
80

CONFIGURATION SPECIFICATION USING A SYSTEM STRUCTURE
LANGUAGE

Ian Sommerville and Ronnie Thomson

1 . Introduction

The emergence of distributed systems technology has enabled the development and deployment of
large-scale computing systems distributed over a local or a wide area. Such systems include both
hardware and software components communicating over a network. The size and complexity of such
systems means that evolution and management is a difficult task. The ability to re-configure such
systems in response to changes on the network and changes to components in the system i san
important requirement The distributed nature of systems enables such changes to be done dynamically
without interrupting other systems on the network. However, the difficulty of managing evolutionary
change in such an environment is immense. Identifying the different entities that make up such a
system and tracking the dependencies between components can be a complex and error-prone task.

We believe that a separate configuration model of the system is an essential aid to the task of system
re-configuration. Such a model must identify, unambiguously, the various types and configurations of
systems that exist It should provide the ability to label and track, consistently, information pertaining
to system components and manage the process of change to that information. The inherent complexity
of systems introduces the problem of information overload. Critical dependencies between components
may be hidden making the task of re-configuring such systems extremely difficult The ability to model
components at various levels of abstraction is, therefore, a necessary feature.

This paper discusses a system modelling language and supporting toolkit [l] which was originally
developed as part of the Eclipse software engineering environment [2]. It addresses the modelling of
large-scale systems made up of many different types of components. The language, called SySL
(System Structure Language), enables system structure to be described at various levels of
abstraction. A toolkit enables changes to the system descriptions to be made consistently, and
automates the process of building an executable version of the described system.Using such a
language and toolkit, a systems administrator can control the process of dynamically re-configuring a
system in a much more effective way.

SySL was developed in the first place to support the management of software configurations.
Recently, however, we have extended the system and are using it in a project investigating the general
problems of distributed systems management [3]. The language is also the basis for the configuration
language in a European collaborative project which is concerned with providing practical support for
dynamic systems evolution.

In the remainder of this paper, we briefly describe some of the features of SySL and illustrate how the
language can be used for system configuration specification using an example of a network of
workstations. We then briefly describe the toolkit which has been developed to support software
configuration management using SySL and our initial work on the use of the language in conjunction
with a dynamic configuration manager.

Ian Sommerville is with the Computing Department, Luncaster University, LANCASTER LA1 4YR
and Ronnie Thornon is with the Computer and Intelligent Systems Lab., GTE Laboratories Inc., 40
Sylvan Road, Waltham MA 02254, USA.

81

2 . Language Features
SySL is a language for programming-in-the-large (PIL) and is a type of module inter-connection
language (MIL) [4]. Module Interconnection Languages are notations for explicitly describing a
system's structure during its development enabling its evolution to be managed and controlled. The
basic concept behind such languages lies in the difference between programming-in-the-large and
programming-in-the-small. DeRemer [5] states that the task of "structuring a large collection of
modules to form a system is an essentially different intellectual activity from that of constructing the
individual modules". It is then argued that a different type of notation is required which is capable of
representing the entities and abstractions used in PIL.

The most notable work in this field includes languages like MIL75 [5] , JNTERCOL [6] , Jasmine [71
and NuMIL [81. In such languages the inter-connections between software components, representing
different types of dependencies, are described explicitly. The structure of the system is in static terms
and this allows the system structure to be checked for certain kinds of consistency and completeness.
Other languages and software development tools represent this type of information in different ways.
For example, a certain degree of module interconnection can be represented in languages such as Ada,
Modula-2, etc, however these languages do not support concepts like versions and configurations,
which are important for programming-in-the-large. More recently languages such as Polylith E91 have
t ied to address the issues of module inter-connection in a large-scale, distributed, heterogeneous
environment. Therefore the mapping of system structure, as represented in the MIL, onto structures in
the software is complicated when these structures are distributed over a network

We have generalised the ideas in SySL to enable the description of systems made up of hardware,
software and documentation components. The language can also be used to highlight the dependencies
that exist between components. Such descriptions are useful as an architectural blueprint for designers,
programmers and managers involved in the project. Features of the language include:
(i) The ability to model families of systems at various levels of abstraction. SySL encapsulates the

idea of a class of systems sharing certain common features. Individual members of a system class
can be specified by instantiating this generic structure. For example, we can describe the structure
of a generic workstation and instantiate this for individual personal systems. This facility allows us
to check that configurations conform to the generic specification and to classify the individual
components of the system.

