
SOFTWARE_PRACI'ICE AND EXPERIENCE, VOL. 16(2), 131 I43 (FEBRUARY I986)

SOFTLIB - A Documentation Management
System

I. SOMMERVILLE, R. WELLAND, I. BENNETT AND R' THOMSON

Departnent of Computer Scie ce,IJnittersity of Strathclyde, Glasgow, Scotland

SUMMARY

This paper descdbes a software sysem (SOFTLIB) that has been developed to assist in th€
-"o"gemettt of software documentation geoerated dudng systems development projects. It
provides facilities to manage latge numbers of documents, to file documents when they are
iomplete aad to issue them to system developets aod maintaioe.s. It also includes an inlotmatioa
rettieval facility that allows ptogramming staff to ffltd documents, to examioe their contetlts
before issue and to assess the itate of the softwate project documeatation. SOFTLIB is explicitly
iDtended to help manage the documeltation geaerated during software development - it is not
desigaed for use by end.usets of that softwate or fot maaaging end'user documentation.

Tie aovel characteristic of this system is the apptoach that is takea to the consistency and
completenegs of doclmentation. The documentation associated with a software system is
otgaaized ia such a way that it may be detected if document sets are complete (that i8, if aU
diumeotation which should be provided for a software componeot is available) and if document
sets are li&ely to be inconsistent. This meaos that if a document has been changed without a
comparable chalge beiag made to other associated documents, this is detectable by the librarian
system.

Ia addition, a subsidiary aim of our wo.k was to iovestigate the utility of menu systems to
complex software tools by building a user ilterface to SOFTLIB. lfe coaclude that menu systems
are far from ideal in such situations because of the tange of possible options which must be
handled by the system.

KEy rroRDs Software documentation Software re-use Project management tools Software completeness and

INTRODUCTION

A common characteristic of all large software systems is the prodigious amount of
documentation which is generated during software development' Until relatively
recently, this documentation was written by software engineers, typed on paper and
managed by a project secretary who was allocated the job of documentation librarian.
Now, in more and more instances, documentation is written and stored on the computer
that is used for software development. This opens up the possibility of using an
automated tool to manage the issuing, updating and filing of that documentation, thus
relieving a project secretary o{ an uninteresting, time-consuming and error-prone task.

The notibn of an automated management system to support some of the activities of
software development is not new. Systems such as CADES,t which is a database-centred
support system, have been used in the development of a number of large software

0038464+ | 861 020 1 3 1-1 3$05. 3 o
@ 1986 by John Wiley & Sons, Ltd.

Receiaed 6 Noaember 1984
Rer:ised 13 May 1985

i l b6d

132 r. soMMERVTLLE /t7. .v-

projects. Several other systems, which are mostly proprietary developments, have also
been used and a.good.de.al of research work in this area has been reported.z Although
systems such as ARGUS'provide facilities for creating documentation, the manageme-nt
of documentation as a separate entity seems to have been neglected.

current thinking in this area is for the provision of a completely integrated project
support environments (IPSEs) where automated tool support is provided for alf stages
of software development. These are based around ^ proie.t ditabase and includJ a
database management system to control all prolect informaiion. Such environments are
exemplified by the Ada Programming Support Environment.4 However, such systems
are not_easy to develop - the last few years have seen the failure of the MCHAPSE
project" in the U.K. and Intermetrics' Ada Integrated Environment (AIE) project in the
United States.

It is unlikely that integrated project support environments will become widelv used
until the 1990s. we believe that, until then, most large-scale software develooment will
take place using software toolkits rather than integratid environments. An examole of a
software toolkit is the UNIXt Programmers Workbinch Systemb and UNIX-based ioolkits
seem likely to be the most commonly used software development systems. software
toolkits are distinct from integrated environments in that they do not normallv make use
of a. database management system bur rely on the host computer's fil ing iystem for
storing project information. Thus, the user does not have acciss to the p"owerful data
manipulation facilities offered by a database management system.

The aim of our work was to develop a component of such a software toolkit, namelv a
system to manage the documentation associated with a large software proiect. As welias
providing documentation management services. it was our intention that the svstem
should include checking facilities so that a restricted form of documentation consistency
and completeness checking might be carried out.

The model on which our system is based is that of a shared ,public, document librarv
with each system user having his or her own private workspace where no restrictions are
imposed by the docurnentation management system. Currently, this is provided using a
multi-user UNIX system but we envisage that future development environments mie'ht
be made up o[workstarions linked to a central co-puie, hosting the documinr
management system.

