
Method rule checking in a

system
by Ray Welland, Stephen Beer and Ian Sommerville

generic design editing

This paper describes a means of
incorporating method rule cheeking in
a design editing system intended to
support the production of designs
expressed in method-specific
diagrammatic notations. The novel
characteristic of this editing system is
the fact that it may be tailored to any
notation using a method description
language and a graphical tool to define
the vocabulary of the notation.
Syntactic and semantic rules are
expressed in the method description
language and are checked,
interactively, during an editing session.

1 Introduction

The use of stmctured methods in the software desrgn
process has been advocated for a number of years by practi-
tioners such as DelVlarco, Yourdon and Jackson [1-3]. Differ-
ent practitioners advocate different methods, and a
multiplicity of methods [4] have evolved. Before the advent
of lowcost personal computers, usens of these methods were
consfrained to use them as purely manual techniques for
analysis and design. Now, the availability of soslled CASE
workbenches on personal workstations, and a general
awareness of the value of software tools have opened up the
market for these methods. They are now relatively widely
used, particularly in the data-processing systems domain.

The differences between the various methods are not of
concern in this paper. Their similarity is that they all make
use of diagmmmatic representations of a software design,
and associate rules and guidelines with these which, it is
claimed, result in a'good'software desrgn.The end-result is
an attributed directed graph representing the software
desrsn. Although these are not methods in the sense that
two designers will necessarily arrive at the same result
given the same requirements, they do impo.se a structure on
the design process and ensure ttrat the designer produces a
design which is selfconsistent.

Of course, without automated checking of the mles and
guidelines, consistency cannot be guaranteed. Thus, as well
as supporting the drawing of particular classes of diagrams,
most CASE workbenches include an element of checking'
which ensures that some of the rules of the method are
enfored.

Software Engineering Journal March 1990

The work describd in this paper was first proposed in
tlre context of a programme to develop an integrated project
support environment (PSE).The distinctions between such
an environment and CASE workbenctres are as follows:

o An IPSE is intended to provide support focilities for the
entire software process, from initial specifi-
cation to software maintenance and support. It should also
incorporate management tools which have access to the pro
ducts created during software development. By contrast,
CASE workbenches are oriented towards the support of
desrgn wittrin the software proaess. Indeed, it may well be
the case that the desigrrs developed using these systems are
progammd on some other computer.
o An IPSE is particularly concenned with the problems of
managing configurations of software components. For large
systems with a long lifetime, configuration management
(CM is probably the most significant problem. CASE work-
benches are not geared to providing CM support.
o An IPSE is an open environment which can be config-
ured to support a variety of activities. Users can incorporate
their own support tools with an IPSE. CASE workbenches
are (usually) closed environments whene the user has only
available the tools supplied by the workbench vendor.

This last point, namely the openness of an IPSE, was a key
requirement for our system. We needed a design editing
fucility comparable to that provided with CASE work-
benches, but we could not tie that systern to a partiorlar
method. We had to define an approach which allowed
powerfirl diagram editing and checking fucilities to be con-
figurd for any particular desrgn method.

This is relatively staighfforward if all that is required is
a means of producing diagrams. However, our aim was to
produce a systern which as far as possible, checked the
usefs design interactively. Thus, we had to find some
general way of the rules associated with a par-
ticular method, and build a general-purpose rule checker
which oould be incorporated in an editing systern.

The approach whictr we adopted was based on the notion
that a design method is simply a language with three com-
ponenE:

r vocabulary; the set of symbols used to represent desrgn.
o syntax; the rules governing the spatial organisation and
connectivity of symbols on a diagram.
o semantics; those rules and guidelines whictr constrain
the designs which ran be produced, and which should result
in 'good' designs.

105

tootmoker-suPPtied
method descriPtion
in GDL

toolmqker interoction
to creote nFthod
symbds

user interucton
to cr€qte softworc
design

error messoges
generoted bY
checking systern

Fig. 1 The design editing sYstem

We thus designed a number of integrated tools which

allowed desrgn methods to be described and method editors

to be generated. These were

o a language called GDL [5], which allowed the rules

associated with a method to be set out;
e a software tool which allowed the symbol vocabulary to

be designed;
o a generic editinC system which provided basic facilities
to create and modify desrgn diagrams;
o a checking system, incorporated with the editor, which
checked the grven desrgn against the specified method rules.

An overview of this system is shown in Fig. 1, and a broad
description is grven in Reference 6' The system has now

been implemented and is available in various instantiations
as part of the ECLIPSE [fl integrated project support
environment.

This paper is concerned with how interactive checking
can be incorporated in such a system, and we do not

discuss features of the editinC system here. Initially, we

review tools which provide comparable functionality to our

own. We briefly introduce the basic struchre of GDL, the
language which we developed for the description of dia-
grams, and this is followed by a more detailed discussion of
the assertion mechanism which is used to specify design
checks. We describe the implementation of the prototype

checking system and discuss some of the outstanding prob-

lems.

2 Comparable tools

Tools available for software desrgn diagram editing can be

categorised in three principal ways:

n method-specific or configurable: there are a

large number of tools available which are restricted to use
with one method or group of methods' Configurable
systems allow tool builders to specifu their own methods or
local variations on existing methods.

n syntax-driven or permissive: a syntax-driven

106

approach maintains a correct diagram at all times, forcing

th" u.". into a rigid interaction style' A permissive

approach allows diagrams to go through incomplete or

inconsistent states, and there is a choice between inter-

active and off-line checking.
! stand-alone or integrated with other tools: a

number of tools are available which allow the user to draw

diagrams, store them and edit them, but further manipula-

tion of the stored diagram representation is left to the user'

Integrated tools allow other types of tools, such as code gen-

erators, to manipulate the output from the design editor'

The principal aim of our work was to produce 3 ssnfigu-
rable design editing tool which was permissive with

interactive checking facilities. Additionally, the design

editor had to be integrated within an IPSE, rather than

operate as a stand-alone tool.
We do not believe that 'permissiveness' implies that the

user should be able to draw any diagram. However, the

order of construction is immaterial, and diagrams may be in

an incomplete and inconsistent state at various times. The

user may choose to ignore error messages during an inter-

active session, but obviously these errors will need to be
resolved at some stage before the diagram is acceptable.

