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omputer support for cooperative work requires the construction of appli- 
cations that support interaction by multiple users. The highly dynamic and 
flexible nature of cooperative work makes the need for rapid user-inter- 

face prototyping a central concern. We have designed and developed a software 
architecture that provides mechanisms to support rapid multiuser-interface con- 
struction and distributed user-interface management. Rapid prototyping requires 
mechanisms that make the information determining interface configuration visible, 
accessible, and tailorable. 

We developed the architecture described here as part of a project investigating 
support for the cooperative work of air traffic controllers. Extensive use of prolonged 
ethnographic investigation helped to uncover the nature of cooperation in air traffic 
control.’ The aim of the architecture is to support an environment in which a multi- 
disciplinary team can experiment with a wide range of alternate user-interface designs 
for air traffic controllers. Thus, we use examples from this domain to illustrate the ar- 
chitecture. 

Multiuser interfaces 

Developing prototypes 
for multiuser-interface 

designs can be 
complex. It helps if the 

developer can work 
with a set of simple 

mechanisms that 
determine the interface 

properties. 
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Many computer systems already support simultaneous interaction by more than 
one user; examples include multiuser databases, operating systems, and office infor- 
mation systems. But these systems support multiuser interaction in a way that prohibits 
cooperation. Most existing multiuser systems give each user the illusion that he or she 
is the only one using the system, thereby maintaining a “protective wall” to hide other 
users’ activities. To support and encourage cooperation, cooperative applications must 
allow users to be aware of the activities of others. The purpose of a cooperative mul- 
tiuser interface is to establish and maintain a common context, allowing the activities 
of one user to be reflected on other users’ screens. This common context is achieved 
by sharing application information; the real-time presentation and manipulation of 
shared information is the main function of cooperative multiuser interfaces. 

The extent to which multiuser interfaces support sharing through the propagation 
of activities is termed interface coupling; the greater the level of awareness between 
users, the closer the interface coupling. The following three levels of sharing corre- 
spond to different degrees of interface coupling: 



Status report 
The user display model and agent architecture described here form the basis of a 

multiuser-interface prototyping environment called MEAD (Multiple Electronic Ac- 
tive Displays). The latest version of MEAD (version 2.0) exists as a working proto- 
type developed in Objectworks\Smalltalk Release 4.1 for Sun workstations. It is 
being used in several research projects at Lancaster University and elsewhere. 
One of these is Comic (Computational Mechanisms of Interaction for Cooperation), 
an ESPRIT research project involving 10 partners that is developing supporting 
theories and techniques for CSCW. Within Comic, the system is being used to 
investigate sharing in cooperative systems and, in particular, the relationships 
between sharing information and sharing awareness of other users’ activities. 

Tom Rodden at the address shown at the end of the article. 
For more information on the availability of MEAD or the Comic project, contact 

dated. This level of sharing is also 
known as “what-you-see-is-what-1- 
see” (WYSIWIS). 
View-level sharing (medium cou- 
pling): Each user has presentations 
of the same information, but the pre- 
sentations may differ. For example, 
different users may simultaneously 
interact with tabular or graphical dis- 
plays of the same data. 
Object-level sharing (loose coupling): 
Each user has presentations of dif- 
ferent information. For example, sev- 
eral users may each edit different sec- 
tions of the same document. 

~ _ _  ~ 

Lauwers and Lantz2 describe two 
approaches to developing multiuser inter- 
faces. The first allows single-user applica- 
tions to be shared in a collaboration-trans- 

Presentation-level sharing (tight cou- 
pling): Each user is presented with the 
same display of the same information 

from a common information space. 
When this presentation is changed in 
any way, all display screens are up- 

Collaboration-transparent and collaboration-aware user interfaces 

It is important to distinguish between two broad classes of 
multiuser interface. The first lets multiple users work cooper- 
atively with existing single-user applications. The second 
involves the development of special-purpose applications 
that handle collaboration explicitly. Lauwers and Lantz’ 
identify these approaches as collaboration transparency and 
collaboration awareness, respectively. 

Some applications can be modified to run in a multiuser 
setting. This modification provides geographically dispersed 
participants with access to sophisticated tools to facilitate 
group work. Thus, systems have been developed that sup- 
port transparent sharing of applications, often called shared 
applications. 