The SoFTLIB system uses a document classification scheme which collects topether
all of the documents which are associated with a particular software "o-pon"ntl Thi.
component document set is transferred, as a unit, to and from the user's wc,rksoace.
SOFTLIB also allows access permissions to document sets to be established, document
sets to be edited and new SOFTLIB users to be added to the library,register'. A key
feature of the system is a form of completeness and consistency cheiking, carrietl out
when documents are returned to the library. If a document set is incomplete or
inconsistent the user is warned, and certain restrictions are placed on future moclifica-
tions of these documents.

^ SOFTLIB is.a prototype system whose main purpose is to demonstrate the feasibility
of limited completeness and consistency checking and to investigate the requirements foi
a project information system. In principle, the system can iupport any number of
projects and users but its main function was to demonstrate the feasibilitv oi ideas. It has
thus only been used by a small research group on a limited number of projects. The
system has been built in a language called S-algolT and uses a small documeni database

TUNIX is a trademark of ,C.T & T, Bell Laboratories.

soFTLrB 133

built on top of the UNIX filestore. The system runs on DEC PDP-1l and VAX
compulers.

DOCUNIENT CLASSIFICATION

The basis of any library system is an effective method of classification. We looked at the
organization of some existing software document libraries which were organized into
sublibraries. Each sublibrary was associated with a particular software development
project and, within the sublibrary, documents were classified as specification docu-
ments, design documents, implementation documents, etc. Document dependencies
had to be maintained manually and there was no automatic way of ensuring that changes
to one document were reflected in all other associated documents.

A classification scheme based on document type (specification, design, etc.) suffers
from a number of disadvantages:

1. Documentation associated with a software component is not naturally related. To
find all documents associated with a subsystem, the user may have to search the
entire project sublibrary.

2. The re-use of software components and associated documentatlon ls not encour-
aged. Software components with similar functions are distributed across many
projects. All project sublibraries must be searched to find a set of components with
similar specifications to determine which is the most appropriate for a particular
job.

3. Documentation completeness and consistency is difficult to check. It is often
difficult to find out if all documentation which should be produced for a software
component is in existence and if it is in a consistent state.

Although we retained the notion that it is useful to classify documentation by project, we
rejected the idea of classifying documents as design documents, implementation
documents, etc. Instead, the basis of our classification scheme is the sotiware compo-
nent -

We consider a software component to be any item of software which has an associated
specification. Thus packages or modules implementing abstract data types, subsystems,
procedures, functions, etc. are all possible software components. Each software
component has associated documents such as a specification, one or more designs, one or
more implementations, a set of test data, etc.

Software components may be gathered into component families where all the
components in a lamily have some commonality in their specification. Thus there might
be a family of sort components, a family of display components, a family of syntax
analysis components and so on. This classification into families is intended to assist in
finding software for re-use.

To find a component of a particular type (a search component say), the user makes use
of the library information system to find out what components are available in the'search
family'. Although these components may have been developed as part of different
projects, SOFTLIB cross-references them under both project and component family.

For any component specification, there are usually many possible implementations of
that specification. These might be implementations in different programming lan-
guages, implementations designed for different computers, implementations which use
different algorithms to optimize space, speed, etc. Each of these is termed a xersirln of
the component. We deliberately restrict the term'version'to cover only those imple-
mentations of a component which have a common abstract specification. 'lhus, all of the

13+ I. soMMERVTLLE /r7. -11"

versions of a search component might search an array of integers but one version might
be a linear search written in C, another might be a linear search in Pascal and a third
version might search by sorting then binary chopping.

Each version of a component hzs its owr. document set ll:rade up of design documents,
programming language code, etc. This version document set is distinct from the
component document set which is made up of implementation-independent documents
such as specifications and t€st data.

The classification scheme used in the SOFTLIB system is illustrated in Figure 1.

Figure l. Component classification

In Figure 1, we see that component family 1 (CF1) is made up of three components
which have similar (but not identical) specifications. For example, if CF1 is a family of
search components, C1y might be an integer search, C12 might be a file search and C13
might be a component to search an array of strings. Both C11 and C12 have several
versions but only a single version of C13 is provided.

CFz and CF: are each component families where there are two components in CF2 but
only a single family member in CF3. In our present system, we insist that component
families are disjoint so that it is not possible for a component to be a member of more
than one family.

