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Abstract. The objective of the work described here is to provide a software tool to assist real-time system specifiers

and designers to predict, at an early stage of the development process, the timing behavior of the system being

developed. The timing behavior of the system is dependent on the scheduler which is the central component

of any real-time system. Our tool (Simulation of Real:Time systems (SRT)) is used to model the timing aspects

of a real-time system and to simulate the system with a particular scheduling policy so as to predict its behavior.

This paper will present an overview ofthe capabilities ofthe system which is implemented using an object-oriented
programming language (Smalltalk-80).

1.. Introduction

A real-time system is expected to interact with the environment within certain timing con-
straints and software designers must produce a system which can guarantee to meet these
constraints. A realistic real-time system is composed of many interacting modules which

can be executed with real or virtual concurrency. Real concurrency describes the situation
in which each module executes on its own processor whereas virtual concurrency is that
in which many modules (processes) are executed on one processor (Allworth 1981). There
can also be a combination of these, where many processes are distributed between many
processors. Even the smallest real-time systems can, therefore, present considerable timing
problems which may be addressed using systematic methods supported by software tools
(Orr 1988). It is particularly important that software tools are available to help system
designers during the design rather than implementation at which stage finding a fault would
be far more costly (Malcolm 1989).

There are many factors which influence the timing behavior of a real-time system and
any alteration of the system can radically change its behavior. For example, the effect of
an additional requirement in one process could propagate through the system and cause
a fuilure in another process. It may not be intuitively obvious which process(es) would
fail since this would depend on the scheduling policy implemented. Any alterations in the
timing behavior will alter the way in which the scheduler policy manages its resources;
thus the scheduling poliry is the central influencing factor on the timing behavior of the
system. In order for a tool to predict the timing behavior of a real-time system, it must
take into account the scheduling poliry to be used.

*This work has been jointly funded by the Science and Engineering Research Council, UK and British Aerospace,

Warton, UK.
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our tool SRT (Simulation of Real-Time systems) (Berryman 1991), allows a model of
a real-time system to be constructed and then evaluated, by simulation, using a particular
scheduling policy. The construction of the model is achieved by using a graphical user
interface (Figure 1). Icons from the control panel are copied onto the design panel and
then joined with lines that represent databuses. Each icon has a number of attributes which
can be specified by the designer of the simulation.

The SRT model is only concerned with the timing aspects of real-time systems and does
not address the prototyping of functionality. The reasons for this design decision are:

' It saves time in constructing expensive prototypes to find out the same timing information.
Also it is diffrcult to veriff timing constraints using prototypes since speed and efficiency
are relaxed so as to reduce the development time of the prototype (Sommerville 1992).

o SRT can evaluate the basic design before any detailed functional design is carried out.
This avoids wasting time on designing a system for which the requirements are unfeasible.

The system designer can therefore use SRT to model the timing behavior of a real-time
system before significant implementation effort is devoted to the system functions.

Figure 1. Simulation panel.
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Figure 2. SRI's architecture.

This paper presents an overview of the system which is implemented using Smalltalk-80,
an object-oriented programming language. The language was chosen because ofits rapid
prototyping ability, thus allowing ideas to be implemented and tested very quickly. Figure 2
shows an overview of SRT's architecture.

This paper is organized as follows. In Section 2, we look at current tools and method
for modeling timing constraints. In Section 3, we describe how a real-time system can be
modeled using SRL In Section 4, we look at two real-time scheduling algorithms which have
been incorporated into SRT. In Section 5, we look at how the model can be evaluated using
various scheduling policies and then analyze the output data produced. In Section 6, we look
at some ideas for future versions of the tool and draw some conclusions about our work.