There are a large number of tools available which are
generally classified as CASE workbenches- The majority of

these are method-specific, and the approach to checking

varies widely from a largely syntax-directed approach
through to off-line checking producing long lists of error
mesvlges after the diagram has been drawn- These tend to

be stand-alone tools, in that they are not integrated with an

IPSE, but they often interface to other tools such as a data

dictionary. humentation for these tends to be proprietary,

and we have reviewed only two of them, the Analyst and
IvlacCadd, which share some similarities with our tool'

The Analyst [8] is a method-specific tool which provides

support for CORE and MASCOT. The syntax rules,

specifuing valid symbol shapes and connections, are hard-

coded in Pascal. However, the checking rules are expressed
in Prolog, and these can be extended by the user. Prolog

notation is also used to store the design representation- The

Analyst provides interactive checking through specific

checks invoked from a menu of checks or continuously
throughout the design creation. The user has the option of

specifying which checks should be applied continuously'
Failure of a check is categorised as

o guidarue,indicating problems of 'style';

o waming,usually indicating incomplete specification;
. error, a more serious mistake which should be fixd

before the diagram can be stored.

The Analyst provides the most sophisticated interactive

checking of the tools we have looked a! but it is method-

specific and stand-alone.
The nearest tool to ours in philosophy is MacCadd [9]'

although it is stand-alone. MacCadd allows users to specify

their own diagram types using Prolog rules to identify
dergn entities and their connectivity. The vocabulary of

symbols from which the user may choose is fixed, and there
is no provision for more than one textual annotation to be

associated with a particular desrgn entity; a common
requirement from many methods. The design representation
is also stored as a sequence of Prolog causes which could be

Software Engineering Journal March 1990

processed by the user. The manual states that further tools
could be written to process this output, but we are not
aware of any such software being available.

The interactive checking facilities available in MacCadd
are more restrictive than those available in our tool. For
example, there is no freedom on the positiomng of names
for nodes; the name is always inside the node symbol at a
fixed position. The tool provides connectivity constraints on
the way in which nodes are linked and the types of links
which are associated with particular nodes. However, there
is no way of expressing an interactive check on the number
of links associated with a node. A check on the structure of
nodes of a particular type can be specified using a ,custom-
ised search' to be applied node by node to the diagram. In
general, MacCadd concentrates on connectiyity constraints
for interactive checking and ignores positional consfaints
and quantifiable consbzints.

Both the Analyst and MacCadd use prolog for their
underlying design representation but tight integration with
an IPSE database is very dfficult with such an approach.

The GRANOT (graphical notations) project at the Open
University [10] includes a component called pSN (picture
specification notation) which is similar in concept to GDL.
PSN is a meta-language which is used to drive design
editors within a prototype development environment. The
description of the symbol shapes is handled by a separate
interactive object editor which is comparable to our Shapes
Editor. PSN specifies two levels of rules: syntactic,
specifying the combinations of symbols which are allowed,
and semantic, concerning the meaning of each syntactically
correct diagram. The approach to checking is syntax-
directed, where the diagram is as syntactically correct as
po.ssible at all times.

3 GDL overview

The graph description language (GDL) was designed to
describe those software desrgn diagrams based on directed
graphs. Widely used examples of these are Structured
Design [2], JSD [3] and SSADM t111. Our initial design for
GDL was described in an earlier paper l5l.

A GDL description is compiled into a set of tables which
are used to drive the design editor (DE). The language is
intended to be used by a tool builder not an end-user of
ECLIPSE.

The basic framework of a GDL description is shown in
the following simple example:

method FSM.simple

with FSM

forward TRANSITION is LINK

type STATE is NODE
(fromStates: in bag of TRANSITION;
tcStates: out bag of TRANSITION)

for STATE use SYMBOL(FSM.state)
++ STATE_NAME(STRTNG)

type TRANSITION is LINK
(startState: in STATE;
endState : out STATE)

for TRANSITION use SYMBOL (FSM.transition)
++ EVENT(STRING)

Software Engineering Journal March 1990

This GDL gives the basic definitions for a simple finite
state machine diagram, with labelled nodes representing
states and labelled arcs for transitions between states. The
first three lines are GDL compiler directives: the method
clause is used for identification and generating names for
the tables produced by the compiler; the with clause links
this GDL description to the shapes library for the method;
and the forward clause identifies a forward reference.

The type statement for STATE defines that an instance
of this node will have a collection of input links (fromstates)
and a collection of output links (toStates). These collections
are identified as bags, since multiple connections between
states are allowed. (Both bags and sets are supported in
GDL). The type statement for TRANSITION describes it as
a directed link between two nodes of type STATE.

The representation expression is introduced by the word
for. The SYMBOL clause links the type to its symbol
which is stored in a shape library. This clause is followed
by a concatenated list of other annotations associated with
the type. In the above example both STATE and TRAN-
SITION have a single mandatory label of type STRING;
optional labels are shown by enclosing them in square
brackets.

Each element of the representation expression is mapped
onto a label, which is a rectangular area containing either
a graphical symbol or text. This makes the definition of
positional constraints such as 'above', telow' and ,encloses,
simple to define. Therefore, in the above example there will
be a label for the symbol for STATE and one for its name
(STATE_NAME).