This classification scheme avoids the disadvantages of schemes which organize
documentation by type. Documentation associated wiih a component is accessible as a
single unit. Component re-use is simplified by classifying components as family
members and by providing facilities to examine all members of a component family.
Documentation checking is possible, as discussed in the following section.

On top of this classification scheme, we maintain an additional classification by
project. The system keeps track of which component versions are used in which
projects. This is illustrated in Figure 2.

Figure 2 shows how projects make use of individual components from different
families. Notice that it is possible for different versions of the same component to be
used in the same project.

DOCUMENT CONSISTENCY AND COMPLETENESS

Each version of a component in a software system usually exists in a number of different

SOFTLIB

Iigure 2. Project use of torfiponent implemehtatior.s

representations. There may be one or more diagrammatic representations of the
component design, a design description in some program description language and an
implementation in a high or low-level programming language. A common practice,
particularly as the project delivery date draws near, is to modify the implementation
under time pressure and to delay corresponding modifications to the other representa-
tions until later.

Often, later never comes! The different representations of the version of the software
component are left in an inconsistent state. They may remain like this for some time
after the system has been delivered and may only be discovered when the software must
be modified during system maintenance or enhancement. As it is very difficult to retrofit
implementation changes to a design, it may be impossible to make the representations
consistent without complete rewriting.

Different projects require different representations of a component to be provided. A
component representation is said to be complete when all representations required by
management have been produced, entered in the component document set and placed
under the control of the librarian system. A definition of consistency is rather less
straightforward, so we operate using the notion of inconsistency. It is not possible to
determine, using software tools, if a representation set is logically consistent. That is, we
cannot write a formal component specification and check automatically that all
manifestations of a component match this specification. Thus, our approach is
necessarily a weak one; nevertheless, we believe that it is useful.

However, we can detect the possibility of inconsistency between representations by
keeping track of modifications to the various component representations. When one
representation is modified, all other dependent representations must be changed during
the same editing session. This mechanism does not catch logical inconsistencies where
all representations are modified but the modifications are not logically consistent.
However, it does trap inconsistencies which are a result of changing one representation
and omitting to change other corresponding component representations.

For example, say a user is working under pressure and creates a new version of a

I J J

i 36 I . SOMMERVILLE / '7 ' . V-

software component by modifying the source code of that component. However, he or
she.d-oes not modify the corresponding design of the component, nor does he or she
modify system maintenance documentation. Our inconsisiency checking system will
detec_t that all representations of that component which are dependent on ih.'"od. hu,.r"
not all been modified at the same time and thus may be inconsistent. The,quick fix,to an
implementation makes the document set for a version inconsrsrent.

The approach which we have. taken to_the implementation of inconsistency and
completeness checking is a simple one. A[of the representatrons assocrated with a
verslon_ot a soJtwafe component. (its document set) are bundled together under a single
name. users do not transfer individual documents from the shareJ document databi"se
to the.ir private workspace. Rather, a request for a document is satisfied by i"""i"g th.
complete document set for that component. It is not permitted for one..,..rio *ork-*ith
one representation (the design, say) in a component document set while another user is
manipulating another_ representation (the source code, say) in the same document set.

Completeness checking is thus straightforward. The -urrug". of u "ott*u.. pioj."i
establishes a standard convention foi naming documents in the shared do"r-'.nt
database which includes a field specifying the type of the document. In the current
implementation, we follow the UNIX

'corivention 'of
using suffixes to denote different

classes of document. For example, documents which are d"ataflow diagrams ;"t ,l;;t.
have a suffix.dfd, documents which are maintenance descriptions migit be suffixed wiih
.mnt and source code rnight be suffixed .src. The SOFTLIB sy'stem enforces trris
convention and insists that all documents which are entered in the project library have a
standard name. completeness checking is accomplished by ensuring t'hat all doJuments
which should exist for a version of a pro.iect component have been eitered in the project
library.

completeness checking does not require any global searching nor need the user
explicitly link representations. checking the completeness of any one component simplv
involves a single directory access to ensure that ill representatiln. u.. p-uia"a i., iiu't
drrectory.