2. Related Work

There are various tools and methods for prototyping, formally speciffing and implement-
ing real-time systems. This section looks briefly at each area and concludes by placing
SRT in context.
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2.1. Rapid Prototyping

Rapid prototyping tools provide a means of viewing the product at the design stage. The
user can determine whether or not the prototype is appropriate. If not, the appiopriate
alterations can be made, thus avoiding wasted "rrott io the implementation of incorrect
requirements. The computer aided prolotyping system, proposed by Luqi et al. (Luqi l9gga,
Luqi 1988b, Luqi 1988c, Luqi rgggd) is a rapid prototyping tool for ,"ui+i-" system proto-
typing. The system is composed of a software base which contains a number of compo_
nents' These components are explicitly given a set of timing constraints. The tools prouiO"
help in constructing a prototype and determining its real-time behavior based on the given
timing constraints.

2.2. The Specification and Verification of Timing Constraints

The formal specification of real-time systems should enable the system designer to veriSr
mathematically thata system will meet all its deadlines. However,iormal methods are stillimmature for software systems and introducing the notion of time makes the issue of verifica-
tion exponentially more comnl.ex' various specification languages for real-time systems
are emerging but major restrictions are placed on the real-tim-e rfrt",n, to reduce the com-plexity' It is clear from current literature that speciffing and designing large complex real-
time systems is a majorproblem and it is hofed that formal -"trrol will go some way
toward solving this problem. An informal specification written in a natural language can
contain many ambiguities and the timing constraints may be incomplete or inconsistently
specified' Methodologies are needed which enable the requirem"ns, to be captured andspecified in such a way that inconsistencies within the specification can be eliminated.

ESTEREL @erry 1983) was one of the first languages to emerge to support the specifica_
tion of real-time systems. The language enables timi to be explssed and verified within
the specification. Dasarathy (Dasarathy 1985) went on to investigate the various timing
constraints that would b-e required in a specification language and Jlassified them into twocategories, namely performance and behavioral constraints. The performance constraints
define the response time of the proposed real-time system and the behavioral constraints
define the rate at which external stimuli are applied io the system. This classification has
lead to the development of timing constructs in many of tle existing formal models.

The finite state model has been one of the most widely used modelsior the development
of specification languages; examples of such languages are RI_ASI AN (Auernheimer 19g6),
Statecharts (Harel 1988) and Modechars (Jahanian 19gg). RI-ASLAN enables the designer
to speciff the system and its behavioral constraints in a formal notation which can then
be used to veriSr certain functional and behavioral aspects of the system. This specification
language makes the simplistic assumption that each process has its twn dedicated processor,
thus avoiding any scheduling issues.

Statecharts and Modecharts are graphical specification languages. Statecharts are basedon the extended finite state machine model with the timing"coir,.ui* being expressed
in temporal logic. The Modechart language is an extension to Statecharts in that the timingconstraints have been explicitly included into the graphical model. Methods have been
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developed to reason about the timing properties of the system and try to verifu the timing
constraints (Jahanian 1989, Jahanian 1988). Ideas were also proposed for a Modechart simu-
lator (Stuart 1991) which enables the designer to specitr the distribution of events and to
simulate the execution in order to predict the timing behavior of the system.

The approach described in Lauber's paper (Lauber 1989) is based on the assumption
that the design of large complex real-time systems will use a specification language. If
timing constraints can be expressed within the specification then it can be used to test the
behavior of the real-time system. The specification model represents a rough prototype
which can be evaluated. The methods used are based on dynamic testing of the sp""in"uiion
with data being fed in either by the systems designer or by a simulation of the real world.

2. 3. Real-Time Programming Languages

Real-time languages have been developed to enable programmers to express timing con-
straints within the language. Only when the time dimension is incorporated explicitly into
the language can time constrained computation be expressed adequately and conveniently
(Halang 1990)' The real-time language Euclid (Kligerman 1986) is capable of expressing
timing constraints but at the cost of restricting other unpredictable featuies such as Aynamic
process creation and recursion. Real:Time Concurrent C (Gehani 1991) offers more flexibil-
ity than Euclid by enabling the programrner to use dynamic constructs but time and space
bounds are required. The language Flex (Lin 1988) supports fucilities for imprecise comput-
ing, which is a method of arriving at an approximate value and then improving the result
as much as time permits. If a task's resources are not available, the scheduler can dynamically
alter the execution time of the task so that it can be completed before its deadline.