A GDL compiler based on this part of the language was
implemented, and some deficiencies were discovered and
new requirements became apparent. A major deficienry in
our original design concerned the handling of ports and
windows in MASCOT 3 L12l; these are nodes which are
owned by other nodes and used as connection points for
links. We added the concept of dependent nodes to
handle this relationship between nodes.

We had also encountered problems in the representation
of nodes which enclosed other nodes, such as occur in the
JSD system implementation diagram [3]. The dependent
node idea solved this type of problem as well.

To illustrate the use of dependent nodes, a simple
example of a diagram convention which aggregates node is
shown in Fig. 2. This is a fragment of a structure diagram
in which a group of modules, accessing a common data
module, have been identified as a'cluste/.

Fig. 2 Cluster in a structure diagram

107

A small part of the GDL describing this diagram is
shown below:

type LEAF_MODULE is MODULE
(clustered : owned by CLUSTER;
callers: in set of CALL;
data_link: out DATA_REF)

type DATA_MODULE is MODULE
(clustered : owned by CLUSTER;
references: in set of DATA_REF)

type CLUSTER is NODE
(encloses: owner of set of MODULE)

In the above example CLUSTER is an aggregate node
which encloses a collection of modules in a structure
diagmm. The relationship between owner and owned nodes
is one to many, thus an owned node always has a unique
parent node.

GDL includes a type hierarchy with inheritance of proper-
ties down the hierarchy. Our model of inheritance was delib
erately simplified, as we were not interested in investigating
inheritance per se. Therefore, a subtype can only inherit a
complete syntactic unit from its supertype or overwrite that
unit; there is no selective overwriting. Syntactic units which
may be inherited are the parameter list associated with a
type declaratioq the representation expression or a com-
plete assertion (see below).

In our early work we spent considenable effort looking at
a representation for the expansion of a node into another
diagram within a hierarchy of diagrams. However, in the
IPSE context, when a design entity is expanded it is not
necessarily gorng to expand to another diagram of the same
type or even necessarily another diagram. In the ECLIpSE
environment it is just as likely to expand into a textual rep_
resentation or a program fragment. Therefore, there was no
point in GDL describing diagram hierarchies and the DE
providing'zooming' fucilities; this was better handled exter-
nally. The DE is invoked under the conftol of a method tool,
and when an entity in the current diagram is selected for
expansion the DE hands control back to the method tool,
passing a reference to the current desrgn entity. The method
tool then invokes the appropriate tool to handle the expan-
sion of the entity.

4 Assertions in GDL

Assertions are used in GDL to specify constraints on the
construction of a diagram which cannot be expressed via
the type hierarchy. The general form of an assertion in GDL
is

(heading) : (selectorexpression) : (check expression)

The assertion heading is required for two reasons: to tie the
assertion to a particular design entity, and more important-
ly, to allow specific assertions in the type hierarchy to be
overwritten. The (selector expression) specifies the particu-
lar design objects which are relevant for this assertion; it
ruurows the search from all po.rsible design entities to those
of interest. The (check expression) is a Boolean expression
which is applied to those desrgn entities that have been,
selected. GDL includes a range of built-in functions which
can be used in the (check expression); these allow the

108

values or positions of labels to be compared and the size of
a set to be enumerated, for example.

The (selector expresion) part of the assertion is
optional. An example of an assertion which could be associ-
ated with the above FSM example is shown below:

assertion Connected (STATE) :
not Empty (fromStates)
and
not Empty (toStates)

In this example the (selector expression) implies the
current design entity because the (check expression) refers
to the parameters of the [pe. This assertion ensures that no
STATE in the FSM has no links; the assertion will evaluate
to false if both the input (fromstates) and output (toshtes)
bags are empty. Note that the user is only warned if an
assertion evaluates to ftlse; a true assertion means that the
diagram satisfies the given constraint and processing con-
tinues.

There are three selectors used in GDL: ,inst', forall'and'exists'. The inst selector gives a handle on the current
instance of a design entity in order to place constraints on
its labels, for example. The forall selector identifies a set of
design entities, and for all of these selected design entities
the associated (check expression) must evaluate to brre for
the assertion to be satisfied. The erists selector identifies a
set of design entities, for at least one of which the (check
expression) must evahnte to true for the assertion to hold.

A typical use of the inst selector is in label positioning
assertions, as shown below:

assertion S_name_inside (STATE) :
inst i:
Encloses (C€tlabel (i SYMBOL),

Getlabel (i STATE_NAME))

This assertion ensures that, for the current instance
of the STATE nodg the symbol of the node must
completely enclase the sfring STATE_NAME. The function
GETLABEL returns a reference to a label, and the
Encloses' function aompares the areas occupied by two
labels and returns true if the first label completely encloses
the second.

Another example of an assertion which uses the inst
selector in conjunction with another selector is shown
below:

assertion Properly_connected (STATE) :
inst i:
exists j; Member (toStates, j):
Destination (il /: i

This assertion is added to the GDL for the FSM diagram to
prevent a state satisfying the 'Connected' assertion given
above by simply being connected to ibelf and no other
state! The third line of this ass€rtion is a qualified selection,
where the variable j is bound to the members of the bag'tostates', and exists is satisfied as soon as the Boolean
expresion on the fourth line evaluates to true The function
Destination' returns a reference to the node which is at the
other end of specified link.

A message facility is included in GDL to allow the
system to generate meaningful error messages in the event

Software Engineering Journal March 19g0

of assertion failure, i.e. when an asserfion evaluates to false.
indicating an error. For example

message S_name_inside (STATE) :
"Name of state must be inside its symbol"

If the assertion 'S_name_inside' evaluates to false, then the
associated message string is displayed to the user by the
DE. If no message clause is given, then a default message of
the form'assertion S_name_inside failed' will be displayed.

