
Artificial Intelligence and Systems
Engineering

Ian Sommerville,
Computing Department, Lancaster University, LANCASTER LA1 4YR, UK.

Abstract. This paper discusses the problems of applying artificial intelligence
technology in the domain of systems engineering. The different process models used
for systems engineering and AI are discussed and it is suggested that these differences
are largely responsible for some of the mutual hostility which exists between the
systems engineering and AI communities. Contributions of AI in this area are
discussed , particularly the applications of AI in the programming process. The
technical difficulties of applying AI to support software engineering are covered and,
the final section of the paper, looks forward to suggest systems engineering
activities where future application of AI technology may be fruitful. Without
exception, these activities are dominated by human rather than technical
considerations.

1. Introduction

Ten years ago, AI came to life after a number of years in the doldrums. The Japanese Fifth
Generation Initiative sparked off research programmes in the US and in most European
countries. Direct responses included the Alvey initiative in the UK and the European ESPRIT
initiative, both of which made relatively large sums of research support available with the
ultimate aim of turning AI research into commercial products.

The proposals for systems engineering research were based on the notion of integrated
project support environments which provided automated support for systems development
activities. It was envisaged that research prototypes of so-called third-generation
environments, based on AI technology, should be available about now. In fact, there are few
second-generation environments available and there is no realistic prospect of developing an
AI-based environment in the foreseeable future.

Of course, AI was oversold and has not met its expectations. Of course, these expectations
were unrealistic. Of course, the initial flush of funding was not followed up by the steady
influx of support which is required to take good ideas through working prototypes to
commercial products. Nevertheless, in many areas AI has made an impact and, while the
unrealistic enthusiasm has faded, in many application domains there is a feeling that
‘knowledge-based systems’ do have a role to play.

Why then, in a recent seminar attended by many leading software engineering researchers
to discuss the future of software engineering [1] was AI never mentioned? Why is there a
perceptible hostility between many systems engineering practitioners and AI researchers?
Why do some engineering disciplines embrace AI enthusiastically but software and systems
engineers ignore the possibilities of this technology? What of the future - can AI make a
contribution to systems engineering?

This paper is neither a general discussion of how AI might be applied to software
engineering nor a general survey of work in this area. There have been various general papers
[2, 3, 4] and collections of papers summarising the state-of-the-art [5, 6]. Rather, I address

the above questions from a very subjective viewpoint. My perspective is not that of an AI
specialist but that of a software engineer who has been involved in the systems engineering
process. At the same time, I have some background knowledge of AI and, I hope, I lack the
jaundiced view of some of my systems engineering colleagues. Existing approaches to
systems engineering support are running out of steam as it becomes clearer that the real
problems of systems engineering are human problems which cannot be tackled by
formalisation. Perhaps AI technology with its foundations in the study of intelligence can now
be applied effectively in systems development?

The paper is divided into three principal sections. The first section discusses the systems
engineering process and contrasts this with the development process for AI systems. The
mutual suspicion which is sometimes evident between AI researchers and systems
engineering practitioners is, in my view, caused by a misunderstanding of the central role
these process models play in the respective types of system development.

In the second section, I look at what work has been done in applying AI to systems
(mostly software systems) engineering. The application of AI in software engineering has not
been particularly fruitful at least as far as practical applications are concerned. Recently, other
engineering disciplines have turned to AI as a potential tool for tackling their problems. Again,
practical applications are rare but there is noticeably more enthusiasm for AI amongst
‘traditional’ engineers than software engineers. I believe that there are fundamental reasons
why AI is likely to be more effective in ‘traditional’ engineering and I discuss some of these
reasons here.

In the final section, I present three important problems areas of systems engineering
which I believe are amenable to support using AI-based tools. Without exception, these
problems are human problems (or, at least are dominated by human behaviour) and I see no
realistic way to tackle these problems without AI technology. Most of the discussion is
concerned with why these problems can (and should) be addressed using AI technology but
some AI research which has considered these problems is briefly discussed.

