
Architectural
Support for
Cooperative
Multiuser
Interfaces

Richard Bentley, Tom Rodden, Pete Sawyer, and Ian Sommerville
Lancaster University

omputer support for cooperative work requires the construction of appli-
cations that support interaction by multiple users. The highly dynamic and
flexible nature of cooperative work makes the need for rapid user-inter-

face prototyping a central concern. We have designed and developed a software
architecture that provides mechanisms to support rapid multiuser-interface con-
struction and distributed user-interface management. Rapid prototyping requires
mechanisms that make the information determining interface configuration visible,
accessible, and tailorable.

We developed the architecture described here as part of a project investigating
support for the cooperative work of air traffic controllers. Extensive use of prolonged
ethnographic investigation helped to uncover the nature of cooperation in air traffic
control.’ The aim of the architecture is to support an environment in which a multi-
disciplinary team can experiment with a wide range of alternate user-interface designs
for air traffic controllers. Thus, we use examples from this domain to illustrate the ar-
chitecture.

Multiuser interfaces

Developing prototypes
for multiuser-interface

designs can be
complex. It helps if the

developer can work
with a set of simple

mechanisms that
determine the interface

properties.
May 1994

Many computer systems already support simultaneous interaction by more than
one user; examples include multiuser databases, operating systems, and office infor-
mation systems. But these systems support multiuser interaction in a way that prohibits
cooperation. Most existing multiuser systems give each user the illusion that he or she
is the only one using the system, thereby maintaining a “protective wall” to hide other
users’ activities. To support and encourage cooperation, cooperative applications must
allow users to be aware of the activities of others. The purpose of a cooperative mul-
tiuser interface is to establish and maintain a common context, allowing the activities
of one user to be reflected on other users’ screens. This common context is achieved
by sharing application information; the real-time presentation and manipulation of
shared information is the main function of cooperative multiuser interfaces.

The extent to which multiuser interfaces support sharing through the propagation
of activities is termed interface coupling; the greater the level of awareness between
users, the closer the interface coupling. The following three levels of sharing corre-
spond to different degrees of interface coupling:

Status report
The user display model and agent architecture described here form the basis of a

multiuser-interface prototyping environment called MEAD (Multiple Electronic Ac-
tive Displays). The latest version of MEAD (version 2.0) exists as a working proto-
type developed in Objectworks\Smalltalk Release 4.1 for Sun workstations. It is
being used in several research projects at Lancaster University and elsewhere.
One of these is Comic (Computational Mechanisms of Interaction for Cooperation),
an ESPRIT research project involving 10 partners that is developing supporting
theories and techniques for CSCW. Within Comic, the system is being used to
investigate sharing in cooperative systems and, in particular, the relationships
between sharing information and sharing awareness of other users’ activities.

Tom Rodden at the address shown at the end of the article.
For more information on the availability of MEAD or the Comic project, contact

dated. This level of sharing is also
known as “what-you-see-is-what-1-
see” (WYSIWIS).
View-level sharing (medium cou-
pling): Each user has presentations
of the same information, but the pre-
sentations may differ. For example,
different users may simultaneously
interact with tabular or graphical dis-
plays of the same data.
Object-level sharing (loose coupling):
Each user has presentations of dif-
ferent information. For example, sev-
eral users may each edit different sec-
tions of the same document.

~ _ _ ~

Lauwers and Lantz2 describe two
approaches to developing multiuser inter-
faces. The first allows single-user applica-
tions to be shared in a collaboration-trans-

Presentation-level sharing (tight cou-
pling): Each user is presented with the
same display of the same information

from a common information space.
When this presentation is changed in
any way, all display screens are up-

Collaboration-transparent and collaboration-aware user interfaces

It is important to distinguish between two broad classes of
multiuser interface. The first lets multiple users work cooper-
atively with existing single-user applications. The second
involves the development of special-purpose applications
that handle collaboration explicitly. Lauwers and Lantz’
identify these approaches as collaboration transparency and
collaboration awareness, respectively.

Some applications can be modified to run in a multiuser
setting. This modification provides geographically dispersed
participants with access to sophisticated tools to facilitate
group work. Thus, systems have been developed that sup-
port transparent sharing of applications, often called shared
applications.

This approach was developed to allow each user’s screen
to be shared with others. As windowing systems developed,
this shared-screen approach was extended to permit sharing
of individual windows. The figure shows the logical structure
of such a shared-window system.

A central conference agent is responsible for multiplexing
display output and demultiplexing user input so that the
application deals with a single stream of events. This sharing
is transparent to the application, a condition achieved by
allowing only one user to interact with the application at any
given time (part b in the figure). Borrowing some business-
meeting terminology, this user is said to “have control of the
floor.” Fioor control must be passed to other users before
they can interact.

agent and is identified as its chair management Not
surprisingly, much of the work in supporting collaboration
transparency has focused on floor control - for example, the
d e v e l o p “ W dierent turn-taking protocols and floor
control policies.