This approach was developed to allow each user’s screen 
to be shared with others. As windowing systems developed, 
this shared-screen approach was extended to permit sharing 
of individual windows. The figure shows the logical structure 
of such a shared-window system. 

A central conference agent is responsible for multiplexing 
display output and demultiplexing user input so that the 
application deals with a single stream of events. This sharing 
is transparent to the application, a condition achieved by 
allowing only one user to interact with the application at any 
given time (part b in the figure). Borrowing some business- 
meeting terminology, this user is said to “have control of the 
floor.” Fioor control must be passed to other users before 
they can interact. 

agent and is identified as its chair management Not 
surprisingly, much of the work in supporting collaboration 
transparency has focused on floor control - for example, the 
d e v e l o p “ W  dierent turn-taking protocols and floor 
control policies. 

Floor control is the responsibility of the central conference 

Collaboration-aware solutions provide facilities to explicitly 

manage information sharing, allowing information to be 
presented in different ways to different users. Often. the 
application itself manages each user’s sharing. Applications 
shared in this way are multiuser applications. 

The logical centralization of user interface management 
embeds within the 3pplication a set of decisions as to how 
information is presented and modified. These decisions form 
the policy by which information is shared; the embedding of 
this sharing policy in the application inhibits tailoring. In 
addition, the lack of a supporting infrastructure requires most 
collaboration-aware applications to be constructed from 
scratch. As a result, this approach to developing cooperative 
systems tends to be less popular than the collaboration- 
transparent approach. 

Multiuser interfaces. The problems of developing mul- 
tiuser interfaces were initially highlighted in the CoLab pro- 
ject at Xerox’s Palo Alto Research Center,3 which examined 
the development of appropriate supporting facilities for real- 
time co-located meetings. Xerox PARC researchers devel- 
oped several applications that allowed the effects of each 
user’s actions to be shared across several screens. The 
CoLab project called this principle “what-you-see-is-what-l- 
see” (WY SIW IS). 

Initially, each user’s complete screen was shared; how- 
ever, this was found to be confusing and distracting. The 
solution was to share only portions of the screen, and a 
separation was established between shared and private 
windows. This arrangement is called relaxed WYSlW/S, 
while the initial Colab setting is termed strict WYSIWIS. 
Collaboration-transparent systems replicate display output 
and adopt an approach based on sharing an application’s 
presentation. Multiuser interfaces for such systems, there- 
fore, support the WYSIWIS sharing of applications, giving 



parent manner, so that no facilities for han- 
dling collaboration are embedded in the 
application. The second involves develop- 
ment of special-purpose collaboration- 
aware applications that explicitly manage 
cooperation. Each approach has different 
implications for sharing (see sidebar). 

Developers of a collaboration-aware 
application must determine how users re- 
quire information to be presented and 
how they interact with information rep- 
resentations. Although design decisions 
can provide flexibility to support differ- 
ent forms of presentation and interaction 
for each user, they are often embedded 
within the application and become diffi- 
cult to amend. While collaboration 
awareness is necessary for cooperative 
systems, it is better not to have it embed- 
ded in the appli~ation.~ Therefore, sup- 

porting architectures that manage infor- 
mation visualization and manipulation 
outside the application are required. 
These architectures hide the physical dis- 
tribution of components from the appli- 
cation developer and allow visualization 
and interaction policies to be tailored in- 
dependently of the application. 

Multiuser interface 
requirements 

Two key requirements constrain de- 
velopment of the supporting infrastruc- 
ture for multiuser-interface development. 

Support for multiple displays. Coop- 
erating users access shared information 

through individual workstations, often 
supplemented by informal communica- 
tion. Since cooperating users must be 
aware of each others' activities, a mul- 
tiuser interface architecture should allow 

visualization of shared information 

manipulation of shared information 

propagation of user interaction be- 

on different users' screens, 

on different screens, and 

tween screens. 

To support rapid prototyping, these facil- 
ities need to be provided through a set of 
robust and readily understood mecha- 
nisms that allow interface reconfiguration. 

Support for different views. Cooperat- 
ing users may require information to be 

each user a common frame of reference.' Removing this 
Common Context can cause problems when users engage in 
tightly coupled group work. 

Although some shared-window systems re ax interface 
coupling. a fundamental problem is their inai ,My to support 
anvthina other than WYSlWlS information ct irina. Where 

Generation of Shared-Window Systems." Proc. CHI 90, Conf. Human 
Factors m computing Systems. ACM Press. New York, 1990, pp, 303- 
31 1 

2. S Greenberg. "Sharing Views and Interactions with Single-User 
Applications." Roc. ACM/I€€€ Conf. Office Information Systems. 
ACM Press. New York, 1990, pp. 227-237. 