2. Systems Engineering

Systems engineering is concerned with the construction of systems which deliver some useful
function. These range from relatively simple systems (a word processor, a television, a
lawnmower) to immensely complex systems such as an air traffic control system, a
broadcasting network, or a warship. In general, all but the simplest systems now include:
1. Mechanical components which transfer (and perhaps transform) energy from one part of

the system to another or to and from the system's environment.
2. Electrical components which transfer (and perhaps transform) signals from one part of the

system to another or to and from the system's environment.
3. Software components which control the mechanical and electrical components and which

specify the information transfer and transformations which take place in the system.
Many systems also involve complex civil engineering to provide a suitable environment

for these components and their interface to their environment or may themselves be structures
such as bridges. As I have no experience of this class of system, they will not be discussed in
this paper.

Systems are normally procured and built using a process whose general form is shown in
Figure 1.

Specify
system

Build
system

Validate
system

Figure 1 The systems engineering process
This process has both significant strengths and weaknesses. The strengths of this process

are:
1. It provides an effective basis for system procurement. Organisations who require a system

must develop the system specification but can then contract out the development and the
validation of the system to other organisations. Thus, organisations concerned with
banking (say) need not maintain in-house teams of mechanical and electrical engineers to
design and build their cheque sorting system. Without this model, specialist engineering
companies could not exist.

2. It provides a basis for the division of labour. The expertise required to develop all but the
most trivial systems is such that they cannot be developed by a single individual but must
involve teams of engineers drawn from different backgrounds. Given that the interfaces
between the system parts can be specified, the mechanical, electrical and software
components can be built and (to some extent) validated concurrently.

3. It provides a basis for the training of engineers. Typically, engineers learn about the
process by assisting with the building of systems and, only after the problems of system
building have been understood, do they move onto other activities. Thus, designers and
those involved in system specification should have an understanding of how the
limitations of the building process constrain the system design.
This process is almost universally applied in systems engineering and works reasonably

well when the systems are mechanical or electrical systems built out of tangible physical
components. In these systems, there is a clear relationship between the system specification
and the system design. Indeed, the specification is usually simply expressed as a design
schematic and the design process (which is encompassed in the 'Build system' box above),
involves developing the details of the specification. The validation process for these systems,
which involves checking that the built system meets its specification, is mostly concerned with
checking for defects introduced during the building process. Because the gap between design
and specification is narrow, it is assumed that the design is 'correct'.

This process becomes problematical when systems include components such integrated
circuits or software which are intangible. The major weakness of the process is that it forces
premature commitment to a specification before the needs of the system procurers are fully
understood. Specifications are usually expressed informally with attendant inconsistencies
and incompleteness. There is a wide gap between the specification and the design with no
clear distinction (in software) between the design and ‘manufacturing’ processes. Validation
is concerned with discovering design rather than manufacturing problems and hence impacts
the specification.

The AI community recognised these difficulties at an early stage and has developed an
exploratory process model for software which is quite different from that in Figure 1. This is
shown in Figure 2.

Formulate
ideas

Build
prototype

Assess
ideas

Figure 2 Exploratory development
This model rightly recognises that it is often extremely difficult to develop a software

specification partly because of the intangible nature of software (specifiers can't visualise what
it will do) and partly because the function of software is a control function. The number of
control possibilities is much larger than the number of practical ways of building the
mechanical or electrical parts of a system and specifiers have no mechanisms to assess which
of these is most effective or even what their control requirements are.

Although the exploratory programming model is, perhaps, a more realistic technical
approach to software development, it does not allow two critical questions to be answered:
1. What system is to be built?
2. Has the system been built as specified?

These questions are absolutely central to the engineering process as they allow
engineering to be an economic and not just a technical activity. I believe that much of the
mutual suspicion which exists between the systems engineering and the AI communities is a
direct result of the mismatch between these process models. Although it can be argued that the
specify-build-validate approach to systems development must evolve towards the exploratory
development model as systems become more and more software-intensive, the current
approach is so deeply embedded in our organisations and in our economy that it is unrealistic
to think that it will change significantly in the foreseeable future.