Some consfaints are not exp^essible in GDL because
they require information from outside the design diagram
being edited. For example, the validation of the name for a
design entity may require checking a table of names held
elsewhere in the IPSE database. To allow for this type of
constrainl method dependent functions may be
linked into assertions. These functions will be passed values
by the DE and must return the value true or fulse, like any
other function embedded in an assertion. However, once
confol has been passed to them they can do anything, even
open an alternative dialogue with the user outside the DE.

5 Method rules

Rules which are associated with a design method can be
classified in an analogous way to those categories which are
used in a progamming language compilation system. Our
classification of rules is

o Lexical - concerned with the symbols and labels
which appear on a diagram; these are the basic vocabulary
of the diagram. Correctness is ensured by restricting the
menu options available to the user of the design editor.
o Type - GDL is a language which allows type rules to
be specified, and these can be used to apply static type
checking, again by generating restricted menus in the DE.
However, not all type rules can be checked statically.
o Syntactic - these rules are concerned with the layout
of the diagram. There are connectivity rules which cannot
necessarily be expressed using type rules. Most methods
have layout constraints concerning symbols and labels or
relative positioning of entities.
e Semantic - typically these are rules which are con-
cerned \{rith the naming of design entities, either relative to
other entities on the same diagram or related to other repre-
sentations of the design.

To discuss the implementation of the assertion checking
mechanism and the categorisation of assertions some exam-
ples are presented. These examples are abstracted from the
GDL description for MASCOT 3, the largest and most
complex GDL description we have so far written and com-
piled. For the rest of this paper MASCOT 3 will be
assumed. Description of the MASCOT method is beyond the
scope of this paper; for a comprehensive introduction the
reader should see Reference 12. (A detailed description of
the method can be found in the MASCOT Handbook [13]).
For those familiar with MASCOT, we should emphasise
that some simplifications have been made to reduce the
amount of detail given in the examples.

The diagram fragmient shown in Fig. 3 illustrates a few
of the design entities used in MASCOT. There is a szrb-
system (rounded box), which has two ports pI and P2) and
one w'indow (W1), and an artiuity (circle), which has two

Software Engineering Journal March 1990

An-SSl An-Al

Fig.3 AMASCOT 3 designfragment

SUBSYSTEM

Fig. 4 Part of the MASCOT 3 type hierarchy

type TEMPLATE b NODE

Wp€ DEF-NODE ls NODE

IyPE COMPONENT Ie TEMPLATE

type SUBSYSTEM ls COMPONENT
(junctions : owner of set ol JUNCTTON)

for SUBSYSTEM uee SYMBOL (MAScOT.subsystem)
+ + TEMPLATE_NAME (STRING)
++ GoMPoNENT_NAME (STRING)

type ACTIVITY ia COMPONENT
(ports : owner ol eet of PORT)

tor ACTIVITY use SYMBOL (i/ASCOT.activity)
+ + TEMPLATE_NAME (STR|NG)
++ CoMPoNEI{LNAME (STR|NG)

typs JUNCTION is DEP-NODE
(parent : owned by TEMPLATE;
in -paihs : ln eet of PATH;
out-paths : out set of PATH)

type PORT l* JUNCTION

ior PORT use SYMBOL (MASCOT.port)
++ JUNCTTON_NAME (STRING)

type WINDOW ls JUNCTION

lor WINDOW uoe SYMBOL (MASCOT.w|ndow)
+ + JUNCTTON_NAME (STRING)

type PATH ls L|NK
(one_end : In JUNCTION;
other_end : orn JUNCTION)

for PATH use SYMBOL (MASCOT.path)

Fig. 5 GDL for MASCOT

porLs (P3 and P4). The window W1 is joined to the port P3
by a path. Note that paths in MASCOT join nodes at special
junction points; dlect links to node boundaries are not per--
mitted. A subsystem has a template name (SS1), which
appears inside its symbol, and a component name (An_SS1),
which appears outside; activities are similarly named. An

109

genenc editing system
editor tobtes

ossertion checker

undertying storoge system
(titestore or dotobose)

Fig. 6 Editor interaction with the storage system

activity is restricted to having only ports as junctions to
paths;windows are not allowed.

In the GDL for MASCOT we define a type hierarchy, part
of which is shown in Fig. 4. This allows assertions to be
written at various points which can be inherited by lower
level nodes in the hee. For example, an ACTMTY could
inherit assertions from TEMPLATE or COMPONENT, as
well as having specific assertions of its own. The GDL
description for the relevant parts of this hierarchy is given
in Fig. 5; note that various compiler directives (e.g. for
forward declarations) have been omitted from this GDL
description.

Before adding any assertions to the GDL description
shown in Fig. 5, we have included both lexical and type
checking rules for the design diagram. The lexical rules
are imposed because a design entity is bound to its symbol
type in the use clause. The SYMBOL string defines the
shape which is associated with this symbol and which is
created using a separate tool called the SHAPES editor.
Thus, when the user selects a design entity from a DE
menu the correct shape is automatically associated with it.
Similarly, labels are bound to the design entities.

Type rules are also impcsed by this structure. For
example, the definition of ACTMTY states that only ports
may be associated with it. The DE will only provide the
user with PORT as a possible dependent node to be added
to a selected ACTMTY. Similarly, a PATH can only join
two nodes of type JUNCTION; no other node type are
allowed. This rule cannot be fully enforced statically. An

Fig. 7 Assertion compilation and interpretation

1 1 0

error in attempting to illegally connect a pATH from a
JUNC'TION to some other type of node can only be detected
when the user attempts to terminate the path at a node
other than one of typeJUNCTION.