These languages offer different levels of flexibility. Euclid requires all timing constraints
to be static and computed at compile time. Real-Time Concurrent C facilitates the use of
dynamic constructs as long as the space and time bounds can be computed at compile-
time. The Flex language does not require the systems resources to be extensively over-
specified because the program can dynamically change itself to fit around the current avail-
able resources.

2.3.1. Why the SRT Model is Necessary. All the approaches described above have a partic-
ular place in the software development rycle. The prototyping approach concentrates on
modeling the requirements. To build a complete prototype the design would need to be
decomposed into modules and then these modules implemented in the prototyping language.
Thus, to determine the feasibility of the timing constraints from this method requires a
complete breakdown of the design. A few prototyping/specification languages, such as
PAISLey (Zave 1986), can tolerate an incomplete prototype for execution but their objectives
are to evaluate the functional requirements, thus ignoring the behavioral requirements.

Current formal methods are not mature enough to represent the complexities of realistic
real-time systems. The Modechart approach has shown much promise but mechanisms are
required by the designer which provide information about the behavior of the system without
building a complete functional model. Many of the formal specification methods are still
very difficult to use for the nonspecialist and very cumbersome, if not impossible, to use
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with large complex real-time systems. Lauber's method involves a detailed specification,
much of which is irrelevant when dealing with timing issues. This method also makes the
assumption that all systems are formally specified whereas in reality most are not.

Real-time languages offer the prograrnmer the facility to express and evaluate timing
constraints but determining the feasibility of these constraints is necessary well before
implementation.

Tools are required which enable the designer to rapidly build a skeleton prototype of
a real-time system and then evaluate this prototype to determine information uUout ttti ryr-
tem's behavior' All of these methods are concerned with modeling both the functionality
and timing aspects of the system, whereas our work deals with the timing aspects alone.

3. Modeling Tlming Constraints

Real-time systems can be considered, at an abstract level, to consist of three basic entities.
namely sensors, processes and actuators. SRT uses these real-time entities to model the
process structure and proposed hardware devices. The process structure is made up of a
fixed number of processes, because dynamic process creation causes unpredictability. The
real-time language Euclid (Kligerman 1986) has made the same assumption and the authors
claim that no functionality is lost, due to the fact that most real-time applications tend to
consist of a fixed number of controllable resources.

The time constraints, which the software designers must adhere to, will be defined by
the system designers. These timing constraints will be determined by the environment, so
that the systems designer has to calculate how quickly the system must respond to changes
in the environment.

Figure 1 shows five Processes; ProcessesA and B are polling a number of sensors which
then synchronize with ProcessC. ProcessC waits for data from both sensors and then acti-
vates the actuators. ProcessD and ProcessE are waiting for some external event which,
on arrival, will activate the actuator. All processes on this panel are on the same pro""rro,
and the scheduler determines which process will be activated next. The background process
will be executed if no other process needs to be run.

3.1. Modeling a Real-time System using SRT

SRT consists of five RT entities, which are represented as icons on the simulation control
panel (Figure 1). Sensors, processes and actuators are used as the basis for constructing
the real-time prototype. Two other entities, scheduler and background are special types
of process that must always be present. Entities are connected by databuses, which are
represented as arrows on the simulation control panel. Each entity has a number of attri-
butes whose values the designer estimates then enters by filling in forms. Figure 3 shows
examples of such forms.