 The mismatch between these models is also revealed in the way in which each community
thinks about programming. For software engineers, programming is a relatively simple
activity which consumes, normally, less that 20% of the system development effort. The
challenges to the software engineer are in specification and design and in system validation.
By contrast, AI systems development is programming so we have therefore seen the
development of very powerful languages (such as Lisp and Prolog) which simplify the
programming process. This bias towards programming has influenced the type of software
engineering problems which have been tackled by AI researchers.

3. The contributions of AI to systems engineering

It can be argued that AI has done an immense amount for system engineering. Although the
origin of object-oriented programming is a matter of some debate, clearly the contribution
made by frame-based systems was very important. Object-oriented development will become,
over the next 10 years, the principal development approach for large systems. Another
important contribution was the influence of AI programming environments such as InterLisp
on environments for software engineering and CASE tools.

The problems concerned with the engineering of software dominated systems have been
recognised for 25 years and AI research has been going on for rather longer than this.
However, relatively few AI researchers have concerned themselves directly with systems
engineering problems. Furthermore, AI research which has been concerned with the domain
of systems engineering has sometimes been less concerned with addressing practical
problems than with modelling programming as a human activity [7, 8]. This is, of course, a
perfectly reasonable research objective but it has not yet led to any exploitable results.

Until relatively recently, most AI work in this domain focused on software engineering
and was dominated by research on automatic programming [9, 10]. Automatic programming
is concerned with utilising knowledge-intensive methods to derive an efficient program from a
formal specification. This serves a dual function:
1. It partially addresses the problems of specification. If a formal system specification is

available, this provides a less ambiguous basis for developing the system than a
specification expressed using diagrams and natural language. The state of the art in this
area is such that formal specifications can only be produced for some classes of system
and can only express the system’s functional characteristics.

2. It reduces (or should reduce) the cost of system building and validation. Programming is
automatic and correctness-preserving transforms are used to convert the specification to
the program. If these transforms can be validated, there is no need to demonstrate that the
program meets its specification.
Work on automatic programming led to the development of a commercial product called

REFINE [11] which synthesised Lisp and C programs from formal specifications. However,
this product has had little or no impact on systems development and has not been a
commercial success. By all accounts, REFINE worked reasonably well so why has this
system (and automatic programming in general) had little or no impact on software
development? Leaving aside defects in the REFINE system, why are software engineers
almost completely uninterested in automatic programming. I believe that the reasons for this
are:
1. Automatic programming is concerned with software rather than systems engineering. A

program could be generated but there was no straightforward way to interface this
program with any hardware whose characteristics were unknown to the automatic
programming system. Hardware interfacing required the generated code to be changed
but the workings of this code were opaque to the engineers responsible for making the
change.

2. The specification languages and techniques which can be processed efficiently by
automatic programming systems are limited. This means that there is a high cost incurred
in translating user requirements into the specification language. Of course, this is a
problem with all formal specification but is worse when the specification has to be
transformed to a reasonably efficient program. Other problems with specification
languages include a lack of modularity so that it is difficult to generate the system
incrementally.

3. Transforming a specification to a program is a slow process irrespective of how fast the
underlying hardware. This means that there is a high overhead associated with fault repair.
This is unacceptable to most engineers who like to fix faults discovered during the
development process as quickly as possible.
The long-running Programmer’s Apprentice project at MIT has the objective of

supporting all stages of the software process. Based on a model of programming through

clichés which Soloway and others suggest closely follows the approach used by human
programmers [12, 13], the Programmer’s Apprentice is a knowledge-driven system (more
accurately, a number of separate systems) to support software development. A programming
cliché is a representation of a ‘common’ programming construct such as loop iteration. A
notation called the Plan Calculus is used to represent programming clichés. Waters argues
[7] that programming is a process of combining these clichés into programs.

The first stage of the Programmer’s Apprentice project was concerned with providing
support for programming. A system called KBEmacs (Knowledge based EMACS) was
developed to the stage where reasonably complex Ada programs can be synthesised from a
small number of user commands.