Floor control is the responsibility of the central conference

Collaboration-aware solutions provide facilities to explicitly

manage information sharing, allowing information to be
presented in different ways to different users. Often. the
application itself manages each user’s sharing. Applications
shared in this way are multiuser applications.

The logical centralization of user interface management
embeds within the 3pplication a set of decisions as to how
information is presented and modified. These decisions form
the policy by which information is shared; the embedding of
this sharing policy in the application inhibits tailoring. In
addition, the lack of a supporting infrastructure requires most
collaboration-aware applications to be constructed from
scratch. As a result, this approach to developing cooperative
systems tends to be less popular than the collaboration-
transparent approach.

Multiuser interfaces. The problems of developing mul-
tiuser interfaces were initially highlighted in the CoLab pro-
ject at Xerox’s Palo Alto Research Center,3 which examined
the development of appropriate supporting facilities for real-
time co-located meetings. Xerox PARC researchers devel-
oped several applications that allowed the effects of each
user’s actions to be shared across several screens. The
CoLab project called this principle “what-you-see-is-what-l-
see” (WY SIW IS).

Initially, each user’s complete screen was shared; how-
ever, this was found to be confusing and distracting. The
solution was to share only portions of the screen, and a
separation was established between shared and private
windows. This arrangement is called relaxed WYSlW/S,
while the initial Colab setting is termed strict WYSIWIS.
Collaboration-transparent systems replicate display output
and adopt an approach based on sharing an application’s
presentation. Multiuser interfaces for such systems, there-
fore, support the WYSIWIS sharing of applications, giving

parent manner, so that no facilities for han-
dling collaboration are embedded in the
application. The second involves develop-
ment of special-purpose collaboration-
aware applications that explicitly manage
cooperation. Each approach has different
implications for sharing (see sidebar).

Developers of a collaboration-aware
application must determine how users re-
quire information to be presented and
how they interact with information rep-
resentations. Although design decisions
can provide flexibility to support differ-
ent forms of presentation and interaction
for each user, they are often embedded
within the application and become diffi-
cult to amend. While collaboration
awareness is necessary for cooperative
systems, it is better not to have it embed-
ded in the appli~ation.~ Therefore, sup-

porting architectures that manage infor-
mation visualization and manipulation
outside the application are required.
These architectures hide the physical dis-
tribution of components from the appli-
cation developer and allow visualization
and interaction policies to be tailored in-
dependently of the application.

Multiuser interface
requirements

Two key requirements constrain de-
velopment of the supporting infrastruc-
ture for multiuser-interface development.

Support for multiple displays. Coop-
erating users access shared information

through individual workstations, often
supplemented by informal communica-
tion. Since cooperating users must be
aware of each others' activities, a mul-
tiuser interface architecture should allow

visualization of shared information

manipulation of shared information

propagation of user interaction be-

on different users' screens,

on different screens, and

tween screens.

To support rapid prototyping, these facil-
ities need to be provided through a set of
robust and readily understood mecha-
nisms that allow interface reconfiguration.

Support for different views. Cooperat-
ing users may require information to be

each user a common frame of reference.' Removing this
Common Context can cause problems when users engage in
tightly coupled group work.

Although some shared-window systems re ax interface
coupling. a fundamental problem is their inai ,My to support
anvthina other than WYSlWlS information ct irina. Where

Generation of Shared-Window Systems." Proc. CHI 90, Conf. Human
Factors m computing Systems. ACM Press. New York, 1990, pp, 303-
31 1

2. S Greenberg. "Sharing Views and Interactions with Single-User
Applications." Roc. ACM/I€€€ Conf. Office Information Systems.
ACM Press. New York, 1990, pp. 227-237.

. - -
Users have widely differing knowledge, roii and attributes, 3. M. Stefik et al., "WYSIWIS Revised: Early Experiences with Multiuser

Interfaces." ACM Trans. Office Information Systems. Vol. 5, No. 2,
Aor. 1987. OD. 147-167. this can be overly restrictive. A view used b j a technical

oerson. for examole. mav have too much detail for effective
4 P Dewan "Principles of Designing Multiuser User-Interface-Develop-

ment Environments ' in Engmeermg for Human-Computer Interaction
viewing by a manager *

Different users may require different representations of the Nofih-Holland, Amsterdam 1992
information, or may be concerned with
entirely different information. This
level of flexibility cannot be provided
by collaboration-transparent applica-
tions. since it requires the system to
exploit knowledge concerning the
shared task being undertaken. This
form of interface is provided by collab-
oration-aware applications.

Although they can support strict
WYSlWlS interaction (as with the
Colab system, for example), collabo-
ration-aware systems offer such evi-
dent advantages as a range of alter-
native application presentations
across a community of users. To
contrast this arrangement with the
work of Colab, Dewan4 calls this style
of sharing "what-you-see-is-not-what-
I-see." or WYSINWIS.