Inconsistency checking is also straightfoward. We have put a cladding around the
lI.,:- :ai,o.r .? ,lrlt..gn completion of an editing session, a menu of posiible types of
change rs presented to the user. Possible change types are cosmetic changes (formaiting,
say), code changes (where the fundamental design of a component is unlhanged but th'e
code is modified), design changes, interface chinges and so on. The onus i3 placed on
,ll: "".1 to record the change type because diflerent types of change require that
drtlerent documents ln the document set be changed correspondingly.

. We adopted this approach rather than a dati-stamping approach because some
changes, such as cosmetic changes, do not make a documenisei inconsistent and other
changes, such as code changes, require the change to be reflected in some but not all
d,ependent documents. Although the user may evade the system checking by marking all
changes as cosmetlc, we assume that he or she will co_operate in changi iecordingl
_._After an editing session, the user returns the entire iocument set to the document
library. At this.stage, the system checks for possible inconsistency and, if an inconsisten-
cy is detected, it flags the document set as pbtentially inconsistent. whe' this flag i" sei,
further operations on the document set are restricted.

If a component is returned to the library in an inconsistent state, lts name rs recorded
in an. inconsis tent components ' l is t and ihat component may only be re issued ro the
rnorvroual wno caused the Inconststency. to h is or her pro ject manager, or to the owner

SOFTLIB t37

of the component. This means that an inconsistent component may not be issued for
further unielated modification. This restriction is necessary in order to keep track of
who made the component inconsistent and who must remove the detected inconsistency.

We have adopted this approach rather than forbidding the inclusion of inconsistent
document sets in the library because the realities of software development mean that it is

sometimes necessary to make a'quick fix' to a component' We believe that it is
unreasonable to expect all component document sets to be consistent at all times and our
approach means that inconsistent components may be detected and may not be
independently modified until they are in a consistent state'

DATABASE SECURITY

A document classification scheme which is based on projects and software components
leads naturally to an effective document security scheme' This is particularly important
where the system is built on top of the UNIX filestore. The UNIX system does not
support, in an adequate way, controlled sharing of specific files. Although group
permissions on a file are allowed, it is not possible for different group members to have
different access permissions on a file or a directory. Furthermore, overlapping of group
permissions is only possible on some versions of UNIX and is inconvenient on many of
tnem.

Security is enforced at a number of different levels, such as:
L The project level. It is assumed that all system users are working on a specific

development project. Thus, to use the librarian system they must log on using a
project identifier and password. They are then allowed access to the components
associated with that project.

2- The component leael. For each component in the system, the librarian system
maintains a user/use list. This list holds the identifiers of development staff who
are allowed to access that component and whether they have read, copy or
read/write access. Component level permission allows access to component
documents, such as specifications, which are version independent.

3. The z'ersion lexel. Each component version also has a user/use list defining allowed
access to that version. Permission to access a version implies permission to access
all documents associated with that version. Component level permission must be
held before access to a version is permitted

As well as controlling access to document sets, the librarian system also maintains a
transaction log. This keeps track of all transactions and holds the name of the user,
component, implementation and accessed document. Thus, if trnatrthorized access to a
document is gained, this is detectable using this log.

SOF' ILIB FACILITIES

The facilities which are offered by the librarian system fall into two main classes''l 'hese
are, first, facilities for documentation management and, second, information retrieval
facilities. The retrieval facilities are analogous to a library catalogue, which allows
SOFTLIB users to browse in the documentation librarl'. In our current system, the
SOFTLIB system is implemented as a single stand-alone program with the SOF'f LIB
command set accessible after the program has been initiated.

138 I. SOMMERVILLE /..?'.V-

Document matragement facilities
The document management facilities provided by the librarian system allow docu_

ments to be filed in and retrieved from the document database, allow project and access
permissions to be entered and allow documents to be edited with thai edit recorded bv
the system.

Commands available in SOFTLIB fall into three catesories:
(i) commands for logging on and logging off

(ii) commands for moving and editing document sets
(iii) commands for project management and for project administration.

The UNIX user calls SOFTLIB in the usual fashion by typing its name (qoftlib) and he or
she is-then asked to log on to the SOFTLIB system. The log-on name is a project
identifier.-A correct response to,the log--on request results in SbFTLIB requesting a
password from the user. On completion of a SOFTLIB session, the user retums io UNIX
using a logoff command. We adopted this log-onilog-off procedure because it provided a
security mechanism and because it is a convenient way of associating programmers with
a particular set of project documentation.