This approach is distinct from automatic programming as it does not rely on formal
specifications to generate the program and because it allows end-user modification of the
generated system. Rather, an informal specification is used to select and adapt clichés from
the knowledge base and these are combined to create the program.

Although KBEmacs can generate non-trivial programs (up to several hundred lines of
code), the usefulness of the system for practical software engineering is limited. The cost of
discovering clichés increases as they become more abstract yet the return on these more
abstract clichés is reduced as more abstract constructs are less frequently used. KBEmacs
may save a little programming effort but these savings may be lost if the generated program
has to be manually optimised.

More recently, work on the Programmer’s Apprentice project has switched to producing a
system called the Requirements Apprentice which supports the specification stage of the
software process. I believe this is a more important aspect of the Programmer’s Apprentice
project and discuss it briefly in the following section.

 I believe that the focus by AI researchers on the programming process has, in fact,
actively retarded the application of AI to systems engineering. Practical software engineers
dismiss the research as it is not concerned with the real problems in this area and hence reject
AI technology as a possible solution.

By contrast to the attitudes of software engineers, other engineering disciplines have been
enthusiastic about the application of AI to their work. As early as 1986, a special issue of
IEEE Computer [14] was devoted to expert systems in engineering. Engineering design
problems have been addressed by the application of AI techniques. For example, the PIAF
system is concerned with layout design for integrated circuits [15], the detailed design of air
cylinders is supported by the AIR-CYL system [16], the Pride system [17] is concerned with
the design of paper feeders for photocopiers and the SIMAD system, described elsewhere in
these proceedings [18] is a system which suggests improvements to the design of axisymetric
assemblies.

3.1. Problems of applying AI to support software development

Why are there differences between ‘traditional’ engineering and software systems
engineering? Why are software engineers lukewarm about AI whereas other types of engineer
see it as a key technology for the future development of their discipline? What is it about
software that makes it different? I believe that there is an important human reason for this and
several technical reasons.

I believe that a major handicap to the application of AI in software engineering is that AI
researchers are themselves software engineers! Hence, of course, they know (or think they
know) the problems of software engineering. Unfortunately, as discussed in the first part of
this paper, the type of software that AI researchers build and the development process which
they follow is atypical. Their idea of priority problems may not be the same as systems

engineering practitioners. By contrast, when AI researchers tackle problems in other
engineering disciplines, they know that they are not domain experts and are perhaps more
willing to listen to domain experts and to learn about the real problems which they face.

Although this human problem is a real and an important one, there are also important
technical reasons why the application of AI in mechanical or electrical systems engineering is
likely to be more successful than in software systems engineering.
1. Well-founded theory Software systems design is not founded on any verified theory

whereas electrical and mechanical systems are clearly bound by physical laws. While
there is little direct reasoning in engineering systems based on these physical laws, the
laws allow some aspects of a design to be verified. These laws are analogue rather than
digital so that computations over a design can give some approximation of ‘goodness’
and designs can be compared (albeit approximately) according to these computations.
Design proposals produced by a system may be validated and invalid suggestions
factored out at an early stage. By contrast, we have no useful metrics which can detect
poor software designs so heuristics to prune the design search space are very difficult to
establish.

2. Focused, well-understood domains All of the successful examples of AI applications in
engineering are concerned with very specialised domains. For example, the AIR-CYL
system [16] is only concerned with the design of air cylinders and our work at Lancaster
has been concerned with the design of axisymetric assemblies such as those in pumps
[18, 19]. The emphasis on specialised domains means that detailed knowledge can be
brought to bear on the design process.
Domains in engineering design are easy to identify as they can be associated with tangible
products. In software systems, on the other hand, it is much harder to associate systems
with a specific domain as the approaches used to design have a great deal in common. For
example, on the surface, it would appear that a library system and a radar system have little
in common but, as Reubenstein and Waters point out [20], both are examples of
‘tracking’ systems as both keep track of the state of some target object.
Unfortunately, this general knowledge of software design techniques is not enough for
good systems design; specialised knowledge is also necessary. Understanding and
capturing this intangible specialised knowledge is itself difficult. Furthermore, both
general design knowledge and the relationships between this general knowledge and the
specific domain information are very difficult to encapsulate as system-processable
knowledge.