. -  - 
Users have widely differing knowledge, roii and attributes, 3. M. Stefik et al., "WYSIWIS Revised: Early Experiences with Multiuser 

Interfaces." ACM Trans. Office Information Systems. Vol. 5, No. 2, 
Aor. 1987. OD. 147-167. this can be overly restrictive. A view used b j  a technical 

oerson. for examole. mav have too much detail for effective 
4 P Dewan "Principles of Designing Multiuser User-Interface-Develop- 

ment Environments ' in Engmeermg for Human-Computer Interaction 
viewing by a manager * 

Different users may require different representations of the Nofih-Holland, Amsterdam 1992 
information, or may be concerned with 
entirely different information. This 
level of flexibility cannot be provided 
by collaboration-transparent applica- 
tions. since it requires the system to 
exploit knowledge concerning the 
shared task being undertaken. This 
form of interface is provided by collab- 
oration-aware applications. 

Although they can support strict 
WYSlWlS interaction (as with the 
Colab system, for example), collabo- 
ration-aware systems offer such evi- 
dent advantages as a range of alter- 
native application presentations 
across a community of users. To 
contrast this arrangement with the 
work of Colab, Dewan4 calls this style 
of sharing "what-you-see-is-not-what- 
I-see." or WYSINWIS. 
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Logical output architecture (a) and input architecture (b) of a shared-window 
system. 



presented in different ways that corre- 
spond to different levels of sharing. For 
tightly coupled cooperative work, users 
may share information at the presenta- 
tion level. However, sharing may also be 
required at both view and object levels 
to support different user or task require- 
ments. As a result, the supporting archi- 
tecture should allow 

definition of different interactive rep- 
resentations of shared information 
entities, 
maintenance of these representations 
as underlying information changes, 
and 
updating of information entities 
through interaction with their repre- 
sentations. 

Su portfor 

development 
mu P tiuser-interface 

Most existing approaches to develop- 
ing cooperative systems consider user- 
interface development to be a task for 
application developers and therefore 
provide little support for user-centered 
development and tailoring. Because the 
focus of cooperative interface develop- 
ment is on information sharing, we need 
support for experimentation with differ- 
ent visualization and interaction tech- 
niques. Consequently, any architecture 
to support rapid prototyping should 
make visualization and interaction details 
explicit and decouple them from appli- 
cation concerns. 

Along with rapid refinement of inter- 
face designs, prototyping also involves 
evaluation of interface prototypes in re- 
alistic settings. Hence, in addition to de- 
velopment tools supporting interface 
construction, we also need mechanisms 
to execute prototype interfaces. These 
mechanisms should make visible the pol- 
icy for visualizing and interacting with in- 
formation (the sharing policy) to allow 
high-level tailoring and rapid refinement 
of interface prototypes. Some general de- 
sign principles for single-user interfaces 
have been identified, but few have 
emerged for multiuser-interface devel- 
opment. However, multiuser interfaces 
must support a number of key features. 

(1) Separation. An accepted feature of 
single-user interface architectures is the 
separation of user-interface and applica- 

tion components. This arrangement has 
many advantages: 

Reusability. Both user interface and 
application can be reused indepen- 
dently. 
Customization. The interface can be 
tailored in isolation by both devel- 
oper and user. 
Portability. The application may be 
portable while the interface is device 
dependent. 
Multiple interfaces. The same appli- 
cation can be manipulated by differ- 
ent interfaces. 

Logical separation is desirable for sin- 
gle-user interfaces, but the multiuser case 
requires such separation to support the 
alternative representations needed for 
view-level   ha ring.^ In addition, physical 
separation provides a degree of fault tol- 

such as group drawing, the process of cre- 
ating an object and the associated expla- 
nation and gesturing are often as impor- 
tant as the resulting ~ b j e c t . ~  Where such 
tight coupling is required, the granularity 
of updates is small, and rapid update 
feedthrough is vital. For more loosely 
coupled activities, courser grained up- 
dates may be acceptable. 

(3) End-user tailoring. Cooperating 
users may adopt different working meth- 
ods even when performing similar tasks. 
Therefore, the interface designer cannot 
provide interface representations appro- 
priate to all users in all contexts. One so- 
lution is to let users tailor their interfaces 
to suit their requirements. 

