

The sensor has the attribute minimum polling times. After 
the simulation the summary information will show whether 
or not the sensors have been polled enough times. 

The actuator constraint determines how often, in actual 
time, the actuator must be updated. Currently SRT dis lays 
for each actuator the amount of times an action hasteen 
completed and whether or not a queue exists 

Once a model of the real-time svstem has been constructed 
then the tirping constraints-cai betested by simulation. 
The simulation IS executed for the unit time specified by the 
user. If the simulahon is executed in the trace mode then 
every process reports its progress at every stage. 

Every process including scheduler and background) has a 
text window whch displays its actions and the mcessor 
time at which the action was started Fi ure 7 s\ows the 
scheduler, background and ProcessA texf windows. The 
scheduler re rts to the text view every time processes are 
swopped anrthe background rocess re rts the range of 
times it was being executed. f n  fi ure ?the process view 
shows part of the activities oPprocessA during the 
simulation. On the start uo of the 400th cvcle the 
processor executes for 15 uniis 5 units for proctss code 
time and 10 units for the .schkduling overhead (99751- 
99765 inclusive). This is followed bv the Drocess 
SusDendine while sensor1 is beine Dolled. Sensorf causes 
RdcessA b suspend for 12 UDIIS r'for data transfer and 10 
for the sensor dely. ,Thu is then' repeated for the other two 
sensors. The fin oiece of code runs for 50 units. 40 units 
for the code and 10 units for scheduling. This cycle does 
not need to activate the actuators. After completion of the 
cycle the process will lie dormant until its next occurrence. 

The simulation is terminated when the processor time 
reaches the amount defined on the simulation panel. 

a ut-- 

A summ of the process activities is displayed in each 
text vie,w%: IS information ' can be used to determine which 
constra~~ts might be modified to improve performance. 

During the simulation each process keeps a record of the 
time spent in the four states, which are displayed 
graphically Fi ure 8) Each process calculates how often it 
msses its dea%line. 'All hard real-time processes should 
have a 100% success rate. 

The background process summary displays the percenta e 
of time it was executed. This figure can give an idea on tie 
amount of processing time that could still be used. The 
scheduler summar displays the amount of actual 
processing perf0rme.K. the rest of the time was taken up by 
the scheduler process.' 

The process summary includes a list of all the sensor and 
actuator devices. Each device supplies information on how 
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oftcn it hor bccn activatcd so that the figure can be uscd to 
check if the device timing'constraints have becn met. Each 
scllsor connected to the process displa s how many times it 
was pI!ed and whether or not it satisfied its device .timing 
COOS amL The actuator dis Lays how often it was 
activated and how many signals 8 any were waiting on the 
aueue. The summpry informati& sho& is after one second 
6ffrimu1~i&ii~-tlmc(lilb OOo units). because of the cyclic 
nature of real-time systems runn'ing it for any longer 
Deriod of time would uroba6lv not make any significant - -  
aiffaence. 

From the summ information each rocusA B and C met 
their deadl incs~00% 98.8% ancf 58.8RD'of the time 
respcctively. which is'within !he requirements. If any 
changes w a e  made to the requuements then the software 
&si e' would need to @ow if all the timing constraints 
c o u ~ s t ~ l l  be met. If dunng the develo ment cycle it was 
realised that anothe; reasor connectecf to proces;B was 
rcyircd. then the initial SRT model could easily be adapted 
an then reevaluated After re-evaluatin the s stem 
y s c s A ,  B n d . C  &t their deadlines l0Ok 86.44 and 

This 'change. in 
ukments has caused rocessc to fail to met its required 

pcrfo-ffi leve! &fined in the requirements. This 
information IS Immediatelv avalable. thus allow in^ the 

5.2% of the hme respectively. 

designers to makc early decisions, reguding ,the tlhing 
behaviour of the system. n e  decisions may involve the 
use of faster hardware. reductloo of software m u ~ m e n t s  or 
the use of additional +son. 
A small chmge in the requirements can radically change the 
timing khaviour of the system. Thus, without the aid of 
softfare tools i t  beconies very difficult for software 
designers to predict the effect of chan e on the tiqing 
behaviour of a d - t i t i m e  system . Especiab if the real-tlme 
system has many orocuscs which are distriguted over many .. piicessors. - 
The initial system is being used to test and develop new 
ideas. This next section looks at some of the current ideas 
under develo ment and also considers the long term 
objectives of JRT. 

sJuLuum 
Currently processes only suspend when involved in IO 
operations but a process may actual1 have to wait for the 
completioh of another process bc&e it can continue. 
Process-to-process communication is being implemented 
using a semaphore notation, so that one process will wait 
for a signal from mother. 

The system designer must make estimates on the execution 
times of roccsses which will robably be far from 
accurate. k j e c t  h a g e n ,  even after years of experience 
don't Seem to make much better estimates. The estimate; 
are general1 made and then multlplied b some factor 
determined d; previous underestimates. SR% docs enable 
changes to be made very easily so that the consqucnee of 
iq roved estimates can be.se& instantly. One problem 
wik these cyclic rocesses is that each cycle may not take 
an equal amunt  of tiqe. for example a process may have to 
do SOM extra calculatlons after some determined number of 
cycles. This flexibility could be modelled using a 
probability distribution mechanism. 

Sporadic processes are to be implemented into the fixed 
priority scheduling policy. A sporadic process would be 
given a priority as with the periodic process but not an 
occurrence rate.' When an event occurs the scheduler will 
service the interrupt and then execute the highest nority 
m s s .  All emergency interrupts could be modellecfin one 

kghcst priority process. 

L Q i L k n  
A longer term aim is to provide modelling of multiple 
processors. The simulation would provide information 
about each processor such as its average load balance. 
This would allow designers to manipulate processes 
between processors to detemne the best configuration. 

{robably be of limiteq use to the system and economic, 
uman and ecological catastrophes could result, 

St;mko;ic [14]. 

Tools arc renuired which h e h  svstem desinom make the 
co&ctad&is;oos-b having ihe' informati& available at 
the desinn stage ra& than after the unplemu~tahon stage, 
where TindiKg a fault would be far more CostIy, 
Malcolm [121. 

SRT CEO be U& throughout the devel0 m t  of the real- 
tilqe system, so tha: ,the consequences of improved timin 
estlmates and addihonal requuements can be reflccte! 
instantly. SRT has also shown that it could be used to 
investigate various scheduling hcies to detemne the 
a ropriatc olicy for a p m c u E  process configuration. 
8 T  should \el to provide information which wlll assist 
in determining Le feasibility of the timing cpnstraints at 
an earlier stage in the development than previously would 
have bccn possible. 
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Figure 5 Rocess Activity View 
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Figure 7 Process Text Views 
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