3. Clearer entity and relationship semantics Because engineers deal with tangible physical
objects, they can generally agree on what these objects are. Ignoring tolerances, there is
little dispute over the form of a shaft, the function of a nut or a switch or the relationship
of abutment, say. By contrast, entities and relationships in software engineering are
abstractions and hence it is more difficult to establish agreed semantics for them.
While future prospects for using AI in the design of the electrical or mechanical parts of

systems are reasonably good, I believe that these factors mean that the successful application
of AI to software design problems (where programming is really detailed design) cannot be
realised in the short to medium term. A necessary pre-condition for the application of AI in
any design problem is that we have to have a clear understanding of what is to be designed
and the characteristics of a ‘good’ design. Software engineers must understand their
discipline much better before AI techniques can be successfully used.

5. What can AI do for systems engineering?

In an introduction to a special session on AI and Software Engineering at the 9th International
Software Engineering conference, Barry Boehm, who is a leading and highly regarded US
software engineer, suggested that there are two possible ways of bringing AI and software
engineering together.
1. The AI/SE approach. Reformulate software engineering processes in AI terms and

attempt to solve them entirely within AI.
2. The SE/AI approach . Select a subset of software engineering problems and apply ideas,

techniques and representations taken from AI in the solution of these problems.
Because of the distinctions between the process models discussed above, the AI/SE

approach cannot be applied effectively as it does not recognise the importance of an agreed
specification and validation against that specification. Irrespective of the technical merits or
otherwise of this approach (and its technical superiority has not been demonstrated), it is
simply not worth considering it further; there is no way in which it will be acceptable to the
general community of engineers.

Prospects for exploitation of AI techniques and technology therefore must lie within the
SE/AI approach. Rich and Waters [21] suggest that tools to support software engineering
must become knowledge intensive if they are to make an improved contribution to the
software development process. For the reasons discussed above, I do not believe that the
software design process is amenable to such tool support. We therefore have to look at other,
non-technical areas of systems engineering to see what knowledge-rich tools might be
developed.

To assess the realistic potential of using AI to support the systems engineering process,
we have to look at problem areas in systems engineering which are firstly, critical to the
systems engineering process and secondly, where support using ‘conventional’ tools is
limited. Three areas seem to me to be the best candidates:
1. Requirements analysis and definition.
2. Process modelling and process support.
3. Project planning.

Work in these areas of systems engineering requires the use of an incomplete, normally
inconsistent and rapidly changing base of information. It is impossible to predict in advance
what information will be required in a particular situation or when information may be
important. Apart from very simple, routine tools, such as PERT analysers which assist with
resource management and planning, the unpredictability and the complexity of the
information base, makes it difficult to develop effective, conventional software tool support.

5.1. Requirements analysis and definition

The first stage of the systems engineering process is a requirements analysis and specification
stage where the needs of the system procurer are analysed and a system specification
produced which serves as a contract for the system development. This stage involves the
following activities:
1. Domain understanding. The analyst has to understand the domain where the system is to

be introduced. Normally, this understanding is incomplete and changes as the
requirements are developed.

2. Information collection. The analyst has to collect information about the functional and
non-functional characteristics of the system which is to be procured and locate this
information in the context of the domain model.

3. Systems modelling. The analyst has to create an abstract model of the system which is to
be procured. This stage usually involves making decisions about whether functions
should be partitioned to mechanical, electrical or software components.

4. Requirements documentation. The analyst has to write a requirements document which
expresses the requirements in a form which can be agreed between procurer and
developer.
There is an obvious relationship between the first three of these activities and some of the

activities involved in AI systems development. Practitioners in AI have realised for many
years that successful systems must be domain specific and must incorporate a large amount
of domain knowledge. The activity of information collection is essentially the same process as
knowledge elicitation and has exactly the same problems. Systems modelling, in AI systems
development, corresponds to the implementation phase of AI systems - in this case an
executable system model is built. Systems modelling is also an iterative process with the
model being refined as more information becomes available.