3.1.1. frming Attributes. Each of the three Real{ime entities; sensors, processes and actu-
ators, have attributes which define the timing rpquirements of the proiotype. They are of
two types:
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Figure 3. Entry forms.

i) Actual Time. This timing attribute represents the actual measurement of time in the real
world which is typically used to simulate a delay for an I/O device. The actual time
in SRT is specified in microseconds.

ii) Unit Time. This is the number of units (clock cycles) a process requires from the proc-
essor to simulate the execution of a piece of code. This type of timing is processor depen-
dent, so that changing the processor speed will result in the unit time taking different
values of actual time.

3.1.2. Reallime Enfities. This section describes four of the RT entities (sensors, processes,
actuators and background process) and the databus relationship. The scheduler entity will
be explained in detail in Section 4.

i) Sensors. The sensor device receives a signal from a process and then replies with its
current state. The sensor has two timing attributes, sensor time and minimum polling
rate. The sensor time attribute is the actual time in microseconds that a sensor takes
to receive a signal from the bus, convert the sensor reading from analog to digital and
put the result back onto the bus. The second attribute is a constraint on the sensor
device which defines how often the device should be polled for the system to meet its
response time. This attribute is a passive value as it is not used by the simulation proc-
ess but is used in the output to determine whether the system's behavior has met its
timing requirements.

Ii) Actuators. A process can trigger an actuator in one oftwo modes, synchronous or asyn-
chronous. In synchronous mode, the process sends a signal to the actuator and waits
for a reply (suspends) before it continues. The asynchronous mode does not wait for
a reply from the actuator but signals to the actuator and then continues. This mode
may result in a queue building up on the actuator if the process puts out more signals
than the actuator can consume. The importance of this varies with the device. For ex-
ample, if the actuator is a graphical display, then losing a few signals may be acceptable
but in other situations an overload could be disastrous.

The actuator has two timing attributes, actuator time and actuator update time. Actu-
ator time is the actual time it will take the device to complete its task. Currently this
time is static, so that the actuator always tales a set amount of time. Realistically, the
amount of time taken to complete the task would vary according to the current state
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of the device, and we are currently investigating how to model a time based on a proba-
bility distribution. The actuator update time is a passive value which defines how often
the actuator device must be updated.

iii) Buses. The databuses that connect the various entities have two timing attributes which
are used to specify the transmission delays in unit time between two entities.

iv) Processes. A process can be of two types, periodic or sporadic. A periodic process
is one which occurs at regular intervals to sample some devices and, if required, send
a signal to the actuator. A sporadic process has irregular arrival times; in SRT these
arrival times are based on probability distributions. In Figure l, Processes A, B, and
C are icons for periodic processes whereas Processes D and E are icons for sporadic
processes.

A process can poll sensors, do some processing, synchronize with other processes
and activate actuators. Memory can be modeled as a separate process with which other
processes have to synchronize before they can continue. A process may suspend for
any of three reasons: i) to wait for data from a sensor; ii) to wait on a semaphore;
iii) to wait for the completion of an actuator in synchronous mode. During the execu-
tion of code it is possible for another process with a higher priority to pre-empt it.

Figure 4 is a process activity view of a periodic process, which enables the software
designer to define the process's characteristics. The top panel contains the process's attri-
butes. The rate attribute defines how often this process should be executed each second
and the priority attribute determines the importance of the process. A sporadic process
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Figure 4. Process activity list
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has different attributes' Instead of a rate attribute it has a probability distribution, anearliest possible start time and a deadline. The middle p*"r ""r"-, a number of selec-tion rists which are used to describe the process,s minor cycles. Figure 4 shows thatprocessA first ofall executes some code to start up, then sensorsl, 2 and.3are polled

;'.*"1rp:l]"ffi;Ht"".t 
code executed in between tr'"-.;i;;uy it sends " ,is;;i;

The information on the bottom of the paner is carculated from one major cycle ofthe process' one major cycle is defined as-being trr" "ornpr"i" "r""ution of all the stepsin the process activirv list as shown t tgyr* A iil;;;;; is defined as beingone of the steps in the.process activity list. ihe figures ,rro." trr" u,oount of actual timea process will take, the number of processor units requirea ano nnaty the numberof times this process- could feasibly b" "^""ut"d per second if it had sole access to theprocessor. clearly this figure should be significanuy g.*t"r-trr* the rate specified

#trfir:J,,'}f,the 
panel' These are best-casi figures ;;t "rJ;e no other process

v) Background process. This process is executed only when nothing else can be run. Gen_erally this type of process in real-time systems will carry out checks on the hardware.No timing attributes are associated with this process.