These features, combined with the re- 
quirements of cooperative interfaces, 
motivated the design of our architecture, 
which supports multiuser-interface pro- 
totyping. Multiuser interfaces exist within 
distributed environments and support si- 
multaneous interaction by several users. 
Interface requirements must therefore be 
sensitive to properties of the supporting 

Cooperating users distributed infrastructures. Consistency 
between information displays and the in- 
formation itself must be maintained, and 
mechanisms must be provided to handle 

may work better 

representations change propagation. 

with interface 

thev can tailor 
individually. Supporting - 

infrastructure 
erance; an interface process can fail with- 
out affecting other interface or applica- 
tion processes. Physical separation also 
allows execution of interface and appli- 
cation processes on different machines, 
providing local feedback and supporting 
a high degree of user adaptation. 

( 2 )  Feedback and feedthrough. Most 
user actions require display feedback; the 
form of such feedback may depend on 
the semantics of the application. When 
the application and user-interface com- 
ponents reside on different machines, the 
feedback loop involves transmission over 
a network. It may therefore be hard to 
achieve acceptable response times. 

Feedthrough is the updating of users’ 
screens in response to actions performed 
by other users working on different ma- 
chines. Multiuser interfaces must support 
rapid feedthrough. The importance of 
this feature depends on the granularity 
of the updates broadcast to other users. 
In tightly coupled cooperative activities, 

Architectures for multiuser interfaces 
originate from distributed-systems re- 
search and must address problems such 
as network delay, loading, and latency. 
Between the two extremes of centraliza- 
tion and replication, lies a continuum of 
hybrid architectures. 

Centralized architectures. In a central- 
ized (or client-server) architecture, a cen- 
tral server program handles all user in- 
put and display output events, which are 
routed via local client programs. Local 
workstations act as graphical terminals 
and window servers. The master-slave ar- 
chitecture is a variant in which one client 
is merged with the server and all other 
nodes run as clients. 

The primary advantage of the client- 
server approach is simplicity: The appli- 
cation and all data are held centrally, sim- 
plifying access management and data 
consistency. Implementation is easier still 
with a networked window system such as 
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Easy to implement 
Easy to addhemove displays 
Easy to keep consistent 

Easy to provide different levels of sharing 
Easy :a provide rapid feedback n n 

X Windows. Shared-window systems 
such as shared X6 use this approach, 
which has been widely adopted by com- 
puter-conferencing systems.’ It is rela- 
tively easy to support presentation-level 
sharing because the server can replicate 
display directives to all clients. 

The client-server approach can also 
support view-level sharing. For example, 
Rendezvous3 is based on a client-server 
architecture with all user interaction and 
display management handled centrally. 
Each user has an associated view process 
that interprets input events and display 
directives. The sharing policy is detached 
from the information being shared, since 
each view process can interpret events 
and display directives differently, sup- 
porting alternative information repre- 
sentations. 

Because the sharing policy is embed- 
ded in the central server, the system de- 
veloper is responsible for interface tai- 
loring. Rendezvous does not make the 
sharing policy visible, which severely lim- 
its end-user tailoring. The centralized ar- 
chitecture is also vulnerable to delayed 
feedback and failure of the central node 
(or the network connections to it), since 
all events must travel over a network. 

Replicated architectures. At the other 
extreme, replicated architectures main- 
tain exact copies, or replicas, of the ap- 
plication on each workstation. To main- 
tain consistency, each replica handles 
screen management and feedback locally 
and broadcasts any change in application 
data to all other replicas. Local display 
management means that different views 
are easily supported. End-user interface 
tailoring is relatively easy to provide, as 
each replica can adapt its sharing policy 
to the user’s preferences. 

The major difficulties with replicated 
architectures concern synchronization 
and data consistency. Users can perform 
actions simultaneously that are executed 
locally before being broadcast to other 
machines. If these actions conflict - for 
example, one user deletes the selected 
object in a group drawing program just 
as another user changes the selection to a 
different object - inconsistent interfaces 
can result from events arriving in a dif- 
ferent order at each machine. 