Applying AI technology in this area is appropriate because requirements are never
‘correct’. Rather, they must adequately express the needs of the software procurer. If AI-
based tools are applied to support programming and, because of knowledge-base
inadequacies either fail to generate a program or (even worse) generate the wrong program,
these tools will be rejected by systems engineers. On the other hand, requirements analysis
and specification is an iterative process where requirements are derived from several sources
all of which usually produce incomplete and often inconsistent requirements. One of these
sources could be an AI-based tool. Given that the tool is functionally useful, inadequacies due
to a lack of knowledge simply mean that missing information has to be discovered from
another source.

 Recent work on the Programmer’s Apprentice project has been concerned with the
development of a Requirements Assistant which is intended to help the analyst during the
requirements derivation process [20, 21]. Like KBEmacs, this system is also based on clichés
and uses a multi-layer model of knowledge. In this case, however, the clichés known to the
system can be (incomplete) high-level domain abstractions such as the tracking system
discussed above or a repository system which manages a collection of objects. Different
application systems can be viewed as different cliché combinations.

The Requirements Assistant (RA) allows the analyst to introduce concepts as keywords
and it searches its knowledge base to discover clichés representing these concepts. The RA
does not insist on formal and complete specifications but allows informal specifications to be
written. Support is provided for disambiguation and the RA keeps track of pending issues e.g.
unknown concepts which have to be filled in by the analyst. Changes to the requirements can
be proposed and the RA assesses the impact of these changes and updates the system
knowledge to make it consistent with the proposed change. Finally, the system can generate a
report in a form which is acceptable as a system specification.

Using a simplified knowledge representation, Czuchry and Harris [22] have
commercialised some of the work on the Requirements Assistant and report on its practical
use in real systems engineering projects. This has demonstrated the potential of this approach
and I believe that applications in requirements analysis and specification will be the most
significant applications of AI to systems engineering in the next few years.

5.1. Process modelling and support

The systems process is the set of activities and outputs which are involved in systems
development. As discussed above, this is usually partitioned into three stages namely
specification, development and validation. Within these large-grain activities, however, there
are many sub-activities which depend on the system being developed, the organisation
involved in the development, the people involved in the development, the tools which are
available, etc.

There is a great deal of interest in the software engineering community in modelling,
controlling and standardising the software engineering process [23]. This work has mostly
focused on the technical activities of software development and the outputs of development
processes. However, empirical process studies, such as that carried out by Curtis et al. [24]
have shown that the factors which are most critical for project success are human and
organisational rather than technical factors.

The characteristics of real software processes rather than idealised process models are:
1. They involve a ‘working’ rather than a formal division of labour [25]. Individual

engineers are assigned personal tasks but a project team often reallocates these tasks
implicitly to suit current circumstances. For example, if an engineer is temporarily
unavailable, some of his or her work may be taken on by others without explicit
managerial intervention.

2. They are often exception-driven. While there may be a prescribed process expressed as a
sequence of activities, so many exceptions occur that this process is continually changing
as the team cope with whatever exceptional circumstance has arisen. The project manager
and the development team will often spend a significant amount of time discussing how to
cope with the exception.
These characteristics suggest to me that the use of AI techniques may be valuable in

process support. Again, we are not looking to support systems to provide a ‘correct’ answer.
Rather, such systems have to provide informed suggestions how to proceed in a process or
how to adapt a process to a particular set of circumstances. The use of AI techniques with a
process knowledge-base means that the range of possible support is potentially greater than
that possible with conventional data-bases.

 Hardly any software process research has taken developments in AI into account (again
an illustration of the rift between disciplines). Mi and Scacci [26] describe a prototype
knowledge-based environment which provides process definition facilities and Jarke et al.
[27] have also developed a prototype system which provides knowledge-based support for the
software process.

Like other process support systems, these systems allow a model of the software process
to be expressed and modified. However, because they use a knowledge-base of process
information, they can also provide support for assessing the impact of changes to this model
and, in some cases, automatically propagating changes through the model. Thus, when the
process changes (as it always does), the process model can be adapted quickly to reflect the
new situation.