3.2. Incorporating Timing Constraints into the Model

sRT has two types of timing constraints, process deadlines and device deadlines.

l) Process Deadlines

[H,::::"::i:i*lT,:' 
denned in two dirrerent wavs depending on the process rype

o Periodic processes. Each process has a frequen cy rate which impricitly defines itsdeadline' The process must be completed uefore-it i, ""rt ,"rr"auled otherwise anoverload will occur. An overroad wii ue deart with in difierenrways depending onthe scheduling algorithms currently employed.o sporadic processes. when an "u"rrt urri*r, the process must start execution afterthe earliest start time and finish before the deadline. These paramercrs are definedby the designer.
li) Device Deadlines

These are constraints. placed on the system by the system designer when determiningthe sampling and action raJg for rh" ;;d to funciion within-the requiremenrs. Thecomputer system must be able to meet these constraints for the ,f*"_ to function cor_
;trlr,nf::ffil? 

a displav mav have a device constraint stating that it must be refreshed

4. The Scheduler

SRr currently incorporates.two scheduling argorithms, namely the rate monotonic algorithm(Liu 193) and the bin packing algorithri tfrut" rsgl). The rate -onoioni" algorithm is



296 S. BERRYMAN AND I. SOMMERVILLE

a fixed priority scheduling algorithm, whereas the other algorithm is a dynamic priority
scheduling algorithm. The next two sections will briefly explain the above algorithms, a
more detailed explanation can be found in the above references.

4.1. Rate Monotonic Scheduler

This scheduling algorithm decides what process to run by considering the priority and state
of the process. A process can be one of the following states: running, ready, suspended
or dormant as shown in Figure 5. The running process is the one currently being executed
on the processor. A process will be in the ready state when it is ready to be executed but
a higher priority process is currently running. The suspended state is entered while the
process is waiting for a device to finish or waiting for another process to synchronize with
it. The dormant state is when a process has either finished its major cycle and is waiting
for its next occurrence or the process has failed to meet its deadline. A process in the dor-
mant state will move to the ready state on its next occurrence.

4. 2. Bin-Packing Scheduler

This algorithm is a dynamic priority scheduling algorithm in which processes join an arri-
val queue which the scheduler then tries to schedule so that each process makes its deadline,
see Figure 6. It is assumed that process execution times, deadlines and earliest possible
start times are known in advance.

The bin-packing scheduler looks ahead and will only schedule a process if its timing
constraints can be guaranteed to be met. A process is scheduled to the nearest point before
its deadline. If it is not possible to fit the process between the start time and deadline then

process lailed
or

Figure 5. The various states of a process.
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Process Queue
(Periodic /
Sporadic)

Scheduled

Time

Figure 6 Process queue.

the process will fail. A process can be broken into smaller pieces so as to fit it in within
the bounds. Figure 7 shows a small example of two processes being scheduled using this
algorithm.

ProcessA - A periodic process which occurs every 40 clock rycles and has an exe-
cution time of 10.

ProcessB - A sporadic process which arrived at time 5, start time of 20 (actual
start time : 20 + 5), execution time of 15 and a deadline of 45 (actual
deadline :45 + 5).

Pr@sssA Nl

Pr@6ssB =

f0 20 30 40
At time interval 0 ProcessA arrives and is scheduled.

1 0 2 0 3 0 - 4 n
At time interval 5 ProcessB arrives and is scheduled.