Preventing such race conditions re- 
quires complex synchronization algo- 
rithms. The standard distributed-systems 
solution is to use a global clock to time- 
stamp each event and then execute roll- 
back should inconsistency arise, replay- 

Centralized)4 b( Replicated) 
architecture 

W 
Hard to provide different levels of sharing 
Hard to provide rapid feedback 

W 
Hard to implement 
Hard to addhemove displays 
Hard to keep consistent . 

__ 
Figure 1. Summary of distributed-architecture characteristics. 

ing events in temporal order. This is un- 
acceptable for multiuser interfaces where 
screens may have been updated, so al- 
ternatives based on transforming updates 
to prevent rollback have been devel- 
oped.8 

A further problem occurs when users 
wish to join a group session already in 
progress. This dynamic registration is 
straightforward with a centralized ap- 
proach, since new clients need only con- 
tact the central server. The server can 
then broadcast the current state of the 
application to bring the new client up to 
date. With a replicated approach, how- 
ever, a new replica must contact all other 
replicas to tell them that it needs to re- 
ceive updates. This means that new repli- 
cas must know or be able to learn the lo- 
cations of all other replicas. 

Hybrid architectures. Both centralized 
and replicated architectures offer bene- 
fits and limitations. Because neither ar- 
chitecture fully meets multiuser interface 
requirements, a hybrid solution is needed 
wherein components of the cooperative 
system are either centralized or repli- 
cated, depending on the application re- 
quirements. A continuum of such hybrid 
arrangements exists between the ex- 
tremes of centralization and replication. 
Figure 1 summarizes the characteristics 
of different distributed-systems architec- 
tures. 

Our objective was to develop an archi- 
tecture that supports multiuser interfaces 
and also provides runtime support and 
facilities for interface tailoring. This ar- 
chitecture is based on autonomous agents 
that encapsulate details of the sharing 
policy to manage multiuser interfaces in- 
dependently of the application’s behav- 
ioral semantics. The architecture is a hy- 
brid in which shared information is kept 
consistent in a centralized component 
while the presentation and interaction se- 
mantics are replicated in the distributed 
agents. 

User display agents 
Our architecture considers users’ in- 

formation displays as autonomous enti- 
ties with properties that can be tailored 
by interface developers and users. The 
states of these entities characterize the 
way information is presented to users, 
who interact directly with the entities to 
update the underlying information. 
These updates are immediately propa- 
gated to other users’ screens to maintain 
consistency. We refer to these entities as 
user display agents; the parts of a user’s 
screen managed by an agent are called 
the user display. 

Users browsing and manipulating a 
shared information space each hold a 
working set of UD agents. Each agent 
manages one display of the shared infor- 
mation and can present this UD in mul- 
tiple screen windows (see Figure 2 on 
next page). An agent can be a member 
of several working sets, so that the UD it 
manages can be displayed on multiple 
screens. Agents can be added to and re- 
moved from working sets as required. 

Since agents can display their UDs on 
multiple screens, it is possible to support 
presentation-level information sharing. 
Different UDs can be designed that rep- 
resent the same information in different 
ways to support sharing at the view level. 
Object-level sharing is possible because 
users can have completely different UD 
agents in their working sets. The mecha- 
nism separates what is being shared (the 
application information) from the shar- 
ing policy (the presentation of informa- 
tion and the means of interacting with it). 
The sharing policy can be tailored inde- 
pendently of the application, since UD 
agents support collaboration-aware shar- 
ing without requiring the application to 
handle the sharing itself. 

Properties of a user display. UDs sup- 
port information sharing between multi- 
ple users and allow updating of informa- 
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( Shared information space ) 

Figure 2. Working sets of user display agents cooperating via a shared information 
space. (AC1, AC2, and so forth, in this and subsequent figures are used to distin- 
guish abstract objects representing, in this case, different aircraft and the associ- 
ated visualizations.) 

tion through interaction with local rep- 
resentations. The need to support differ- 
ent levels of sharing and interface cou- 
pling highlights three effects that updates 
have on shared information: 

Focus. Cooperating users may be in- 
terested in only a subset of informa- 
tion from a shared information space. 
Information representations may 
need to be added to or removed from 
users’ displays dynamically. 
Representation. While cooperating 
users may require the same informa- 
tion, the way it is represented may 
vary, depending on the tasks being 
supported and the user’s level of ex- 
perience and domain knowledge. 
Position. The spatial arrangement of 
representations on users’ screens 
may provide information about rela- 
tionships between information enti- 
ties. This arrangement may have to 
be adjusted to reflect changes in these 
relationships. 