Mi and Scacci’s system (the Articulator) is particularly interesting because it recognises
systems and not just software engineering as a process and also the fact that processes take
place in an organisational context. Relations between process agents, tasks and organisational
agents can be established and organisational information used to resolve process problems.

5.2. Project planning

In a large systems development project, there may be an overall project manager plus project
managers for individual sub-systems making up the system. These managers may be

concerned with mechanical, electrical or software systems development and may not
understand much about the problems faced by project managers from other disciplines. As
Hakami [28] points out, simple project management tools such as PERT tools are useful for
an individual manager but, when project management is, essentially a group responsibility,
these tools do not address the problems which project managers must face.

Existing project management tools have a very simplistic view of the process. They
consider resources to be independent and generally only allow a single type of dependency
relationship between tasks to be modelled. In fact, resources such as the time of specialist
staff, available computers and the travel budget are all inter-dependent and teasing out the
dependencies between them is a difficult task.

The general problem faced by project managers is planning work in an uncertain situation.
He or she must often attempt to satisfy conflicting organisational, project and human
objectives and, in general, must minimise project risk. That is, the consequences of whatever
decisions are made should be predictable. Project planning goes on throughout a project and
plans must be regularly recast as milestones are reached, resource availability changes and
organisational priorities are modified. To plan effectively, managers need to be able to assess
the impact of plan changes and propose and compare alternative plans. Yet again, correctness
is not the issue; rather, informed support which managers can augment is what is required.

There has not been much research into how to provide support for project planning.
Hakami [28] and Bimson and Burris [29] have developed systems to assist with the project
planning process. Hakami’s system is perhaps the more interesting as it explicitly recognises
that project management is a cooperative process and it provides facilities for modelling
process cooperation. The system is an agent-based system with different agents allocated to
each planning role in the project. A set of constraints governs agent operation.

Conclusions

Although techniques with their roots in AI such as object-oriented development have entered
mainstream systems engineering, the application of AI in support of the systems engineering
process has not been successful. I have argued that this is partly a consequence of AI
researchers misunderstanding the central role of the specify-build-validate process model in
systems engineering. Attempting to recast systems or software engineering problems into the
more familiar exploratory programming model of AI is a futile approach. While it may allow
interesting studies into the nature of software engineering activities, it will not provide for
effective activity support.

I do not think that any kind of automated software design system is likely to be useful in
the foreseeable future. In specialised domains, hardware design systems have more potential,
but the practical problems of integrating these systems with existing CAD tools have still to
be addressed.

Unlike, perhaps a majority of systems and software engineers, I am optimistic about the
role that AI could play in future tool developments for systems engineering. The contribution
of AI will be in supporting non-technical rather than technical activities. These activities are
characterised by solutions to problems which are neither right not wrong but which are more
or less appropriate for a particular situation. Conventional algorithmic approaches cannot
tackle this kind of problem effectively. Particular activities where AI techniques can be
applied are requirements specification and analysis which involves extensive consultation with
domain experts and in project management.

