
Environments for Cooperative Systems Development

Ian Sommerville

Introduction
The predictions made in the early-1980s about the role of software engineering environments and
their positive influence on the software process have not come true. Integrated project support
environments are not widely used and their benefits have not been demonstrated. Several
experimental IPSEs have been evaluated and abandoned by industry.

There are a number of reasons for this situation:
1. International and national funding concentrated on environment architecture and infrastructure

rather than tools. It was expected that independent tool vendors would build tools for these
architectures. By and large, they haven’t.

2. The environments provided control facilities for the software development process which ought to
decrease overall life cycle costs for developed software. However, current environments don‘t
necessarily reduce development costs; sometimes they may increase them. Given current
accounting practices, there is no market for systems with a 10-year payback.

3. Environment vendors made unrealistic pricing decisions. Most software buyers simply won’t pay
several times the price of a hardware platform for a software product.

4. Where tools were available in an environment, their performance was often appalling. A cynic
might suggest that this was because the designers of the environment infrastructure didn’t
understand tool requirements.

5 . Environments were sometimes not usable in conjunction with other software which worked
outside the environment. The worse example of this was PCTE which, until recently, needed its
own special Unix kernel.

buy environment components as they were required.
6. Environments are (fairly) monolithic. Buyers had to buy everything at once. It wasn’t possible to

I believe that a bottom-up approach to environment construction which starts with an environment
architecture is doomed to commercial failure. I believe that environments will only be successful if
they reduce software development costs and if they are structured so that they may be purchased bit-
by-bit according to need.

There are two obvious ways to reduce development costs:
1. Support those software process activities which consume most development costs.
2. Support a software development strategy which dramatically reduces the amount of software

which has to be created.

Cooperative software development
Software engineering is about teamwork. Teams of people formulate system requirements, design
and implement the system and carry out quality checks on the finished software. It is not unusual for
several hundred people, organised into smaller cooperating teams, to be involved in the development
of a software product.

CASE tools and software development environments recognise that software development is a
team activity by providing shared information repositories and configuration management systems.
These allow project information to be accessible to all team members and ensure that engineers can

Prof. I. Sommerville, Computing Department, Lancaster University, LANCASTER LA1 4YR
Phone: 0524 65201; Fax: 0524 381707; E-mail: is@uk.ac.lancs.comp

work independently on the same software. Repositories and configuration management tools help
control the software process. However, they don’t provide active support for the processes of
cooperation which are fundamental in software engineering.

Indeed, it can be argued that the current pre-occupation with process modelling actually inhibits
cooperation as it ossifies the cooperation patterns in a system. Studies by sociologists have shown
that cooperative processes are very subtle and complex. Many IT systems have failed simply because
they didn’t understand the social context in which they were installed. I predict that few
organisations will devote sufficient resources to understanding their process before writing a process
model and I am confident the resulting environment will be quite ineffective.

these explicitly cooperative activities has been recognised since the mid-1980’s. A new
interdisciplinary research area called ‘Computer Support for Cooperative Working’ (CSCW) has
developed rapidly since the first conference on this topic in 1986. CSCW brings together workers
from computer science, cognitive science and social science who are interested in how groups of
workers cooperating can be provided with computer support. The first products in this area
(sometimes called ‘groupware’) are now available.

Software engineering has always been a cooperative process so a reasonable question which
might be asked is ‘Why haven’t tool vendors included support for cooperation in their products’.
There are two obvious reasons for this:
1. The development of CASE tools has been technology-driven. The requirements for current CASE

tools were, simplistically, to support existing manual methods. We don’t have a good
understanding of how software engineers cooperate in the specification and design processes.

2. Cooperative tools need powerful hardware and networks. It wasn’t practical to develop these
applications on the personal computers and workstations of the 1980s.

I also think there is a third reason. Software engineers feel uneasy about many developments in
CSCW. Because of the problems of configuration management, they think that cooperation is a
necessary evil and that the environment should control cooperation. For example, most configuration
management systems ensure that a document can only be changed by one person at any one time.
CSCW systems turn this round and allow, for example, many people to be working on the same
document at the same time.

The costs of collaboration, in one form or another, are probably the most significant software
project costs. Therefore, if environments are to reduce software development costs, they should
explicitly support cooperative activities.

Software composition
The most common general model of system development is based on creating a set of program
components and putting these together to form a system. The created components are often like
existing components and, in many organisations, an informal reuse strategy is adopted where existing
components are modified to create the new components. However, this isn’t usually called software
reuse!

An objective of many research projects has been to explore systematic software reuse where a
development strategy is based on systematically discovering reusable components in some kind of
component repository and then using these in the creation of new systems. Created components are
then added to the library for further reuse.

For a variety of reasons, these efforts have not yet come to fruition and systematic reuse is not
widely practised. I believe that reuse is the most effective way to reduce the amount of software
which has to be written. However, we will not achieve this through imposing systematic methods on
software developers; rather we must take these existing informal reuse practices and look at ways of
supporting them.