An example of a UD is an interactive 
radar display showing the geographical 
position of aircraft in a portion of airspace 
on a two-dimensional screen. Aircraft lon- 
gitude and latitude data is mapped onto 
the x-y position of a “blip” representing 
aircraft location. Blips can contain infor- 
mation such as identification codes and 
height data and can be manipulated by the 
user to display additional information 

about the aircraft they represent. 
In terms of focus, representation, and 

posit ion, modeling the radar display is 
quite straightforward. Focus is concerned 
with calibration (that is, the portion of 
airspace represented), representation 
with the type of blip used to display each 
aircraft, and position with the mapping 
from aircraft location to the position of 
the blips on the screen. Any change in lo- 
cation may cause changes in focus, rep- 
resentation, andtor position. 

Components of a user display. The UD 
model, that is, the concepts of selection, 
presentation, and composition, directly 
realizes the concepts of focus, represen- 
tation, and position. A UD is described as 
a triple, comprising a selection, a presen- 
tation, and a composition: 

A selection is a set of information en- 
tities dynamically chosen from an in- 
formation space according to selec- 
tion criteria. Selection criteria are 
predicates over entity attributes; they 
act as a filter to pick out entities to 
be displayed. As the state of entities 
is updated, the selection may change. 
A presentation is a set of views used 
to represent entities in the selection. 
A view is a graphical representation 
that defines the appearance of a sin- 
gle entity, the position and represen- 
tation of that entity’s attributes, and 
the interaction with that entity. Views 

are dynamically selected for each en- 
tity through the application of the 
presentation criteria. These criteria 
define a filter for each view that an 
entity must pass through to be repre- 
sented by that view. Changes in the 
state of an entity may require 
changes in the presentation, that is, 
the selection of a different view to 
display the entity on the screen. 
A composition is a set of positions 
representing the spatial arrangement 
of views in the UD. These positions 
can be either absolute or relative to 
other views. As an entity’s state 
changes, these positions may also 
have to change to remain consistent 
with the arrangement defined in the 
composition criteria. 

Using this model, one abstract defini- 
tion of the radar UD described above 
might be 

Selection criteria: aircraft longitude 
from x’ to x”, latitude from y’ toy”. 
Presentation criteria: large blip for 
passenger aircraft, small blip for pri- 
vate aircraft. 
Composition criteria: Map longitude 
to x position, latitude toy position. 

A change in an aircraft’s longitude may 
require a change in selection or compo- 
sition of the radar UD. 

The encapsulation of both the defini- 
tion criteria and the state of an informa- 
tion display in an autonomous UD entity 
allows the tailoring of information dis- 
plays without system reconfiguration. 
Any changes to a UD’s definition criteria 
result in immediate computation of the 
new state and updating of users’ screens. 
This tailoring, recomputation, and dis- 
play management is managed by the as- 
sociated UD agent. 

Maintaining user displays. A UD agent 
can be a member of more than one user’s 
working set, supporting presentation- 
level information sharing. Each screen 
representation of the UD managed by 
such an agent is affected by updates to 
the shared information in the same way, 
and thus the effects of updates on selec- 
tion, presentation, and composition need 
only be calculated once. 

To support this capability, a copy, or 
surrogate, of each UD agent can be held 
in each user’s working set. Surrogates are 
minimal agents that hold only the state 
of the selection, presentation, and com- 
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position of the UD. The UD’s definition 
is held by a master UD agent, which re- 
ceives notification of relevant updates to 
information entities, uses the definition 
criteria to compute the effects on the UD, 
and informs each surrogate of the new 
state (see Figure 3). 

In our implementation, shared infor- 
mation entities are held as objects within 
an object store. All updates to the objects 
in the object store are handled by the ob-  
ject store server (OSS), illustrated in Fig- 
ure 3. This component also holds the 
master UD agents, allowing straightfor- 
ward registration and deregistration of 
new users. Machines can be added with- 
out other users’ machines being in- 
formed; the new machines need only con- 
tact the OSS to register their existence, 
create the required surrogates, and es- 
tablish links to the master agents. A ma- 
chine can deregister by informing the 
OSS that it no longer wishes to receive 
update information. 

The masterlsurrogate arrangement of 
UD agents allows local tailoring of infor- 
mation displays without system reconfig- 
uration. Local tailoring operations per- 
formed on a window presenting a UD are 
retained by the surrogate agent. When 
the master informs surrogates of updates 
to the UD’s state, they can take any tai- 
loring into account before displaying the 
new state. 