Figure 7. Bin packing scheduler.

A process in SRT (and any realistic real-time system) is composed of a number of minor
cycles which do not have individual deadlines but rather a deadline for the whole major
cycle. For the above algorithm to be implemented under the SRT model, an intermediate
layer is required which divides up a process into separate executable pieces which can then
be sent to the bin-packing scheduler. The intermediate layer is also responsible for propa-
gating the overall process deadline through each individual executable piece ofcode. This
propagation of deadlines will take into account all the IiO transactions within the process;
this presents no problem as I/O response times will be known when the process arrives
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at the queue. The fragmentation problem here is similar to the problem in real-time com-
munications protocols where long messages with timing constraints have to be split into
packets to be sent over a network (Arvind 1991).

The drawback ofthis particular scheduling algorithm is that process synchronization be-
comes difficult because all execution times are required in advance. The solution devised
in SRT was to split a process into sub-processes at the semaphore wait statement; these
sub-processes could then be scheduled independently. When a sub-process passes the wait
semaphore the next consecutive sub-process is added to the queue for scheduling. The dis-
advantage of this method is that the scheduler cannot guarantee to meet the constraints
of the whole process until the last sub-process has been added to the process queue.

4.3. ,4dvantages and Disadvantages of the Two Algorithms

The rate monotonic algorithm only knows when a process has failed when its time expires,
thus wasting valuable processor time on a process which is inevitably going to fail. The
bin-packing algorithm looks ahead and determines ifthe current load can be scheduled;
if not the scheduler knows that it will fail long before it actually does so and appropriate
action can be taken.

The rate monotonic algorithm requires processes to be given priority according to their
frequenry rate, the highest frequency having the highest priority. This priority assignment
rule is optimum as no other fixed priority assignment rule can schedule a set of processes
which cannot be scheduled by the rate-monotonic priority assignment rule (Liu lqB). A
process with a low frequency rate will have a low priority regardless of the actual impor-
tance of the process.

Real-time syst€m designers favor some variation of the fixed priority scheduling algorithm
(Sprunt 1989), for the following reasons:

o it is simple and well understood,
. it has few run-time overheads because the selection of tasks is a simple function,
o it is easier to validate than the dynamic scheduling policies.

Timing requirement should be met by some well understood scheduling algorithm, so
that the timing behavior of the system is predictable, understandable and maintainable
(Stankovic 1988). Jordan describes the experiences in structuring software in a hard real-
time environment using a fixed priority scheduler (Jordan 1990).

The bin-packing scheduler has a larger overhead as it has to calculate if a process can
be scheduled so that its timing constraints are met. This algorithm is also generally better
than the rate monotonic algorithm at scheduling large number of sporadic processes whereas
the rate monotonic algorithm is better at scheduling periodic processes.

The next generation of real-time systems may require adaptive scheduling algorithms
which can deal with highly dynamic environments (Stankovic 1988). Fixed scheduling algo-
rithms help provide predictability but have many disadvantages when dealing with an unpre-
dictable environment.
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4.4. Determining which Scheduling Policy to Use

Scheduling policies are generally mathematically proven so as to guarantee certain charac-
teristics of the algorithm. Real-time systems can be very complex so selecting an appropri-
ate scheduling poliry will often force certain rules onto the system. SRI enables aiogical
configuration to be constructed without being influenced by a particular scheduling po1i"y.
SRT enables a real-time system prototype to be constructed and then various r"h"duling
policies to be evaluated by simulation to determine the system's behavior. It is easy for
the software designer to see how well each policy meets its objective. The software designer
need not know how each scheduler policy works but it does enable him to pick the most
appropriate one for his system. Once a scheduling policy has been decided, the model may
only need fine tuning for performance pulposes.