Having established the basic structure of the GDL types,
assertions czm now be added to enforce further constraints
on the diagram. A common syntactic consfaint, which
occurs in many diagrams, is that the name of a design
entity should appear within its symbol; an example of this
was shown above (S_name_inside). In MASCOT, the com-
ponent names of all nodes of type COMPONENT must
appear outsifu and below the component's symbol. There-
fore, an assertion of the following form is added to the GDL
description for MASCOT:

assertion C_name_outside (COMPONENT) :
inst i:
not Encloses (Getlabel (i, SYMBOL),

C,etl.abel (i, COMPONENT_NAME)
and
Below (Getlabel (i, COMPONENT_NAME)

C,etlabel (i,SYMBOL)

This assertion states thaf for any instance of a component,
its symbol must not enclose the component name string
associated with that componen! and also that the com-
ponent name must appear below the componenfs symbol.
Since SUBSYSTEM and ACTMTY are subtypes of COM-
PONENT, this assertion is inherited by both of these node
types.

A common example of a semantic constaint in design
diagrams conoerns the naming rules for groups of design
entities. For examplg in MASCOT all the junctions owned
by a particular instance of a TEMPLATE must have differ-
ent names, i.e. the JUNCTION_NAME strings must all be
different. There are a number of ways of expressing this
rule in GDL; one possibility is shown below:

assertion J_name_unique flIJNCTION) :
inst i:
forall j; Member (Dependents (Paren(i)), j)
and GetType (j) :JUNCIION
and i /: j:
GetText (C,etlabel (i, JTINC'TION_NAME) /:
GetText (C,etlabel (j, JUNC-TION_NAME))

This assertion is applied to an instance of a JUNCTION.
The assertion specifies that all the siblings of this instance
which are also of type JUNCTION should have different
names. The qualifier inst gives a handle on the current

Software Engineering Journal March 1990

ldentifier Type Current value
:

Pool of possible values

I variable N1 N1, N2, N3, N4, L1, L2, L3

source parameter N2 N2

Fig. 8 The assertion checker identffier table structure

-- Bind the gualifier name i with the current identifier in the identiller tabte
- if the bind operation faits then quit with error message

i, Gelcurrent-entity, ld-table-enter, bind, ifJalse goto error
-- Get the tabel named SYMBOL end stack it

Eval (i), "SYMBOL", GetLabel
- Get the labet named STATE-NAME and stack it

Evat (i), "iiarir.rnue:, e-Jr.l"l
- lf no name, check is redundanL exit - no error measage

Dup, NULI- EQ, if-true exit
--;;;;;;r ili';^Zli, b enctosed by symbot. tr it is -swoess

Encloses, if-true exit
-- if value on stack is false, print an error message
eror:'"S-name-insida'1, Print_error_message, exil

' .

Fig. 9 Code for assertion S name_inside

node and binds the variable i to it. In the next line of the
assertion the function'Parent' is used to get a handle on the
parent of the current instance, and the function 'Dependents'

then retums the set of all dependent nodes of this parent
node. The variable j iterates over this set of dependent
nodes selecting those of type JTINCTION which are not
the current instance and checking the values of
I.]NC'TrON_NAME.

In MASCOT, there are different consfaints on the path-
junction connectivity, depending on the type of junction and
the type of node with which it is associated. The rule for a
PORT owned by a node of type COMPOMNT is that there
may be exactly one pa.th, either in or out of the port. This
rule can be expressed by the following assertion:

assertion Component_ports (PORT) :
inst i; Paren(i) : COMPOMNT:
(Size-of (in-paths) : 1 and Size-of (outpaths) : Q)
or
(Size-of (in.paths) : 0 and Size-of (out_paths) : 1)

Initially, the assertion ensures that the cunent instance is
owned by a node of type COMPONENT. If it is, then there
must be either exactly one path into the port or one path out
of the port.

This assertion obviously cannot be evaluated as soon as
a PORT is added to a MASCOT diagram, otherwise the
user will always receive a spurious error message. This is
an example of a semantic check which will only be evalu-
ated when the user wishes to initiate checking of the
diagram. At this pornt, if the PORT is incorrectly connected,
it can be highlighted and the user czut correct the error.

The above assertion (Component_ports) illustrates a
problem with classifuing when assertions should be evalu-
ated. Ideally, this asserbion should be used in two ways: the
total number of connected paths should never exceed one,
which is a constraint which could be applied whenever a
path is connected to an instance of a PORT; and when the
diagram is complete the number of paths should be exactly

Software Engineering Journal March 1990

one, since a set size of 0 is not allowed.
There are other completeness checks which are canied

out implicitly when the user initiates design checking. For
example, in the description of the SUBSYSTEM node type
the following appeared :

for SURSYSTEM use SYMBOL (MASCOT.subsystem)
++ TEMPLATE_NAME (STRING)
++ COMPONENT_NAME (STRING)

The names TEMPLATE_NAME and COM-
PONENT-NAME are mandatory for all instances of a SUB-
SYSTEM (Optional rulmes can be specified using square
brackets around the definition of the name). Therefore,
when the user initiates design checking every SUBSYSTEM
instance must be checked to ensure that it has both a
TEMPLATE_NAME and a COMPONENT_NAME.

Wherever possible the design editor attempts to impose
the method rules statically by restricting the menu options
available to the user. Thus, if an entity can have a single
label called NAME, the editor label menu only offers the
opportunity of placing that label. Moreover, on@ a NAME
label has been added to an instance of the entity, the menu
should not offer it as an option again when that instance is
subsequently selected.

However, there are some types of checks which can only
be canied out dynamically during the o<ecution of a design
editing session. Dynamic checks fall into three classes:

tr immediate - these should be carrid out imme-
diately an editing operation terminates. For example, if an
attempt is made to link nodes which should not be linked or
a label is placed in the wrong position, the user should be
informed of this type of error before doing anything else.
Some immediate checks, such as linking nodes illegally, can
be enforced simply by refusing to terminate an operation if
its termination would cause an assertion to be violated.
n entity - thee are checks applied to a single nodg its
labels and its links (or a link and its labels) when all of

1 1 1

these are considered as a single entity. For example, a check
may specify some constraint on the number of the links
entering or leaving a node.
tr design - these apply across the whole design. For
example, an assertion may specify that not more than N
instances of a particular type should appear on one
diagram.