Consistency 
maintenance 

Updates to shared information objects 
may affect the selection, presentation, 
and composition components of each 
UD. For example, consider the defini- 
tion of the radar UD described above; a 
change in an aircraft’s position (latitude 
or longitude) may require it to be added 
to or removed from the display, or its 
blip representation may have to move. 
UD agents must be aware of such up- 
dates so that they can use the definition 
criteria to calculate effects on the state of 
their UDs and maintain consistency with 
the shared information space. 

There are two options for detecting 
changes in the state of information enti- 
ties: Agents can periodically poll the in- 
formation space, checking to see what has 
changed, or information objects can no- 
tify agents when changes occur. The first 
option is inefficient when there are many 
information objects, and the second re- 
quires each object to either record which 
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agents are interested in it or broadcast 
updates to all agents. 

The agent architecture uses a variant of 
the second option that does not require 
the information objects to notify UD 
agents of updates. All updates to shared 
information objects are delivered to an 
agent called the update handler. This 
agent forwards updates to the object 
store, as well as notifying potentially ef- 
fected UD agents. Figure 4 illustrates the 
dispatching role of the update handler, 
which ensures that only UD agents in- 
terested in an update are notified. 

Whenever the interface developer cre- 
ates a new UD, a UD agent is automati- 
cally created to manage it. This agent’s 
first task is to register with the update 
handler to receive updates. Agents must 
inform the update handler of their inter- 
est set. which it then uses to determine 

which updates the agent should receive; 
for example, the radar UD agent defined 
above will register changes in aircraft lon- 
gitude and latitude as its interest set. 
Agents may have to reregister their in- 
terest set if the interface developer mod- 
ifies the definition criteria of their UDs 
and deregister if their UDs are removed. 

This mechanism ensures that agents can 
maintain consistency between their UDs 
and the shared information without being 
overloaded with irrelevant update notifi- 
cations. The filtering of updates by the up- 
date handler minimizes communication 
overhead, and therefore the cost of notifi- 
cation; it also allows applications to re- 
main unaware of the agents that manage 
representations of their data. 

Supporting multiple views. Shared in- 
formation objects can be represented in 
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The MEAD multiuser-interface prototyping environment 

MEAD is a prototyping environment that allows the construc- 
tion and refinement of cooperative displays. (Version 2.0 is 
developed in Objectworks\Smalltalk r4.1 for Sun workstations.) 
It makes visible the model of a user display (UD), discussed in 
the main text, while hiding the complexity of the update handler, 
master/surrogate, and local caching mechanisms. The figure, 
which illustrates the definition and realization of a radar UD, 
shows the tools MEAD provides.The numbers for the MEAD 
components listed below correspond with those superimposed on 
the windows in the figure. 

( 1 )  MEAD information window. 
(2) Object store sewer tools. From this toolbox, the user 
interface developer can open tools on the object store (not 
illustrated), the view definitions (window 5), and the master 
UD agents (window 6). These definitions are all held in a 
central component called the object store sewer (OSS). 
(3) Slave toolbox. To open a window such as window 8, 
which presents a UD, a slave that registers itself with the 
OSS described above must be started. The slave toolbox is 
then accessible, allowing UDs to be opened on the local 
workstation. 
(4) MEAD launcher. This panel allows OSS and slave 
modules to be started and shut down. Typically, one ma- 
chine will run the OSS in any single session, with slaves 
being started on a number of machines (which can include 
the machine running the OSS). 
(5) View definition fool. This tool supports the definition of 
different entity representations, called views. Using a set of 
primitives, the user interface developer constructs the repre- 
sentations, indicating how entity attribute values are to be 
positioned, how they are to be presented, and how the user 