(E) The ability to describe any structured system whether it be hardware, software, or documentation.
The language allows the description of any logical collection of components that can be represented
in a project database. This facility means that we can identify which software components or
systems are available on which hardware systems and, when used in conjunction with the
modelling facilities, allows us to decide which alternative configurations are feasible. Thus, the
dynamic re-configuration of the overall system can be supported.

(iii) Facilities to describe the logical system structure. A fine-grain description of logical components
and their dependencies may be provided and kept separate from the physical structural description.
This facility supports software configuration management as the system configuration need not be
specified in terms of the physical storage structure (files, database objects, etc.). Alternative,
logically equivalent configurations can be represented and managed.

(iv) Facilities to state constraints on particular combinations of components and component attributes.
Invalid configurations can therefore be detected by the SySL language processor before they are
created. The problem of detecting configuration errors is therefore reduced.

These facilities are integrated in an object-oriented framework with a simple and consistent syntax.
3 . An Example of SySL
To illustrate the features in SySL, we describe several different network prototypes that are the subject
of experiments. There are two classes of network with certain commonalities namely those that are
experimenting with broadband network technologies and those that are experimenting with multi-media
technologies over a telephone network. The following statement introduces a class of systems labelled

82

NETWORK that is sub-divided into two classes of network called BROADBAND-TEST-NET and
MM-NETWORK.

class NETWORK is (BROADBAND-TEST-NET, MM-NETWORK)

The generic structure of both classes of network can be given as follows:

structure NETWORK is
TRANSPORT
{ SERVER) *
{SIMULATOR} *
{SWITCH}*

{ MUSE-WORKSTATION}*

end structure

The structure statement in SySL defines a template for a generic component or system. Individual
instances of components inherit the generic structure. "he description of NETWORK shows that
particular network configurations comprise a TRANSPORT component and several SERVERS,
MUSE-WORKSTATIONS, SIMULATORS and S W C H s ({ }* means one or more instances may be
present). At this level the description is an abstract structural description; specific details of network
confgurations are not given.

We can further refine the above structure description of a network to reveal more of the structure of
network configurations. For example,the class MUSE-WORKSTATION, which represents a
workstation running the Athena Muse software, can be described as follows:

-- Known types of workstation
class MUSE-WORKSTATION is (vpSun3, rsDec, jdgA'IT386)

-- Workstation component structure. Assume that the generic
-- structure WORKSTATION is defined elsewhere
structure MUSE-WORKSTATION: WORKSTATION is

ISDN
PARALLAX
ATHENA-MUSE
x-SHADOW
COMM-CHANNEL
IJR-SERVER]

end structure

Above we have introduced a number of specific configurations of MUSE-WORKSTATION, vpSun3,
rsDec and jdgA77'386. The structure MUSE-WORKSTATION inherits attributes from the more
abstract structure WORKSTATION. These would normally be attributes such as PROCESSOR,
MEMORY, COMMS-INTERFACE, etc. The generic structure of a MUSE-WORKSTATION (i.e. a
specific type of workstation) is given, and identifies an ISDN component, Parallax video capabilities
(PARALLAX), Athena multi-media authoring software (ATHENA-MUSE) and screen-sharing
software (X-SHADOW) as necessary components of a MUSE-WORKSTATION. The fmal item, IR-
SERVER, describes a multi-media information retrieval facility that can be optionally resident on a
workstation. This facility allows retrieval of text, stil l pictures and video segments.

The SySL description of IR-SERVER shows that it is made up of a retrieval component, one or more
database components (FAIRS) and a message server. An instance of IR-SERVER is called aeginu. The
SySL description of aegina shows how the components of IR-SERVER are instantiated.

structure IR-SERVER is
MUSERETRIEVAL
{FAIRS}*

83

MESSAGE-SERVER
end structure

system aegina : IR-SERVER is
provides(query, browse, help)
requires (gte-muse)

MUSE-RETRIEVAL => (query, query-expansion, browse, help)
FAIRS => (query-process, locate, rank, present)
MESSAGE-SERVER => fairs-message-server

end system

Here we see how generic attributes (which by convention are always expressed in upper-case
characters) are instantiated as actual components (distinguished because they are written in lower-case
letters). Hence, MESSAGE-SERVER (for example) is implemented by the component
fairs-message-server. Because of the separation in SySL between logical and physical components,
the component name used here need not be the same as the name under which the component is stored
in the file system or database. Indeed, different versions which are logically comparable may be stored
under different names.