It should be noted that the enforcement of static and imme-
diate checks, as discussed aborze, is to prevent the user from
carrying out operations which are illegal and would lead to
a nonsensical diagram. The DE provides a facility for
adding free annotations to a design diagram, and this
allows the user to put in comments which might otherwise
be rejected as illegal.

6 Systemimplementation

In implementing the checking system in the context of the
design editor, we were faced with the problem of translating
a static GDL assertion into a dynamic check which was
initiated appropriately during the editing session. In tools
such as MacCadd [9] or Analyst [8] the checking problem
was handled by representing both the design and the rules
to be checked as a set of Prolog clauses. Checking then was
simply carried out by the Prolog system.

We considered this implementation option but rejected it
principally because of the need to interface the design
editing system to a number of data storage systems, such
as the IJNX filestore and the ECLIPSE database. This pre-
cluded representing the design in Prolog, and the design
representation which was adopted relied on defining an
abstract design model and representing this as a set of
abstract data types. These types were then interfaced to the
underlying data storage system (Fig. 6).

Given the existence of this abstract design representation,
the logical implementation of checking was to implement a
checking interpreter which acted on this representation and
which used asserfion information to ensure its consistenry.
Assertions are thus compiled into reverse Polish form, and
the 'compiled code' is held in an editor table, ordered by
GDL type. When an editing operation is completed, the
appropriate assertions for the types of entity manipulated
are interpreted and feedback supplied to the editor user
(Fig. 7). Reverse Polish representation was chosen because it
is straightforward to convert expressions to this form, and
because stack-based interpreters for such a notation are
easy to write.

In designing the checking interpreter, the principal
problem to be tackled was the desrgn of a mechanism to
apply a check to multiple design entities when these were
referenced in an assertion. For example, a common form of

Quallller*eyaluatlon
-- lnitialise check counter
Num-checks,:0
-- Enter atl design entities in identifier tabte
Qualified name:: 1st design entity from identifier table
-- The name has been associated with a design entity
-* now check if that entity shsuld be setected tor checklng
- this involves evaluating the selector expression
loop

ll Evaluate ((Selector expreesion)) thon
- Count checks made - if zero it means design is incomptete
Num-checks': Num-checks + 1
- Entity is a valid salection, does it satisfy assertion

lf Evaluate ((Check expression)) then
- Assertion satisfied
-- if exis9 quatifier quit evaluation -successl

,.,::lt
rh* qualifier :'sxists'

elslf
-- Assertion fails. lf forail quatifier do no more checking
lf qualifier : 'forall'dren

Print_error_message ((assertion name))
erft

- :11 'end if
- if this point is reached, it means that the assertion has not been
- completely satisfied and more entities (if they existl mrpt be checked
lf all associated entities in identifier table have not been processed oren

.
name !: next entity from identifier tabls

else
- Everything ch*ked and still no success - assertion fails
-- ll no checks made, don't give redundant message
tl Num_checks > 0lhon

Print_error_message ((assertion name))
end ll;
erit

end It
end locp

,l :11

Fig. f0 Qualffier evaluation algorithm

112 Software Engineering Journal March 1990

-- lnitialise check counter, @ indicates a variable reference
0, @ Num-checks, ':

-- Bind the qualifier name i with the current identifier in the identifier tabte
i, Get-current_entity, ld_table_enter, bind, ifjalse goto error

-- Assoc iate all design entities with the name j
j, Get_all_entities, ld_table_enter, bind

-- lf all entities have been processed and we get here, laiture
exists: iUalse goto error
*- Check selection. lf it faits, setect the next entity

Eval (i), tostates, Eval (j), Member
ifjalse goto next

-- lncrement check counter
Num-checks, 1, +, @ Num-checks, ,:

-- Now eheck assertion on baund values. If it's true, socEass
Eval (i), Eval (j), Destination, NEQ
if-true exit

-- The assertion has failed but qualifier is exists so go on to check next value
-- The bind operation fails if att design entities have been processed
next: j, ld-table-next, bind,

goto exists
-* Don't print error message if no checks done
error: Num_checks,0, >, if_talse exit

"Properly connected", Prinlerror_message, exit.

Fig. 11 Code for assertion Properly_connected

assertion selected entities to be checked by specifying a
selector expression which these entities satisfy, and, typi-
cally, these entities are individually referenced in an asser-
tion by a local identifier such as i or j. We had to make sure
that our interpreter applied the check to all selected entities.

In Fig. 7, the checking interpreter is shown to work in
conjunction with an identifier table. This identifier table is
the means by which names in GDL assertions are bound to
design entities. The identifier table has the form shown in
Fig.8.

The effect of the qualifier is to fill in the pool of values
which an identifier may take, and values are taken from
this pool and assigned to the identifier name in turn. In Fig.
8 this is illustrated by the variable i, which can be bound to
a value from N1, N2, N3, N4, L1, L2, 13, and which has a
current value N1. The pool of values which can be bound
with the parameter source consists of a single value N2.

The pool of values selected by the qualifier inst is
simply the current design entity. The pool of values selected
by the qualifiers exists and forall includes all entities
(nodes and links) in the current design. As the design repre-
sentation maintains sequences of all design nodes and all
design links, it is straightforward to include all design
entities in a pool of values.