can interact with them to change the state of a represented 
entity. 
(6) User display browser. This tool allows UDs to be cre- 
ated, renamed, and removed. In addition, definition tools 
can be opened on the selection, presentation, and composi- 
tion criteria components of the selected UD (window 7). 
(7) User display definition tools. These tools capture the 
definition of the selection, presentation, and composition 
criteria for a UD. Each set of criteria is created and modified 
using a separate form. The selection and presentation 
criteria are specified by editing a condition template. A 
single entity must pass all the conditions on a template to 
pass the guard, which the template defines. Composition 
axes are defined to specify the layout of the representations 
in the UD. This composition criteria definition tool allows 
several different arrangements to be defined so that the 
user can change layouts; in addition, it supports the associ- 
ation of different backdrops, depth effects, and so forth. The 
layout shown here is a three-dimensional arrangement, with 
aircraft longitude and latitude mapped on to x-y position and 
height used to calculate the depth. 
(8) User display window. This window presents the UD 
defined in window 7. Aircraft entities are taken from an 
information store created from actual flight-plan data. The 
attribute values shown in each view can be edited to update 
the underlying entities, with all changes propagated to all 
other representations on all slaves. In addition, users can 
change the view representation being used for each entity 
and also the layout they wish to use (if alternatives have 
been defined). Any changes made to the view or UD defini- 
tions are immediately propagated to all open windows that 
present affected UDs. 

I A MEAD screen showing the components of a radar user display. 



different UDs by different views. As up- 
dates occur, views must also be updated 
to remain consistent with the entities they 
represent. To maintain consistency, views 
are linked to the objects they represent 
for each UD (see Figure 5). These links 
allow update information to flow be- 
tween views and shared information ob- 
jects when the user modifies a view and 
when objects are changed through other 
end users’ interactions or by external up- 
dates. 

As Figure 5 shows, each object in a 
UD’s selection may have links between 
itself and more than one view. To mini- 
mize communication between the OSS 
and remote machines, the agent archi- 
tecture adopts a mechanism whereby 
shared information objects are cloned 
and held in a local cache (see Figure 6). 
Updates to information objects are not 
routed through the UD agents but are 
sent to the caches by the update handler, 
which maintains a table of locations of 
object clones. The links from the update 
handler to the caches are bidirectional so 
that the update handler can receive up- 
dates to clones resulting from user inter- 
action with object views. The update han- 
dler can then notify the application of the 
update, selectively multicast updates to 
caches that maintain a clone of the af- 
fected object (and update all the object’s 
views), and inform the relevant master 
agents in case the update requires 
changes in the states of their UDs. 

The UD model and agent architecture 
described here form the basis of a mul- 
tiuser-interface prototyping environ- 
ment called MEAD (Multiple Elec- 
tronic Active Displays) described in the 
sidebar. The architecture is flexible 
enough to allow view and UD defini- 
tions to be added, removed, and modi- 
fied in the OSS while other machines are 
connected -without requiring suspen- 
sion of user activities. The architecture 
directly supports the rapid prototyping 
facilities provided by MEAD through 
the set of simple, robust mechanisms de- 
scribed in this article. 

B ecause we have limited knowl- 
edge about the nature of group 
work and still lack proven inter- 

face principles, rapid prototyping is es- 
sential for the development of effective 
cooperative systems. Prototyping of this 
sort demands a robust set of mechanisms 
to support user-interface construction 
and execution. 
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‘igure 5. Links between 
views and shared informa- 
tion objects. 

Our architecture rep- 
resents an initial explo- 
ration into what a suitable 
set of mechanisms for the 
construction of multiuser 
interfaces might be. The 
needs of multiuser-inter- 
face support require con- 
sideration of how inter- 
face architectures work in 
tandem with the support- 

2. J.C. Lauwers and K.A. Lantz, “Collabo- 
ration Awareness in Support of Collabo- 
ration Transparency: Requirements for 
the Next Generation of Shared Window 
Systems,” Proc. CHI 90, Con$ Human 
Factors in Computing Systems, ACM 
Press, New York, 1990, pp. 303-311. 

3. J.F. Patterson et al., “Rendezvous: An Ar- 
chitecture for Synchronous Multiuser Ap- 
plications,” Proc. Con$ Computer-Sup- 
ported Cooperative Work, ACM Press, 
New York, 1990, pp. 317-328. 
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ture. One consequence of 
this interdependency is 
that the supporting mech- 
anisms for multiuser interfaces need to be 
designed to execute within a distributed 
environment. This requires a careful re- 
assessment of the structure of user- inter- 
face software. 

MEAD is one of several research pro- 
totypes being used to explore the struc- 
ture of future multiuser-interface sys- 
tems. Multiuser interfaces have an 
important role to play in future interac- 
tive applications, and the agreement of 
common architectural principles is es- 
sential. Considerable work is still re- 
quired in establishing such principles and 
in migrating them to standard applica- 
tions. H 
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