References

[1] N. Habermann and W. Tichy, Future Directions in Software Engineering, Dagstuhl
Seminar Report, 32, February 1992.
[2] H.A. Simon, Whether Software Engineering Needs to be Artificially Intelligent, IEEE
Trans. on Software Engineering, 12 (7), 1986, 726-732
[3] I. Zualkernan, W.T. Tsai, and D. Volovik, Expert Systems and Software Engineering:
Ready for Marriage?, IEEE Expert, 1 (4), 24-32.
[4] G. Arango, I. Baxter and P. Freeman, A Framework for Incremental Progress to the
Application of Artificial Intelligence to Software Engineering, in Artificial Intelligence and
Software Engineering, Ablex Publishing, New Jersey, 1991.
[5] D. Partridge, Artificial Intelligence and Software Engineering, Ablex Publishing, New
Jersey, 1991.
[6] C. Rich and R.C. Waters, Artificial Intelligence and Software Engineering, Morgan
Kaufmann, Ls Alton, 1986.
[7] R.C. Waters, The Programmer’s Apprentice: A Session with KBEmacs, IEEE Trans. on
Software Engineering, 11 (7), 1985, 11296-1320.
[8] D. M. Steier and E. Kant, The Roles of Execution and Analysis in Algorithm Design,
IEEE Trans. on Software Engineering, 11 (11), 1985, 1375-1385.
[9] R. Balzer, A 15 Year Perspective on Automatic Programming, IEEE Trans. on Software
Engineering, 11 (7), 1985, 1257-1267.
[10] D.R. Smith, KIDS: A Semiautomatic Program Development System, IEEE Trans. on
Software Engineering, 16 (9), 1990, 1024-1043.
[11] L. Abraido-Fandino, An Overview of REFINE 2.0, Proc. 2nd Int. Symp. on Knowledge
Engineering, Madrid, 1987.
[12] E. Soloway and K. Ehrlich, Empirical Studies of Programming Knowledge, IEEE Trans.
on Software Engineering, 10 (5), 1984, 595-609.
[13] B. Adelson and E. Soloway, The role of Domain Experience in Software Design, IEEE
Trans. on Software Engineering, 11 (7), 1985, 1351-1360.
[14] Expert Systems in Engineering, IEEE Computer , Special issue, 19 (7), 1986.
[15] M.A. Jabri and D.J. Skellern, PIAF: Efficient IC Floor Planning, IEEE Expert, 4 (2),
1989, 33-45.
[16] D.C. Brown and B. Chandrasekaran, Design Problem Solving: Knowledge Structures
and Control Strategies, London, Pitman, 1989.
[17] S. Mittal, C.L. Dym and M. Morjaria, PRIDE: An Expert System for the Design of
Paper Handlers, IEEE Computer, 19 (7), 1986, 102-114.
[18] V. Oh,I. Sommerville, M. French and A. Taleb-Bendiab, Incorporating a Cooperative
Design Model in a Computer-Aided Design Improvement System, Proc. AISB Conference
Birmingham, 1993.
[19] A. Taleb-Bendiab, V. Oh, M. French and I. Sommerville, Knowledge Representation
for Engineering Design Product Improvement, Proc. Applications of Artificial Intelligence in
Engineering VII, Elsevier, New York, 1992.
[20] H.B. Rubenstein and R.C. Waters, The Requirements Apprentice: Automated Assistance
for Requirements Acquisition, IEEE Trans. on Software Engineering, 17 (3), 1991, 226-240.

[21] C. Rich and R.C. Waters, Knowledge-Intensive Software Engineering Tools, IEEE
Trans. on Knowledge and Data Engineering, 4 (5), 1992, 424-430.
[22] A.J. Czuchry Jr. and D.R. Harris, KBRA: A New Paradigm for Requirements
Engineering, IEEE Expert, 3, (4), 1988, 21-35.
[23] W. Humphrey, Managing the Software Process, Addison Wesley, Reading, Mass.,
1989.
[24] B. Curtis, H. Krasner, and N. Iscoe, A Field Study of the Software Design Process for
Large Systems, Comm. ACM., 31 (11), 1988, 1268-87.
[25] R.J. Anderson, J.A. Hughes, and W.W. Sharrock, W. W. , Working for Profit: The
Social Organisation of Calculability in an Entrepreneurial Firm, Aldershot: Avebury, 1989.
[26] P. Mi and W. Scacci, A Knowledge-based Environment for Modeling and Simulating
Software Engineering Processes, IEEE Trans. on Knowledge and Data Engineering, 2 (3),
1990, 283-294.
[27] M. Jarke, J. Mylopoulos, J.W. Schmidt and Y. Vassilou, DAIDA–An Environment for
Evolving Information Systems, ACM Trans. on Information Systems, 10 (1), 1992, 1-50.
[28] B. Hakami, ISM: A Knowledge-based Project Support System, in Software Engineering
Environments, ed. K.H. Bennett, Ellis Horwood, Chichester, 1989.
[29] K.D. Bimson and L.B. Burris, Assisting Project Managers in Project Definition, IEEE
Expert, 4, (2), 1989, 66-76.