As a simple illustration of the reverse Polish code and the
checking pro@ss, consider the assertion on a finite state
machine which specifies that the name of a state must lie
inside that state.

assertion S_name_inside (STATE) :
inst i:
Encloses (G€tl.abel (i, SYMBOL),

Getl.abel (i, STATE_NAME)

This assertion translates into the reverse Polish code shown
in Fig. 9. Comments (starting with the symbol --) are
included to explain the interpreter actions. Individual com-
mented sequences of instructions are presented on the same
line.

Software Engineering Journal March 1gg0

Assertions which contain the forall and exists quali
fiers obviously involve more complex code, as they involve
iterating through the design entities in the identifier table
which may be associated with a qualified name. Rather than
describe those with the reverse Polish code, which is a
lengthy process, a general evaluation algorithm for these
qualifiers is shown in Fig. 10.

To show how this algorithm is realised as reverse Polish
code, consider the assertion associated with finite state
machines which stated that, for an FSM to be properly con-
nected, a state may not simply be connected to itself.

assertion Properly*connected (STATE) :
inst i:
exists j; Member (tostates, j):
Destination (j) /: i

The reverse Polish code for this assertion is shown, with
comments, in Fig. 11.

Clearly, when a number of qualified names are used in an
assertion the generated code is complex and lengthy, and
we do not believe it useful to present a more detailed
example here. Rather, we decribe the evaluation of one of
the MASCOT method assertions which is concerned with
checking name uniqueness (Fig. 12).

The qualifiers in this expression are inst i, which simply
causes the value of the current design entity to be entered
into the idenffier table and associated with the name i, and
forall j, which cruses all entities in the current design to
be entered in the identifier table. The checker then cycles
through each of these entities associating its value with j in
turn.

The selector expression

Member (Dependents (Parent (i)), j)
and
GetType (j) :JUNCTION and i /: j:

discovers the 'Parent' node of the current instance, and then.
from this, finds all its dependents. The current design entity

1 1 3

assertion J-name-unique (JUNCTION)
-- the selection expression associated with the inst qualifier is implicltly true
insl i:
* the selerltian expression asswiated with the foratt qualilier selec9 those
-- entities in the design whlch are sibtings of tyW JUNCTION whose
-- parent is the current design entity
forall j; Member {Dependenb (Parent (i)), i} anrl GetType {i} : JUNCTION '

and i /: j :
** the check expression says that siblings shoutd not have the same name
GetText (Getlabel (i, JUNCTION-NAME)) /: l

GetText (GetLabel (j, JUNCTION-NAME)) :. ja

Fig. 12 Name uniqueness assertion

bound to j is then compared against the set of dependents,
and, if it is a member of that set, its type is checked. If is
type is JLINCTION and it is not the 'cutrent' node, the selec-
tion criteria are satisfied. Once a particular value has passed
through the selection, the check expression

GetText (Getlabel (i, JLINCTION-NAIIB) /:
GetText (Getkbel (j, JUNCTION-NAME))

is applied.
Evaluation continues in this way until all of the entities

in the identifier table have been bound to a name and
checked.

7 Check classification

In the previous Section, we introduced the notion of clas-
sifying checks into implicit checks where the choices avail-
able to the user were restricted; immediate checks which
were checks made after every editing operation; entity
checks which apply when an entity representation is com-
plete; and design checks which were checks across a
number of design entities. In implementing the prototype
version of the system, we decided to support only implicit
and immediate checks. The reasons for this were

o it simplified the implementation;
o it allowed us to avoid problems of check classification;
o it ensured that checking was always 'fail-safe' and that

Fig. fB Checking in the prototype DE

Screen dump provided

114

errors were notified to the user at the earliest possible
moment.

Apart from the inevitable runtime overhead involved (which
we discovered was not overly significant), the decision to
support only immediate checks meant that we had to
support a system of 3-valued logic where checks could be
h'ue, false or'not applicable at this point'.

For example, consider the assertion on finite state
machine diagrams introduced earlier, which stated that the
name of a state should be enclosed by the symbol represent
ing that entity.

assertion S-name-inside (STATE) :
inst i:
Encloses (C€tl:bel (i, SYMBOL),

Getlabel (i, STATE-NAME))

This is an assertion on type STATE, and so, along with
other assertions on this type, is checked whenever a com-
ponent operation is carried out. However, when the asser-
tion is evaluated following a create operation, it should not
evaluate to false because the user has simply not yet added
a name. In the example 'assertion evaluation code' above,
this is detected by counting the number of actual checks
made. If no checks are made, this means that no destgn
entities satisfy the selector expression. The representation is
incomplete, so a redundant elror messiage should not be
generated.

Thus, when a component representation is incomplete
and the assertion refers to elements which are not present
the value returned by the assertion checker is'not applic-
able' rather than 'false'. This is considered to be equivalent
to 'true' in the current version of the checking systenl but a
different value is returned so that the tool maker may
provide a more directed form of interaction forcing a user to
complete the representation of a design entity.

I Conclusions and further developments

The current checking system has been implemented in the
context of a prototype design editing system interfaced to
and integrated with the UNX filestore. An example of this
prototype system in use is shown in Fig. 13.

The diagram being drawn is a data flow diagram (DFD),
as described by Gane and Sarson [14]. The user has linked a
datastore @ending Orders) directly to an external entity
(Suppliers) which is not permitted. The nodes in error are
highlighted, and the DE control panel, which contains all

ffirl$0 stutid
irlF[im- rm mm sbe lad ! mTNm cmot b dir$tly cdne6 b

Software Engineering Journal March 1990

the editing menus etc, is overlaid by an error message.
Therefore, the user is unable to continue diagram constuc-
tion without acknowledging the error, using the OK'
button. However, after acknowledgment the user may con-
tinue diagram consbuction without being forced to correct
the error immediately.

A production-quality version of the editing system with
limitd checking fucilities has been developed and inte-
prated with the database of the ECLIpSE IpSE. Implemen_
tatign of an editing system with the complete ciecking
fucilities discussed here is scheduled for release in a fuh:re
version of ECLIPSE.