The SySL provides clause is a very limited form of interface specification. Essentially, an instance of
IR-SERVER is an abstract data type which is accessed through query, browse and help operations.
This information is not currently used by SySL processing tools but is provided as an aid to readers of
SySL descriptions. The components making up aegina are not accessible except through the provided
interface. The requires clause is used to specify that an optional element in some other part of the
system description must, in fact, be present if this system is to work correctly.

We can continue to refine the structure of a system or class of systems in the above manner. The result
of this process is a tree-like structure defining the hierarchical structure of a system. At each level in the
tree more details of specific components are given. Therefore, following on from the above
description, we can describe the specific structure (i.e. the instantiation of the component types) for a
type of workstation:

system vpSun3 : MUSE-WORKSTATION is
provides(aegina.query, aegina.browse, aegina.help)
requires (stl-isdn-simulator)

ISDN => gte5-isdn

ATHENA-MUSE => gte-muse

IR-SERVER => aegina

PARALLAX => sun-parallax

X-SHADOW => sh-X
COMM-CHANNEL => ds3

end system

The workstation described above makes use of several services available on the network, namely, an
ISDN simulator and an audio server. The system 'aegina', a multi-media information retrieval service,
is provided by this workstation for use by other devices on the network. The provides clause in the
above definition is inherited from the description of aegina and shows that this workstation provides
access to the information retrieval facilities provided by the IR-SERVER

Part of the system is the 'gte-muse' component described below.

component gte-muse : ATHENA-MUSE is
INTERFACE => athena-interface-sw
ATHENA-WIDGET => (popup-widget, pane-widget,

event-widget)

04

X-PROTOCOL => x-protocol-sw
end component

There is no logical distinction between components and systems in SySL. However, we make the
distinction so that we can more readily identify which components may be re-configured. Only
systems may be dynamically re-configured. Components represent fine-grain entities which would not
normally be executable processes.

The following example describes one of the Athena widget classes, called popup-widget which
handles the creation and manipulation of popup menus. For example purposes assume that appropriate
class and structure definitions are defined.

component popup-widget : ATHENA-WIDGET is
provides (simpleMenu, menuButton)

RESOURCES => (background, borderColor,
height, width,labelClass),

OBJECT => (SimpleMenu, menuButton, sme,

.
smeBSB, smeline),

notify,menuPopDown)
FUNCTION => (highlight, unhighlight,

end component

In this example component popup-widget is an abstract data type representing the component that
creates and manages popup widgets in the Athena X-window widget set. The objects sme, smeBSB,
smeline, are defrned in this component but are invisible to users of this component. The structure
representing popup-widget contains a set of resources necessary in X applications, several window
objects and a set of functions for creating and managing these objects.

As well as structural relationships, SySL can be used to specify other types of relationships. Implicit
relationships between components such as 'partof, 'includes' and 'is-dependent-on', are part of the
structural characteristics of the language. To expand on this an assertion capability allows additional
properties about a component or class of components to be stated. The following example asserts that
for all diskless configurations of MUSE-WORKSTATION an ethernet interface must be present.

as~ert MUSE-WORKSTATION :
not (Not-present (ETHERNEn and

Not-present (DISK-SYSTEM))

As the assertion applies to a class of systems al l members of that class must satisfy the assertion
constraint. The language compiler uses such constraints to check the consistency of configuration
descriptions.

SySL was originally designed as the basis for a software configuration management system. We
designed the notation for describing logical system structure as we believed that this simplified the
process of specifying the build instructions for large software systems. Because of the requirement for
straightforward system building our principal design objectives were to provide a straightforward and
succinct mechanism for specifying component dependencies and to integrate the description of the
target of the build process with the software structure specification. We also required a mechanism to
tackle one of the most significant problems in system building namely the omission of a necessary
component. This checking can be carried out be comparing a system to its structure and ensuring all
necessary parts of the structure have been instantiated.

SySL is not, in its current form, a configuration programming language which can be used to compose
components or tasks into executable applications. In this respect, it is quite different from
configuration languages such as CONIC (lo), the Instress notation which is provided as part of the
Inscape environment (11) or the Durra notation, described by Barbacci et al. (12). All of these
languages are geared towards supporting system composition from more primitive components so

85

place grate emphasis on interface specification and on ensuring the consistency of the interfaces of
composed components.

This focus on interface specification makes these languages suitable for the construction of distributed
applications where components of an application may execute on separate machines in a network.
However, to provide this level of functionality, systems such as CONIC must also provide a language
for programming components (called task modules in CONIC). This clearly limits the applicability of
the system. SySL, by contrast, is language independent and components may be realised in any
programming language.