References

1 J C Lauwers and K A Lantz "Collabora-
tion Awareness in Support of Collaboration
Transparency Requirements for the Next

May 1994

Floor
control

(b)

Logical output architecture (a) and input architecture (b) of a shared-window
system.

presented in different ways that corre-
spond to different levels of sharing. For
tightly coupled cooperative work, users
may share information at the presenta-
tion level. However, sharing may also be
required at both view and object levels
to support different user or task require-
ments. As a result, the supporting archi-
tecture should allow

definition of different interactive rep-
resentations of shared information
entities,
maintenance of these representations
as underlying information changes,
and
updating of information entities
through interaction with their repre-
sentations.

Su portfor

development
mu P tiuser-interface

Most existing approaches to develop-
ing cooperative systems consider user-
interface development to be a task for
application developers and therefore
provide little support for user-centered
development and tailoring. Because the
focus of cooperative interface develop-
ment is on information sharing, we need
support for experimentation with differ-
ent visualization and interaction tech-
niques. Consequently, any architecture
to support rapid prototyping should
make visualization and interaction details
explicit and decouple them from appli-
cation concerns.

Along with rapid refinement of inter-
face designs, prototyping also involves
evaluation of interface prototypes in re-
alistic settings. Hence, in addition to de-
velopment tools supporting interface
construction, we also need mechanisms
to execute prototype interfaces. These
mechanisms should make visible the pol-
icy for visualizing and interacting with in-
formation (the sharing policy) to allow
high-level tailoring and rapid refinement
of interface prototypes. Some general de-
sign principles for single-user interfaces
have been identified, but few have
emerged for multiuser-interface devel-
opment. However, multiuser interfaces
must support a number of key features.

(1) Separation. An accepted feature of
single-user interface architectures is the
separation of user-interface and applica-

tion components. This arrangement has
many advantages:

Reusability. Both user interface and
application can be reused indepen-
dently.
Customization. The interface can be
tailored in isolation by both devel-
oper and user.
Portability. The application may be
portable while the interface is device
dependent.
Multiple interfaces. The same appli-
cation can be manipulated by differ-
ent interfaces.

Logical separation is desirable for sin-
gle-user interfaces, but the multiuser case
requires such separation to support the
alternative representations needed for
view-level ha ring.^ In addition, physical
separation provides a degree of fault tol-

such as group drawing, the process of cre-
ating an object and the associated expla-
nation and gesturing are often as impor-
tant as the resulting ~ b j e c t . ~ Where such
tight coupling is required, the granularity
of updates is small, and rapid update
feedthrough is vital. For more loosely
coupled activities, courser grained up-
dates may be acceptable.

(3) End-user tailoring. Cooperating
users may adopt different working meth-
ods even when performing similar tasks.
Therefore, the interface designer cannot
provide interface representations appro-
priate to all users in all contexts. One so-
lution is to let users tailor their interfaces
to suit their requirements.

These features, combined with the re-
quirements of cooperative interfaces,
motivated the design of our architecture,
which supports multiuser-interface pro-
totyping. Multiuser interfaces exist within
distributed environments and support si-
multaneous interaction by several users.
Interface requirements must therefore be
sensitive to properties of the supporting

Cooperating users distributed infrastructures. Consistency
between information displays and the in-
formation itself must be maintained, and
mechanisms must be provided to handle

may work better

representations change propagation.

with interface

thev can tailor
individually. Supporting -

infrastructure
erance; an interface process can fail with-
out affecting other interface or applica-
tion processes. Physical separation also
allows execution of interface and appli-
cation processes on different machines,
providing local feedback and supporting
a high degree of user adaptation.

(2) Feedback and feedthrough. Most
user actions require display feedback; the
form of such feedback may depend on
the semantics of the application. When
the application and user-interface com-
ponents reside on different machines, the
feedback loop involves transmission over
a network. It may therefore be hard to
achieve acceptable response times.

Feedthrough is the updating of users’
screens in response to actions performed
by other users working on different ma-
chines. Multiuser interfaces must support
rapid feedthrough. The importance of
this feature depends on the granularity
of the updates broadcast to other users.
In tightly coupled cooperative activities,

Architectures for multiuser interfaces
originate from distributed-systems re-
search and must address problems such
as network delay, loading, and latency.
Between the two extremes of centraliza-
tion and replication, lies a continuum of
hybrid architectures.

Centralized architectures. In a central-
ized (or client-server) architecture, a cen-
tral server program handles all user in-
put and display output events, which are
routed via local client programs. Local
workstations act as graphical terminals
and window servers. The master-slave ar-
chitecture is a variant in which one client
is merged with the server and all other
nodes run as clients.