4.5. Scheduler Timing Attributes

There are two timing attributes associated with the scheduler, namely the processor speed
and the scheduler overhead. The first attribute is to set the speed of the processor, that
is, how many units or clock cycles can run in a second. This value sets a relationship be-
tween the actual time values and the unit time. This following formula is used by SRT
to convert actual time into unit time.

unit time : actual time (ps)- processor speed (MHz)

For example, the following calculates the unit time from an actuator which has a delav
time of I 000 ps and a processor running at 0.1 MHz.

I 000 ps* 0.1 MHz : 100 units

The overhead attribute specifies the amount of processor time the scheduler will take
up when swapping two processes. The overhead value is in unit time and this code cannot
be pre-empted.

Figure 8 illustrates how SRT has been designed to accommodate different scheduling
algorithms. The model is composed of sensor, process and actuator entities. The schedulei
entity is a special type of process which can be interchanged with various other scheduling
entities. The scheduler holder contains a pointer to each algorithm currently available in
SRT. The model interacts with the holder, which in turn interacts with the active scheduler
entity. The holder also acts as a filter, letting through only the appropriate messages for
the active scheduler. The scheduling algorithm to be used is chosen from a system menu.

This model can be extended, so that scheduling policies can be plugged into sub-parts
of the process model and then an overall scheduling policy selected foi all the sub-parts
together. For example, processes with hard and soft deadlines could be executed under
different scheduling policies and an overall scheduler would distribute processor time be-
tween the scheduling policies.
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Figure I Pluggable scheduler model.

5. Evaluating the Model by Simulation

Once a model of the real-time system has been constructed then the timing constraints can
be tested by simulation. The simulation is executed for the unit time specified by the designer.
If the simulation is executed in the trace mode then every process reports its progress at
every stage. This section looks at the various outputs from the simulation and how they
can be interpreted to determine the potential problems in the system. We illustrate the system
by comparing the outputs produced using different scheduling algorithms.

5.L Text Windows

Every process (including scheduler and background) has a text window which displays its
actions and the processor time at which the action was started (if in trace mode). Figure 9
shows a scheduler, background and ProcessAs text windows. The scheduler reports to the
text view every time processes are swapped and the background process reports the range
of times it was being executed. In Figure 9, the process view shows part of the activities
of ProcessA during the simulation. On the staft up of the 25th cycle the processor executes
for 10 units (4851-4860 inclusive). This is followed by the process suspending while sensorl
is being polled. Sensorl causes ProcessA to suspend for 12 units, 2 for data transfer and
10 for the sensor delay. This is then repeated for the other two sensors. The final piece
of code runs for 5 units, and then the process sends a semaphore signal to ProcessC. After
completion of the cycle the process is dormant until its next occurrence. This process has
the top priority so no pre-emption will occur during the execution of code. Any scheduling
overhead specified would be added to the process every time it is executed.

A summary of the process activities is displayed in each text view. This information can
be used to determine which constraints rnight be modified to improve performance. The

\
\
\
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Figure 9. Text views (a) process view,
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process summary includes a list of all the sensor and actuator devices. Each device supplies
information on how often it has been activated, so that the figure can be used to check
if the device timing constraints have been met. Each sensor connected to the process displays
how many times it was polled and whether or not it satisfied its device timing constraint.
Each actuator displays how often it was activated and how many signals, if any, were waiting
on the queue.

The simulation is terminated when the processor time reaches the amount defined by
the designer.

5.2. Graphical Windows

The text windows provide very low level detailed information about the simulation run.
In general this information would be far too detailed for the designer who would more
likely require a summary report of the simulation. The graphical representation provides
a clear overall view of the simulation and enables the designer to quickly determine poten-
tial timing bottlenecks.