When SOFTLIB is used for the issue and editing of documents. the normal mode of
working is as follows:

1. The user types a get command which instructs SOFTLIB to fetch a document set
from the library and transfer it to the user's workspace. If the user is permitted
access to the document set, it is then locked so that it may not be reissued and is
transferred to the user's personal workspace. Locked component documentation
may still be read using the in{ormation retrieval facilities.

2. To edit the component documents, the user issues an edit command which, as
described above, initiates the standard systern editor and, on completion of the
edit, requests modification information from the user. It also daie stamos the
compon€nt document set and makes an entry in a transaction log which'holds
information about all document modifications.

3. After editing is complete, the user issues a put command to return the document
set to the document database. The put command initiates the consistency checkins
mechanism discussed above and, if the document set is consistent, it ii unlockeJ
for subsequent issue.

The SOFTLIB system assumes that software projects are administered by a project
manager and provides a number of commands which allow users to be adied'to ihe
system, permissions on document sets to be changed and so on. Examples of this class of
command are the newuser command, which allows ne* programmeri to be added to a
project or for user permissions to be modified, the acc command which is also used to
change permissions, but at the version level rather than the component level, and the
create command which is used to name a new project and set up or change document set
requirements for completeness,

SOFTLIB command examples
To illustrate the use of SOFTLIB, the dialogue below is an example of a possible

terminal session with SOFTLIB. Output generated by the system is shown in upper
case, user input in lower case and a comment is on a line bv itself which starts witli ihe
character -. The SOFTLIB prompt is >.

{

139SOFTLIB

* initiate the SOFTLIB system
softlib
ENTER PROJECT NAlvlE: compiler
PASSWORD:
* SOFTLIB now displays a command menu - an abbreviated version of this
* is as follows:

1 . GET
2. PUT
3, EDIT
4. NEWUSER
5 . L r1LA t t r

* User selects get f rom command menu
> 1
. SOFTLIB asks which class of document is required
DO YOU WISH TO RETRIEVE

1, COMPONENT SPECIFICATION
2. I IVPLEMENTATION DOCUMENT

* user selects implementation document, i.e a version
>2
" system displays available versions
DO YOU WISH TO RETRIEVE

1, LEX.ANALYSER. PAS
2. LEX.ANALYSER.LEX

* user selects lex.anlayser.Pas
> 1
OK
*Command menu displayed, user selects edit
>3
DOCUIVENT NAME > leranalyser'pd 1
* normal unix edit session to change document
* system asks user to indicate class of change
* cosmetic changes imply that no other documents need be changed, code
* changes imply that code and detailed design documents must be changed
* design changes imply that all documents must be changed
INDICATE CHANGE TYPE'r. coslvlETlc

2. coDE
3. DESIGN

>2
* Command menu displayed, user selects put
>2
WARNING: POTENTIAL INCONSISTENCY - CONTINUE?
>y
OK - LEX.ANALYSER, PAS MARKED INCONSISTENT
* user now acts in the role of system manager and adds a new user to the
* proiect - selects newusel f rom command menu (not shown)
>4

140 I . SOMMERVILLE / ' '1 ' ,11-

1 , E N T E R N E W U S E R
2. CHANGE PERIV SS]ONS

> 1
ENTER NAME> john smi th
ENTER DIRECTORY> /usr/projects/compiler/js
O K
>logoff

This hypothetical terminal session shows how the system makes extensive use of menus
to initiate commands. This menu interface is discussed in more detail in a later section of
this paper.

INFORMATION RETRIEVAL

The information retrieval facilities of SOFTLIB are implemented as a separate
subsystem which is initiated by issuing a piqs command where piqs is shorthand for'project information query system'. The object of provrding information retrieval
facilities was to provide the automated analogue of a library catalogue. However, rather
than provide an electronic card index, we have built a more powerful system which
allows documents to be retrieved and which allows the user to find out what documents
are available in the system. In addition, the user may also query the state of project
development and document sets, discover what transactions have taken place and find
out what components of a particular class are available.

A decision which was made at an early stage in this project was that the information
retrieval facilities should be 'read-only'. Using these facilities, the user may look at
documents, but to change any document the documentation management facilities must
be used. This allows unfettered use of the information retrieval svstem to be made
without the possibility of inconsistency being introduced into any document sets.

. Ttle information retrieval system (PIQS) offers access to information at a number of
levels :

I. The component family leael- The user may find out what components in a
particular family are available, what the specifications of these components are,
who the owner is, etc.