Informal reuse has a number of characteristics:
1. It is domain specific. Development teams use domain knowledge to discover reusable

components.

Of course, teamwork is part of many different activities and the potential for computer support for

I

2. The entities which are reused are large-grain entities. Engineers don’t waste time looking for
individual procedures or objects. Rather, they start with whole sub-systems which are commonly
used in an application domain.

3. It doesn’t need complex cataloguing or information retrieval systems. There are only a small
number of subsystems which are widely used.

4. The sub-systems are invariably modified before being reused.
System composition is a method of software development which is based on supporting the

informal reuse of large-grain components. In order to support these practices, we need:
1. For a given application domain, the appropriate sub-systems which are commonly used in that

2. An architectural framework for applications so that they are composed of loosely rather than

3. Active support for system modifcation and change. This means specialist tools to help the

domain.

tightly coupled subsystems.

engineer discover the effects of system change and tools to make these changes.
I believe that moving to a development strategy based on composition rather than creation is

currently practical and likely to be cost-effective. This therefore suggests that SDE’s should provide
composition support facilities to reduce development costs.

Cooperative systems engineering
Work at Lancaster University is currently underway to explore the facilities required in a distributed,
domain-specific SDE which can support cooperation and system composition. The application
domain which we are currently concerned with is CSCW systems i.e. we want to support the
construction of systems which explicitly support cooperation. In the usual traditions of computer
science therefore, we ought to be able to bootstrap this environment using itself!

which is predicated on the notion that developers will build cooperative systems by selecting
components which are themselves used in COSIE. The system is bootstrappable because, as COSIE
evolves, more and more sub-systems become available so the range of systems and environment
tools which can be built using COSIE increases.

The model of use which we envisage is as follows:
1. From a set of system requirements, engineers identify the subsystems which are required in the

final application.
2. Appropriate subsystems are abstracted from COSIE and modified to meet the application

requirements.
3. Application specific sub-systems which may be required are written.
4. The sub-systems are assembled into an application system.

Obviously this is not a sequential process. Rather, we would hope that the mode of development
is based on evolutionary prototyping where a version of the application is produced quickly using un-
modified sub-systems and the modifications required identified after user experiments. Indeed, we
envisage that some modifications may actually be carried out by end-users after the system has been
delivered.

Currently, COSIE exists but has only user interface components (X-window libraries and a
generic user interface model) and associated modification support (a library browser and a user
interface generator). However, it is already useful and, over the next year, we plan to add
significantly to the available subsystems.
COSIE components
The subsystems which will be incorporated in COSIE fall into a number of different classes:
1. Object classes These are definitions of entities with state and associated operations. Examples of

object classes are DOCUMENT (plus many associated sub-classes such as FORM, etc.), MENU,
DIRECTORY, RESPONSIBILITY-MODEL, etc.

We are in the early stages of developing a Cooperative Systems Integration Environment (COSIE)

9 1 3

2. Libraries These are collections of procedures which are used in a particular part of an application
or in an application domain. Examples are MOTIF library for constructing user interface
applications, or X-window sharing libraries for cooperative systems which support window
management and interaction across several distinct workstations.

systems. Examples are a configuration manager or a hypertext engine.

A characteristic of COSIE is that ALL reusable sub-systems have an associated change manager

3 . Servers These are stand-alone sub-systems which provide a range of services to other sub-

4. Tools These are the obvious facilities such as word processors, spreadsheets, compilers, etc.

which is used to modify that system for use in other applications. The different classes of component,
in general, need different types of support for change.
1. Objects Change is mostly by specialization. Change management requires tools to browse and

manipulate the inheritance hierarchies.
2 . Libraries Changes are accomplished by setting parameter values or by adding new procedures to

the library. Replacement of existing procedures is possible but unwise. Change management
requires support for impact analysis as, typically, libraries have a significant number of inter-
dependencies. Program understanding tools help the user predict the effect of parameter changes.
System generators may relieve users of detailed library knowledge.

for good browsing and editing tools.

Change management support essentially means online documentation.

3 . Servers Servers are principally modified by source code changes. The principal requirement is

4. Tools Tools are only changed by parameterisation. We assume that source code is not available.

Component composition
We have only just started exploring appropriate composition mechanisms for cooperative systems.
Possible approaches which can be adopted include:
1. Co~guration specification A specification language may be used to define the configuration of a

system. This has the advantage that hardware and software may be specified at the same time.
2. User interface driven composition Using this approach, the systems engineer starts by defining

the user interface then incrementally adds to the system by defining how user interface events
should be handled.

3 . Composition around a standard kernel Using this approach, we assume that cooperative systems
are built around a kernel whose principal responsibility is event-handling and event distribution.
Composition might involve defining kernel events and their associated handling and distribution
mechanisms.

914

I