There are three different types of graphs produced in SRI, namely process state graphs,
process performance graphs and process utilization graphs, each of which is explained below:

o Each process in the system has a process state graph which keeps a record of the time
spent in each of the four states (Figure 10). This graph enables the designer to determine
whether a particular process is behaving as expected.

o The performance graph identifies the percentage failure for each process. All hard real-
time processes should have a 100% success rate (Figure 1l).

ocessB Mon i to r

1 0 0
s0
80

ii ffiffiffiffi
Dormant  Beady Runn ing  Su ipend

'Figure 10. Process state graph.
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(a) Rate Monotonic

(b) Bin_packing

Figure 11. process utilization graph (a) rate monotonic, (b) bin-packing.
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Figure 12. Process utilization graph.

The designer can make comparisons between scheduling policies for his/her system with-
out having any technical knowledge of how they work. With SRT's graphical information
it is very easy to see the performance of any of the available algorithms. Figure 1l shows
two performance graphs; graph a) has been evaluated under the rate monotonic algorithm;
and graph b) has been evaluated under the bin-packing algorithm. The graphs show that,
for this particular real-time system, the bin-packing algorithm managed to execute more
processes to completion than the rate monotonic algorithm. The real-time system used was
highly dynamic and therefore more suited to the bin-packing algorithm. The rate monotonic
algorithm performs better if the system is composed of mainly periodic processes.

6 Conclusion

The initial system is being used to test and develop new ideas. This next section looks at
some of the current ideas being considered for future versions of SRT and, finally, we
draw some conclusions about our work.

The modeling facilities in SRT are continually being improved so that it can be used
to tackle real problems. Some of the main ideas are listed below:

o A higher level of abstraction so that a processor could be composed of a number of sub-
systems and each subsystem could be composed of a number of processes. This would
certainly be required if there are hundreds of processes on a single processor.

o Resource modeling. Facilities to make modeling of resources easier. For example, memory
could be a separate entity which knows how to interact with other processes.

o Analysis of the simulation data to provide better information about the system so that
system bottlenecks can be identified more easily. For example, average and worst-case
times of processes could be calculated.
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o Extend the process-to-process communication model in order to enable the designer to

explicitly incorporate other communication models within SRT, such as the client-server

model.

The paper by Blake and Schwan (Blake 1991) which describes the bin-packing schedul-

ing algorithm also explains how the algorithm could be used on a multiple processor sys-

tem. This could be implemented by adapting SRT to handle a real-time system distributed

over many processors. The designer will require the flexibility to be able to move proc-

esses to other processors and evaluate the system to endeavor to achieve the best overall

performance.
We have demonstrated how SRT can be used to evaluate a model using two very different

scheduling algorithms; clearly more scheduling algorithms would be necessary if the tool

was to cover the whole of the real-time software application domain. SRI has been developed

to accommodate for other scheduling policies but is nontrivial for a designer to add his/her

own policies because knowledge of Smalltalk-80 would be required. Future research will

look at implementing a tool which would enable designers to define their own algorithms.

This tool would require a language (maybe a subset of Smalltalk-8o) with which to describe

the algorithms. The tool could also be used to produce variations of the scheduling policies

already in the system with minimal effort.

The system designer must make estimates on the execution times of processes, which

will probably be far from accurate. Project managers, even after years ofexperience, don't

seem to make much better estimates. The estimates are generally made and then multiplied

by some factor determined by previous underestimates. SRT does enable changes to be

made very easily, so that the consequence of improved estimates can be seen instantly.

SRT enables designers to try out various scenarios thus giving them the opportunities to

put extreme timing constraints on parts of the system to see how it behaves, for example,

if the main data bus has twice the amount of initially estimated traffic. SRT helps designers

evaluate scheduling policies so as to determine what policy would perform better for their

particular system. Generally the designer will only evaluate a small group of policies which

conform to a certain criteria determined by their establishment.
Testing time can be greatly reduced by introducing timing into the system at an earlier

stage and having available support tools to determine whether the timing constraints within

the design are being met. Nearly 50% of the cost of developing a hard real-time system is

spent in the testing phase (Kopetz 1991) so a reduction in this would have significant benefits.
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