The primary advantage of the client-
server approach is simplicity: The appli-
cation and all data are held centrally, sim-
plifying access management and data
consistency. Implementation is easier still
with a networked window system such as

40 COMPUTER

Easy to implement
Easy to addhemove displays
Easy to keep consistent

Easy to provide different levels of sharing
Easy :a provide rapid feedback n n

X Windows. Shared-window systems
such as shared X6 use this approach,
which has been widely adopted by com-
puter-conferencing systems.’ It is rela-
tively easy to support presentation-level
sharing because the server can replicate
display directives to all clients.

The client-server approach can also
support view-level sharing. For example,
Rendezvous3 is based on a client-server
architecture with all user interaction and
display management handled centrally.
Each user has an associated view process
that interprets input events and display
directives. The sharing policy is detached
from the information being shared, since
each view process can interpret events
and display directives differently, sup-
porting alternative information repre-
sentations.

Because the sharing policy is embed-
ded in the central server, the system de-
veloper is responsible for interface tai-
loring. Rendezvous does not make the
sharing policy visible, which severely lim-
its end-user tailoring. The centralized ar-
chitecture is also vulnerable to delayed
feedback and failure of the central node
(or the network connections to it), since
all events must travel over a network.

Replicated architectures. At the other
extreme, replicated architectures main-
tain exact copies, or replicas, of the ap-
plication on each workstation. To main-
tain consistency, each replica handles
screen management and feedback locally
and broadcasts any change in application
data to all other replicas. Local display
management means that different views
are easily supported. End-user interface
tailoring is relatively easy to provide, as
each replica can adapt its sharing policy
to the user’s preferences.

The major difficulties with replicated
architectures concern synchronization
and data consistency. Users can perform
actions simultaneously that are executed
locally before being broadcast to other
machines. If these actions conflict - for
example, one user deletes the selected
object in a group drawing program just
as another user changes the selection to a
different object - inconsistent interfaces
can result from events arriving in a dif-
ferent order at each machine.

Preventing such race conditions re-
quires complex synchronization algo-
rithms. The standard distributed-systems
solution is to use a global clock to time-
stamp each event and then execute roll-
back should inconsistency arise, replay-

Centralized)4 b(Replicated)
architecture

W
Hard to provide different levels of sharing
Hard to provide rapid feedback

W
Hard to implement
Hard to addhemove displays
Hard to keep consistent .

__
Figure 1. Summary of distributed-architecture characteristics.

ing events in temporal order. This is un-
acceptable for multiuser interfaces where
screens may have been updated, so al-
ternatives based on transforming updates
to prevent rollback have been devel-
oped.8

A further problem occurs when users
wish to join a group session already in
progress. This dynamic registration is
straightforward with a centralized ap-
proach, since new clients need only con-
tact the central server. The server can
then broadcast the current state of the
application to bring the new client up to
date. With a replicated approach, how-
ever, a new replica must contact all other
replicas to tell them that it needs to re-
ceive updates. This means that new repli-
cas must know or be able to learn the lo-
cations of all other replicas.

Hybrid architectures. Both centralized
and replicated architectures offer bene-
fits and limitations. Because neither ar-
chitecture fully meets multiuser interface
requirements, a hybrid solution is needed
wherein components of the cooperative
system are either centralized or repli-
cated, depending on the application re-
quirements. A continuum of such hybrid
arrangements exists between the ex-
tremes of centralization and replication.
Figure 1 summarizes the characteristics
of different distributed-systems architec-
tures.

Our objective was to develop an archi-
tecture that supports multiuser interfaces
and also provides runtime support and
facilities for interface tailoring. This ar-
chitecture is based on autonomous agents
that encapsulate details of the sharing
policy to manage multiuser interfaces in-
dependently of the application’s behav-
ioral semantics. The architecture is a hy-
brid in which shared information is kept
consistent in a centralized component
while the presentation and interaction se-
mantics are replicated in the distributed
agents.

User display agents
Our architecture considers users’ in-

formation displays as autonomous enti-
ties with properties that can be tailored
by interface developers and users. The
states of these entities characterize the
way information is presented to users,
who interact directly with the entities to
update the underlying information.
These updates are immediately propa-
gated to other users’ screens to maintain
consistency. We refer to these entities as
user display agents; the parts of a user’s
screen managed by an agent are called
the user display.

Users browsing and manipulating a
shared information space each hold a
working set of UD agents. Each agent
manages one display of the shared infor-
mation and can present this UD in mul-
tiple screen windows (see Figure 2 on
next page). An agent can be a member
of several working sets, so that the UD it
manages can be displayed on multiple
screens. Agents can be added to and re-
moved from working sets as required.

Since agents can display their UDs on
multiple screens, it is possible to support
presentation-level information sharing.
Different UDs can be designed that rep-
resent the same information in different
ways to support sharing at the view level.
Object-level sharing is possible because
users can have completely different UD
agents in their working sets. The mecha-
nism separates what is being shared (the
application information) from the shar-
ing policy (the presentation of informa-
tion and the means of interacting with it).
The sharing policy can be tailored inde-
pendently of the application, since UD
agents support collaboration-aware shar-
ing without requiring the application to
handle the sharing itself.