Since 1991, we have been investigating the use of SySL as a language for distributed system or
network specification where the system components are themselves applications such as compilers,
window management libraries, software tools, etc. We intend that this specification should be used by
network managers to manage versions of software systems are available on a network which may be
composed of several hundred workstations. Managers need to be able to obtain a picture of the
network being managed at a number of different levels of abstraction and the structuring facilities of
SySL make it well-suited for network representation.

However, we have just started the development of a derivative of the language for specifying the
composition of distributed applications. We recognise that this will require the provision of
mechanisms for interface specification which are comparable to those available in other configuration
languages.
4 . The SySL Toolkit
We have provided an integrated toolset to help maintain the consistency and completeness of SySL
descriptions. This can be difficult to manage if the language is detached from the environment
containing the project information. Therefore to enhance the usability of the language we have
provided tools that automate the task of keeping such a description consistent with the environment it
is modelling. In designing SySL, we made a decision that the language should not be divorced from its
tool support. Therefore, we have deliberately kept the language as simple as possible and provide
functionality which might have been included in the language (such as mapping from logical to
physical store) in the toolset.

The following tools are included.
(i) Language Processor and Graph Generator: The environment uses a dependency graph

generated by the language processor.This graph is a logical representation of the equivalent SySL
description. Nodes in this graph represent entities in the system description and links between
nodes represent relationships between entities. The language processor checks the internal
consistency of a SySL specification and is tightly integrated with the browser and structured editor.

(ii) Language Browser and Structured Editor: SySL is an important source of documentation
on the system. The language browser provides a structured approach to viewing this dependency
graph. The editor system allows the user to update the graph and preserve the semantics of the
SySL description. The browsing and editing system presents the underlying dependency graph so
that logically related entities are grouped on the user’s display. Navigation facilities allow the
dependency graph to be traversed and holophrasting facilities simphfy the information display.

(iii) Object Name Management: SySL provides no explicit naming conventions for identifying
versions of components. We assume that the underlying environment provides such facilities. This
tool lets users map SySL names onto software engineering environment object names and to view
the object representation. In essence, this system provides the link between the logical system
names and the underlying physical storage system. Multiple versions of the same logical system
are supported by using the name management system to create separate directories which map onto
the object management system (Figure 1)

86

Component Object id e or
na

Mapping for Version 1 Mapping for Version 2

Figure 1 The object name manager

(iv) System Building Facility: This tool allows the user to generate the information required to
build a software system and dependent components. The system uses a rule base that contains
knowledge about the types of component and the information required to build each software
component type. The rule base describes which tools are used to transform entities of one type (C-
SOURCE, say) to another type (OBJECT-CODE). When used in conjunction with the typing
mformation in the system model and the name management system, this allows system makefiles
to be generated. Makefiles are essentially a combination of physical dependency information and
(sometimes implicit) system construction specifications so can readily be constructed from the
SySL description.

These tools work together as shown in Figure 2.

Work is currently underway to extend the SySL toolkit. A tool to generate graphical views, giving
facilities similar to ConicDraw [Gamer 891 shared by several workstations is being developed. The
objective of this work is to allow distributed system managers to collaborate in making changes to the
system configuration. A query facility is being developed which will allow a SySL description to be
queried and modified by a configuration manager as described in the following section.

5 . System Re-configuration
We are currently investigating the use of SySL as a configuration language in two areas:

1. In the management of a network of distributed workstations where services such as compilation
services, data base services etc. are provided on different machines. We intend to support the
upgrading of these services without making them unavailable.

2. In a distributed manufacturing system where the re-configurable components are relatively fine-
grain (C++ objects). This project is in its very early stages and working software is not yet
available to support interface checking.

87

SySL text

Logical system
structure

Executable Program

t

Figure 2 The SySL toolkit

In the first of these areas, we are concerned with a distributed system providing a range of services as
separate applications. The granularity of the configuration items is coarse (for example, an item is an
Ada compiler) and, unlike CONIC say [lo] we are not concerned with applications which are
themselves distributed.

The model for re-configuration support for this system is as shown in Figure 3.
Dynamic re-configuration is managed through a configuration description expressed in SySL. We
assume that a system provides a set of services and includes more than one processing node which can
support these services. Re-configuring the system involves re-defining which processing node
provides a specific service.