As discussed above, all checking in the prorotype system
is immediate, and, although this does not have an excessive
effect on system performanoe, it is clear that it involves
some unneaessary overheads. Thus, an obvious develop_
ment of the system is to add more ,intelligence, to the
system so that unneessary checks are not applied.

This might be done in a number of ways:

tr When a forall or exists qualifier is used, all design
entities are considered to be candidates for selection. This is
logically inefficien! although, in fact, our design represena_
tion makes this the simplet approach to take. From a
checking point of view, a better approach would be to use
the type information associated with nodes and links to
select only thme entities which could conceivably satisfy
the selector condition
D _ Assertions might be automatically classified by the
GDL processor to be either immediate, endty or doign
ass€rtions. This appears to be possible by comparing the
assertion to the representation assertion and by examining
the qulifiers used. For examplg a check which references
the number of links associated with a node should be
classed as an entity check and only executed after links
have been entered.

The general approach which has been adopted in the
editing system is a permissive one. The user is allowed to
do as he or she pleases, an4 if this is incorrecf an error
report is generated. The user may choose to ignore this
report. An alternative apprmch would require the user to
maintain design consistency at all times. Thus, if an eror
was detected by the checking system after some operation,
the user might not be permitted to move on to another oper_
ation until that error was corrected.

In frcq a possible development of the editing system
would be to provide the tool builder with facilities to gener-
ate syntaxdirected editors where the editor drove the inter_
action with the user. Thus, when a user placed a nodg say,
the editor would prompt for its name and associated labels.
Hooks to provide these ftcilities exist in the current system.

In conclusion, we believe that the work reported here
demonstates that design editing systems which maintain
the correcfrrcss and consistency of a design need not be
built individually for each method. By reusing knowledge
about deign methods and editing functions, it is possible to
generate a variety of tailored editing systems quickly and
cheaply, which have the additional advantage that the user
is always presented with a consistent editing interface.

The prototype version of ECLIpSE included configured
vensions of the DE for MASCOT 3 and the major diagram,
types of SSADM. We also confuured versions of the DE for
the principal JSD diagrams, structure diagrams and a few

Software Engineering Journal March 19g0

other simple diagram types for our own experimental use.
The commercial version of ECLIPSE includes a DE config-
ured for MASCOT 3 which is firlly integrated with the data-
base.

Our industrial collaborators were able to build a demon-
shable DE for a new design method called HOOD
(Hierarchic Object-Oriented Design) tlbl in one afternoon,
which illustrates the effectiveness of the system. A mm-
mercial version of the ECLIPSE toolset including a fully
configured DE and other tools for HOOD is now marketed
by IPSYS.

I Acknowledgments

The work describd in this paper was carried out as part of
the Alvey ECLIPSE project at the University of Shathclyde.
We would like to thank collaborators in that projec! Soft-
ware Sciences Ltd., CAP Group Ltd., lrarmonth and Bur-
chett lVlanagement Systems Ltd., the Universities of
Stathclyde and Iancaster, and the University of Wales at
Aberysturyth.

10 References

[1] DE MARCO, T.: Structured analysis and system specifi-
cation' (Yourdon Prcs, 1gZ8)

[2] YOURDON, E., and CONSTANTINE, L.L.: Structured design
(Prentice-Ilall, 1979)

t3l JACKSON M.A.; 'systern developmenf (prentioe-Ilall, 19g3)
t4l BIRRELL, N-D, and OULD, IWA.: .A practical handbook for

software developmenf (Cambridge University presf fgSb)
[5] SOMMERVILLE,I., WELLAND, RC., and BEE& S.: Describ-

ing software design methodologje,, C,omput. 1., lWjT, N, (2),
pp.12i-133

[6] BEE& S., WELLAND, R, and SOMMERWLE,I.:,Software
design automation in an IPSE. proc. ESEC'g7, Shasbourg
Frane, September 1982

fl BOTT, M.F.: TCLIPSE - an integrated project support
environmenf (Peter Peregrinus, lgBg)

[8] STEPHENS, M., and WHITEIIEAD, K: ,The Analyst - a
workstation for analysis and deign'. proc. 8th Inl Conf. on
Software Engineering, Iondorl UII August lggb

[9] JONFS, J.: 'lvfaccadd - an enabling software method support
tool'. Proc. 2nd Conf. of British Computer Society Human
hteraction Specialist Group, Cambridge UIq S€ptemb€r 19g6

[10] IIEKMATPOU& S., and WOODMAN, I![.: Tormal specifi_
cation of graphical notations and graphical software tools'.
Proc. ESEC'87, Shasbourg, Francg Septernber l9g7

[11] CUTIS, G.: 'SSADM - structured systerns analysis and
design methodologt' Paradigm, l98Z)

[12] MASCOT Special &tition of $ftu. Eng.!., 1986, 1, (3)
[13] JMCOM: 'The official handbook of MASCOT: Version 3.1'.

RSRE lvlalver& June 1982
[14] GANE, C., and SARSON T.: ,sbuctured systerns analysis:

tools and technique' (Prenticelhll, lg7g)
[15] 'HOOD Manual: Issue 2.?. ESTEC, Nmrdwijk, Netherlands.

April 1988

Papo'received on llth November 1988 and in revised form on
llth September 1989.

RC. Welland is with the Departrnent of Cnmputing Science, Uni_
versity of Glasgow, Glasgow Gl2 8ee, UK; SJ. Beer is with
Oracle Corporation (UK), Oracle Parh Bittams Iane, Guildford
Road, Chertsey, Surrey KTl6 9RG, LIK; and professor I. Sommer-
ville is with the Departrnent of Computing, University of Lancaster
LAl4YR I.]K.

1 1 5