Properties of a user display. UDs sup-
port information sharing between multi-
ple users and allow updating of informa-

May 1994 41

(Shared information space)

Figure 2. Working sets of user display agents cooperating via a shared information
space. (AC1, AC2, and so forth, in this and subsequent figures are used to distin-
guish abstract objects representing, in this case, different aircraft and the associ-
ated visualizations.)

tion through interaction with local rep-
resentations. The need to support differ-
ent levels of sharing and interface cou-
pling highlights three effects that updates
have on shared information:

Focus. Cooperating users may be in-
terested in only a subset of informa-
tion from a shared information space.
Information representations may
need to be added to or removed from
users’ displays dynamically.
Representation. While cooperating
users may require the same informa-
tion, the way it is represented may
vary, depending on the tasks being
supported and the user’s level of ex-
perience and domain knowledge.
Position. The spatial arrangement of
representations on users’ screens
may provide information about rela-
tionships between information enti-
ties. This arrangement may have to
be adjusted to reflect changes in these
relationships.

An example of a UD is an interactive
radar display showing the geographical
position of aircraft in a portion of airspace
on a two-dimensional screen. Aircraft lon-
gitude and latitude data is mapped onto
the x-y position of a “blip” representing
aircraft location. Blips can contain infor-
mation such as identification codes and
height data and can be manipulated by the
user to display additional information

about the aircraft they represent.
In terms of focus, representation, and

posit ion, modeling the radar display is
quite straightforward. Focus is concerned
with calibration (that is, the portion of
airspace represented), representation
with the type of blip used to display each
aircraft, and position with the mapping
from aircraft location to the position of
the blips on the screen. Any change in lo-
cation may cause changes in focus, rep-
resentation, andtor position.

Components of a user display. The UD
model, that is, the concepts of selection,
presentation, and composition, directly
realizes the concepts of focus, represen-
tation, and position. A UD is described as
a triple, comprising a selection, a presen-
tation, and a composition:

A selection is a set of information en-
tities dynamically chosen from an in-
formation space according to selec-
tion criteria. Selection criteria are
predicates over entity attributes; they
act as a filter to pick out entities to
be displayed. As the state of entities
is updated, the selection may change.
A presentation is a set of views used
to represent entities in the selection.
A view is a graphical representation
that defines the appearance of a sin-
gle entity, the position and represen-
tation of that entity’s attributes, and
the interaction with that entity. Views

are dynamically selected for each en-
tity through the application of the
presentation criteria. These criteria
define a filter for each view that an
entity must pass through to be repre-
sented by that view. Changes in the
state of an entity may require
changes in the presentation, that is,
the selection of a different view to
display the entity on the screen.
A composition is a set of positions
representing the spatial arrangement
of views in the UD. These positions
can be either absolute or relative to
other views. As an entity’s state
changes, these positions may also
have to change to remain consistent
with the arrangement defined in the
composition criteria.

Using this model, one abstract defini-
tion of the radar UD described above
might be

Selection criteria: aircraft longitude
from x’ to x”, latitude from y’ toy”.
Presentation criteria: large blip for
passenger aircraft, small blip for pri-
vate aircraft.
Composition criteria: Map longitude
to x position, latitude toy position.

A change in an aircraft’s longitude may
require a change in selection or compo-
sition of the radar UD.

The encapsulation of both the defini-
tion criteria and the state of an informa-
tion display in an autonomous UD entity
allows the tailoring of information dis-
plays without system reconfiguration.
Any changes to a UD’s definition criteria
result in immediate computation of the
new state and updating of users’ screens.
This tailoring, recomputation, and dis-
play management is managed by the as-
sociated UD agent.

Maintaining user displays. A UD agent
can be a member of more than one user’s
working set, supporting presentation-
level information sharing. Each screen
representation of the UD managed by
such an agent is affected by updates to
the shared information in the same way,
and thus the effects of updates on selec-
tion, presentation, and composition need
only be calculated once.

To support this capability, a copy, or
surrogate, of each UD agent can be held
in each user’s working set. Surrogates are
minimal agents that hold only the state
of the selection, presentation, and com-

42 COMPUTER

position of the UD. The UD’s definition
is held by a master UD agent, which re-
ceives notification of relevant updates to
information entities, uses the definition
criteria to compute the effects on the UD,
and informs each surrogate of the new
state (see Figure 3).

In our implementation, shared infor-
mation entities are held as objects within
an object store. All updates to the objects
in the object store are handled by the ob-
ject store server (OSS), illustrated in Fig-
ure 3. This component also holds the
master UD agents, allowing straightfor-
ward registration and deregistration of
new users. Machines can be added with-
out other users’ machines being in-
formed; the new machines need only con-
tact the OSS to register their existence,
create the required surrogates, and es-
tablish links to the master agents. A ma-
chine can deregister by informing the
OSS that it no longer wishes to receive
update information.