In our earlier example we described an instance of MUSE-WORKSTATION called 'vpSun3' which
contains the system 'aegina', which is a multi-media information retrieval facility associated with that
workstation. This retrieval service is shared by all workstations on the network therefore it is only
resident on 'vpSun3'. The service doesn't require any dedicated hardware to be attached to the
workstation. All the video segments and still pictures come from compressed data files are resident on
the workstation. If we decide to re-configure our network such that the 'aegina' service is located on
another machine all we need to do is alter the SySL description to reflect this change.

Using the structured editor, provided as part of the SySL toolkit, we can move the 'aegina' component
across to another workstation. In executing such a command, the editor will make sure that the
semantics of the SySL is preserved by removing the provides line and the definition of 'aegina' from
the workstation 'vpSun3' and will add appropriate text to the definition of the workstation which will
now provide the service.

88

SySL configuration

Figure 3 Dynamic re-configuration using SySL

Altering the configuration description automatically invokes the configuration manager. The
configuration manager interprets the user’s changes, assesses their feasibility and invokes the system
builder to p r e p and install the modified service. In our current implementation, this involves creating
a makefile but we anticipate that dynamic configuration support may bypass this step and translate
changes directly into system commands.

We ensure that the system node which is currently providing a service is a c c k d by routing service
requests through a service manager. The service manager may access the SySL configuration
description to discover the location of a particular seMce and then route the request to the appropriate
system node. The service manager maintains a queue of requests so can block service requests while a
reconfiguration is in progress.

We plan to use the same basic model when using SySL as a basis for the dynamic reconfiguration of
distributed applications. However, we are aware of the need to extend the interface specification
facilities in SySL to support distributed applications (we shall make the interface specification
compatible with C++) and SySL is evolving towards a language for configuration programming.

6 . Conclusions
The process of configuring and re-configuring a distributed system is an expensive and error-prone
activity. The work described in this paper has shown that a tailored notation can be used for
configuration description and we believe that a configuration description in this notation is easier to
manage and evolve than alternative ad hoc descriptions. The SySL system allows system managers to
document the components that make up a system, record their interrelationships and automatically
generate the build files necessary to create a new version of the system. We have used SySL in the
configuration management of software systems and are now experimenting with the notation in the
wider context of distributed systems management.

89

7 . References
Thomson, R. & Sommerville, I., 1989, ‘An Approach to the Support of Software Evolution’,
Comp. J., 32 (3, October 1989.
Boa, M.F. 1989, ECLIPSE: An integratedproject support environment, Peter Pengrinus,
Stevenage, 1985.
Dean, G., Hutchison, D., Rodden, T. and Sommerville, I., ‘Cooperation and Configuration
within Distributed Systems Management’, Proc. Int. Workshop on Confrgurable, Distributed
Systems, London, 1992.
Prieto-Diu, R. and Neighbors, J- 1986, ‘Module Interconnection Languages’, Journal of

DeRemer, F. and Kron, H.H., 1976, ‘Programming in the large versus programming in the
small’, IEEE Transactions on Software Engineering, SE-2 (2), 80-86.
Tichy, W.F. 1979, ‘Software Development Control Based on Module Interconnection’, Proc.
4th Int. Conf on Software Engineering, 29-41, Munich.

Systems and Sofrware, 6.

Marzullo, K & Weibe, D., 1987, ‘Jasmine: A Software System Modelling Facility’, ACM
SIGPLAN/SIGSOFT, Vol22, No 1, 1987.
Narayanaswamy, K., 1985, A Framework to Support Sofhvare System Evolution, Ph.D
Thesis. Computer Science Department, University of Southern California.
Purtillo, J., 1985, ‘Polylith: an environment to support management of tool interfaces’, Proc.
ACM SIGPLAN Symposium on Languages Issues in Programming Environments, July

Magee, J., Kramer, J., and Sloman, M., ‘Constructing Distributed Systems in Conic’, IEEE
Trans. on Software Engineering, 15 (6), 663-75, 1989.
Perry, D.E., ‘The Inscape Environment’, Proc. 11th Int. Conf on Sofrware Engineering, 2-
12, IEEE Press, 1989.
Barbacci, M.R., Weinstock, C,B., and Wing, J.M., ‘Programming at the Processor-Memory-
Switch Level’, Proc. 10th Int. Con$ on Software Engineering, 19-28, IEEE Press, 1988.
Kramer, J., Magee, J. and Ng, K., ‘Graphical Configuration Programming’, IEEE
Computer, 22 (lo), 1989.