The masterlsurrogate arrangement of
UD agents allows local tailoring of infor-
mation displays without system reconfig-
uration. Local tailoring operations per-
formed on a window presenting a UD are
retained by the surrogate agent. When
the master informs surrogates of updates
to the UD’s state, they can take any tai-
loring into account before displaying the
new state.

Consistency
maintenance

Updates to shared information objects
may affect the selection, presentation,
and composition components of each
UD. For example, consider the defini-
tion of the radar UD described above; a
change in an aircraft’s position (latitude
or longitude) may require it to be added
to or removed from the display, or its
blip representation may have to move.
UD agents must be aware of such up-
dates so that they can use the definition
criteria to calculate effects on the state of
their UDs and maintain consistency with
the shared information space.

There are two options for detecting
changes in the state of information enti-
ties: Agents can periodically poll the in-
formation space, checking to see what has
changed, or information objects can no-
tify agents when changes occur. The first
option is inefficient when there are many
information objects, and the second re-
quires each object to either record which

May 1994

I Object store

f 1
Object store sewer

I Master UD agents I
Remote workstations

AC2

I I

Figure 3. \la\ter/wrrogate uwr dhpla? agent arrangernent.

15)

Attribute: longitude
Newvalue: 50

How does
this update
affect my UD?

(4) Entity: ACI

Radar update

Attribute: longitude
Newvalue: 50

Update

Attribute : longitude
Newvalue: 50

(3) Who is interested

(2) Entity: ACl

I ~ Cooperative application I

Shared information space

Figure 4. The dispatching role of the update handler.

agents are interested in it or broadcast
updates to all agents.

The agent architecture uses a variant of
the second option that does not require
the information objects to notify UD
agents of updates. All updates to shared
information objects are delivered to an
agent called the update handler. This
agent forwards updates to the object
store, as well as notifying potentially ef-
fected UD agents. Figure 4 illustrates the
dispatching role of the update handler,
which ensures that only UD agents in-
terested in an update are notified.

Whenever the interface developer cre-
ates a new UD, a UD agent is automati-
cally created to manage it. This agent’s
first task is to register with the update
handler to receive updates. Agents must
inform the update handler of their inter-
est set. which it then uses to determine

which updates the agent should receive;
for example, the radar UD agent defined
above will register changes in aircraft lon-
gitude and latitude as its interest set.
Agents may have to reregister their in-
terest set if the interface developer mod-
ifies the definition criteria of their UDs
and deregister if their UDs are removed.

This mechanism ensures that agents can
maintain consistency between their UDs
and the shared information without being
overloaded with irrelevant update notifi-
cations. The filtering of updates by the up-
date handler minimizes communication
overhead, and therefore the cost of notifi-
cation; it also allows applications to re-
main unaware of the agents that manage
representations of their data.

Supporting multiple views. Shared in-
formation objects can be represented in

43

The MEAD multiuser-interface prototyping environment

MEAD is a prototyping environment that allows the construc-
tion and refinement of cooperative displays. (Version 2.0 is
developed in Objectworks\Smalltalk r4.1 for Sun workstations.)
It makes visible the model of a user display (UD), discussed in
the main text, while hiding the complexity of the update handler,
master/surrogate, and local caching mechanisms. The figure,
which illustrates the definition and realization of a radar UD,
shows the tools MEAD provides.The numbers for the MEAD
components listed below correspond with those superimposed on
the windows in the figure.

(1) MEAD information window.
(2) Object store sewer tools. From this toolbox, the user
interface developer can open tools on the object store (not
illustrated), the view definitions (window 5), and the master
UD agents (window 6). These definitions are all held in a
central component called the object store sewer (OSS).
(3) Slave toolbox. To open a window such as window 8,
which presents a UD, a slave that registers itself with the
OSS described above must be started. The slave toolbox is
then accessible, allowing UDs to be opened on the local
workstation.
(4) MEAD launcher. This panel allows OSS and slave
modules to be started and shut down. Typically, one ma-
chine will run the OSS in any single session, with slaves
being started on a number of machines (which can include
the machine running the OSS).
(5) View definition fool. This tool supports the definition of
different entity representations, called views. Using a set of
primitives, the user interface developer constructs the repre-
sentations, indicating how entity attribute values are to be
positioned, how they are to be presented, and how the user

can interact with them to change the state of a represented
entity.
(6) User display browser. This tool allows UDs to be cre-
ated, renamed, and removed. In addition, definition tools
can be opened on the selection, presentation, and composi-
tion criteria components of the selected UD (window 7).
(7) User display definition tools. These tools capture the
definition of the selection, presentation, and composition
criteria for a UD. Each set of criteria is created and modified
using a separate form. The selection and presentation
criteria are specified by editing a condition template. A
single entity must pass all the conditions on a template to
pass the guard, which the template defines. Composition
axes are defined to specify the layout of the representations
in the UD. This composition criteria definition tool allows
several different arrangements to be defined so that the
user can change layouts; in addition, it supports the associ-
ation of different backdrops, depth effects, and so forth. The
layout shown here is a three-dimensional arrangement, with
aircraft longitude and latitude mapped on to x-y position and
height used to calculate the depth.
(8) User display window. This window presents the UD
defined in window 7. Aircraft entities are taken from an
information store created from actual flight-plan data. The
attribute values shown in each view can be edited to update
the underlying entities, with all changes propagated to all
other representations on all slaves. In addition, users can
change the view representation being used for each entity
and also the layout they wish to use (if alternatives have
been defined). Any changes made to the view or UD defini-
tions are immediately propagated to all open windows that
present affected UDs.

I A MEAD screen showing the components of a radar user display.

different UDs by different views. As up-
dates occur, views must also be updated
to remain consistent with the entities they
represent. To maintain consistency, views
are linked to the objects they represent
for each UD (see Figure 5). These links
allow update information to flow be-
tween views and shared information ob-
jects when the user modifies a view and
when objects are changed through other
end users’ interactions or by external up-
dates.

As Figure 5 shows, each object in a
UD’s selection may have links between
itself and more than one view. To mini-
mize communication between the OSS
and remote machines, the agent archi-
tecture adopts a mechanism whereby
shared information objects are cloned
and held in a local cache (see Figure 6).
Updates to information objects are not
routed through the UD agents but are
sent to the caches by the update handler,
which maintains a table of locations of
object clones. The links from the update
handler to the caches are bidirectional so
that the update handler can receive up-
dates to clones resulting from user inter-
action with object views. The update han-
dler can then notify the application of the
update, selectively multicast updates to
caches that maintain a clone of the af-
fected object (and update all the object’s
views), and inform the relevant master
agents in case the update requires
changes in the states of their UDs.

The UD model and agent architecture
described here form the basis of a mul-
tiuser-interface prototyping environ-
ment called MEAD (Multiple Elec-
tronic Active Displays) described in the
sidebar. The architecture is flexible
enough to allow view and UD defini-
tions to be added, removed, and modi-
fied in the OSS while other machines are
connected -without requiring suspen-
sion of user activities. The architecture
directly supports the rapid prototyping
facilities provided by MEAD through
the set of simple, robust mechanisms de-
scribed in this article.

B ecause we have limited knowl-
edge about the nature of group
work and still lack proven inter-

face principles, rapid prototyping is es-
sential for the development of effective
cooperative systems. Prototyping of this
sort demands a robust set of mechanisms
to support user-interface construction
and execution.

Display screen I

8 AC3 a updates

p q
UD agent

(radar)

‘igure 5. Links between
views and shared informa-
tion objects.

Our architecture rep-
resents an initial explo-
ration into what a suitable
set of mechanisms for the
construction of multiuser
interfaces might be. The
needs of multiuser-inter-
face support require con-
sideration of how inter-
face architectures work in
tandem with the support-

2. J.C. Lauwers and K.A. Lantz, “Collabo-
ration Awareness in Support of Collabo-
ration Transparency: Requirements for
the Next Generation of Shared Window
Systems,” Proc. CHI 90, Con$ Human
Factors in Computing Systems, ACM
Press, New York, 1990, pp. 303-311.

3. J.F. Patterson et al., “Rendezvous: An Ar-
chitecture for Synchronous Multiuser Ap-
plications,” Proc. Con$ Computer-Sup-
ported Cooperative Work, ACM Press,
New York, 1990, pp. 317-328.

Links to
master - -

U D agents
._

Links to -.
update
handler

End-user environment

Working set
of surrogate
UD agents

.

..___

(Local cache

Display screen

_ _ ~ ~ ~ ___ ~ ing distributed infrastruc- Figure 6. Local caching mechanism.
ture. One consequence of
this interdependency is
that the supporting mech-
anisms for multiuser interfaces need to be
designed to execute within a distributed
environment. This requires a careful re-
assessment of the structure of user- inter-
face software.

MEAD is one of several research pro-
totypes being used to explore the struc-
ture of future multiuser-interface sys-
tems. Multiuser interfaces have an
important role to play in future interac-
tive applications, and the agreement of
common architectural principles is es-
sential. Considerable work is still re-
quired in establishing such principles and
in migrating them to standard applica-
tions. H

References
1. R. Bentley et al., “Ethnographically In-

formed Systems Design for Air Traffic
Control,” Proc. Conf Computer-Sup-
ported Cooperative Work, ACM Press,
New York, 1992, pp. 123-130.

4. J.F. Patterson, “Comparing the Program-
ming Demands of Single-User and Mul-
tiuser Applications,” Proc. Conf User In-
terface Software Technology, ACM Press,
New York, 1991, pp. 87-94.

5. J. Tang, “Findings from Observational
Studies of Collaborative Work,” Int’l J.
Man-Machine Studies, Vol. 34, No. 2, Apr.
1991, pp. 143-160.

6. D. Garfinkel et al., “The Shared X Mul-
tiuser Interface User’s Guide, Version
2.0,” Research Report STL-TM-89-07,
Hewlett-Packard Labs, Palo Alto, Calif.,
1989.

7. T. Crowley et al., “MMConf An Infras-
tructure for Building Shared Multimedia
Applications,” Proc. Con$ Computer-Sup-
ported Cooperative Work, ACM Press,
New York, 1990, pp. 329-342.

8. C.A. Ellis and S.J. Gibbs, “Concurrency
Control in Groupware Systems,” Proc.
1989 ACM SIGMOD Int’l Con$ Manage-
ment of Data, ACM Press, New York,
1989, pp. 399-407.

May 1994 45

Richard Bentley is a research fellow with Rank Xerox Research Cen-
ter, Cambridge, UK. His research interests include multiuser-interface
development, computer-supported cooperative-work architectures,
computer-augmented environments, and evaluation of cooperative sys-
tems. He has a BSc in computer science from Lancaster University, UK,
and recently submitted his doctoral thesis. He is a member of ACM.

Tom Rodden is a senior lecturer in the Computing Department at Lan-
caster University, UK, and project manager of an ESPRIT basic re-
search project on computer-supported cooperative work. His research
interests include computer-supported cooperative work, software de-
sign, requirements capture, and supporting technology for coopera-
tive applications. He has a BSc in computer science and microproces-
sor systems from Strathclyde University, UK, and a PhD in computer
science from Lancaster University. He is a member of ACM, IEEE, and
the IEEE Computer Society.

CALL FOR PAPERS

E
Second IEEE International Symposium

on

Requirements
Engineering

March 27-29, 1995 York, England

Papers on all aspects of requirements engineering are wel-
come. However, all submitted papers must be classified
according to the problems they are addressing and the con-
tributions they are making toward solving them. The official
classification scheme for the symposium can be obtained
by requesting it from the program chair or by anonymous ftp
from host research.att.com (/dist/re95.cfp). Authors must
submit six copies of each full paper (no email or FAX sub-
missions) to the program chair. Papers should not exceed
6,000 words in length, and should be accompanied by full
contact information including name, address, email address,
telephone number, and FAX number.

IMPORTANT DATES
August 1 : title, abstract, l? classifications requested;
September 1 : full papers due;
November 1: notification of acceptance;
December 15: camera-ready copy due.

FOR A COMPLETE CALL FOR PAPERS:
A complete call for papers, including information for authors,
doctoral students and potential distributors, is available by
anonymous ftp from minster.york.ac.ukin the directorypub/
re95 filename re95text. A World Wide Web page is also
available with the U R L http://www. cs. uoregon. e&/- fickad
re95. html.

FOR MORE INFORMATION, CONTACT:
General Chair:
Michael Harrison, Department of Computer Science,

University of York, York YO1 5DD UK
(44) 904 432721; FAX (44) 904 432767
re95 Q minster. yo rk. ac . u k

Program Chair:
Pamela Zave, AT&T Bell Laboratories, Room 2B-413,

(1) 908 582 3080; FAX (1) 908 582 7550
pamela@ research.att.com

Murray Hill, NJ 07974 USA

Sponsored by

IEEE Computer Society TC on Software Engineering

In cooperation with
ACM SIGSOFT (pending), IEE,

IFlP Working Group 2.9 (Software Requirements Engineering)

- ~~~

Pete Sawyer is a lecturer in the Computing Department at Lancaster
University. His research interests include user interface design tools and
environments, object-oriented databases, and requirements engineer-
ing. He has a BSc and a PhD in computer science, both from Lancaster
University.

Ian Sommerville is a professor in the Computing Department at Lan-
caster University. His research interests include requirements engi-
neering, cooperative system design, and safety-critical software sys-
tems. He has a BSc from Strathclyde University and an MSc and a PhD
from St. Andrews University. He is a chartered engineer, a fellow of the
IEE. and a member of the IEEE, the ACM, the British Computer So-
ciety, and the IEEE Computer Society.

The authors can be contacted at Lancaster University, Computing
Department, Lancaster LA1 4YR, UK; e-mail (dik, tam, sawyer,
is)@comp.lancs.ac.uk. Although the work described was carried out while
Bentley was at Lancaster University, he is now with Rank Xerox Re-
search Center, 61 Regent St., Cambridge, CB2 1AB. He can be reached
at the e-mail address shown above or at bentley@europarc.xerox.com.

COMPUTER

http://research.att.com
http://www
http://research.att.com
mailto:is)@comp.lancs.ac.uk
mailto:bentley@europarc.xerox.com