2. The component leael- The user of PIQS can find out what component documents
are available, who produced them, whether the component document set is
inconsistent, etc.

3. The ztersion lettel. For any component version, the user may query the availability
of documents in the document set and may retrieve any document in that set,
provided, of course, that he or she has access permission.

4. The prcrject lez:el. For all projects, information about the state o{ the project, the
components used, the project members, etc. may be retrieved.

5. 'fhe transaction leael- The system maintains a transaction log which records
details of who has done what. This may be queried via PIQS. Thus details of who
was responsible for changes to a software component may be recalled by project
management.

t4rSOFTLIB

The initial menu presented to the user is

RETRIEVE IVENU
'1. Management information
2. Project information
3. Component family information
4. Component information
5. Version information
6. Document set information

The user selects the documentation level o{ interest to him. Suppose that number 2,
project information, is selected. The user is then presented with the following menu:

DOCUMENTATION IVENU
'1. List all projects
2. View a specific project
3. Project responsibility
4. Project state
5. L is t a l l us ing component
6. List all associated components
7. List all inconsistent components
8. Complex enquiry

Numbers 5-7 above require additional input from the user. Option 8 is an escape
mechanism to allow access to a query language, as we found it very difficult indeed to
express complex queries using a menu-based system. The problems which we encoun-
tered with menu systems are discussed in the following section.

PIQS is aware of the document classification scheme which is used by the librarian
and provides simple commands to navigate through the document organization. Thus
when working at menu levelN (say), the user can issue a command d to go down a level
and a command u to go up a level. Thus, if working with components, d gives the
version menu and u gives the component family menu. Each level has its own command
menu. So, if working at the component level and if d is typed, the'version menu' (shown
below) is displayed. This displays enquiries which may be made on all of the versions of
a component.

'1. Select a component version
2. F ind out about vers ion owners
3. List all associated documents
4. Complex enquiry

The interactive session proceeds with the user moving up and down menus as necessary
to retrieve the required information'

THE USER INTERFACE

The main aim of this project was to provide a documentation librarian, but we also had

142 r. soMMERVTLLE /r7 .rf,

an important subsidiary aim. we. berieve that personal workstations equipped with
high-resolution displays and 'mice' will become the normal working tool' fo'r'software
engineers. An attractive user interface on such systems is menu-dr"iven with the user
pointing at his or her menu choice. we therefore decided to investigate tt. "iiiitv-"i
menu-driven interfaces to a system which allowed fairly complex ope"rations.

we make extensive use of menus in both the documeniation management facilities and
in the information retrieval system. we found that for the types of 6p"rutio" "rfporteJ
Dy tne- documentatton management system, menus were a convenient form of interac-
tron. Grven a better method of menu selection (we were constrained to work with a
character terminal), we believe that our interface would be easier and faster to use than a
command-driven interface.

However, we found that a menu-driven approach was less suitable for the information
retrieval system. The problems which we encountered with this menu-based upp.*"t,
came about because we wished to allow the user to input complex conjucti.rre q'.,e.ies.
Examples of such queries are:

(a) List all-com_ponents written in pascal which are part of project p and which are
owned by Y.

(b) List all versions of component X created after data DDMMyy
In our original implementation, we implemented such queries using a menu hierarchv,
where a new menu was introduced for each pr.u-"te, of the request. This wls
inconvenient in that the user had to wait for menu display and in that the user got lost in
a menu maze and had difficulty in correcting errors oi, sometimes, navigating"his or her
way out of the command.

.- A deep hierarchy of menus w-as necessary and the user, in spite of being familiar with
the system, readily.lost track of where he or she was in this hierarchy. Illti-ut"ly, *"
abandoned the notion of developing an interface which was purely menu-dri ren'and
developed an interface which was partly menu-driven and partly'based on a simple
command language.

Therefore, each menu in the query system has an escape option which initiates a
simple command language interpreter which operates at ihat menu level. Thus the
above queries might be posed as follows:

list components. project=p, lang uage = pasca l, owner:y
list versions, component=X, cdate > DDMlVlyy

Although some-of the problems which we had with menu systems would disappear if we
had more suitable hardware, our general conclusion was that a command language was
more suitable for posing complex queries.

CONCLUSIONS

The SOFTLIB system seems to be a useful aid to documentation management
particularly when the.components and their associated documentation have

"clearly

defined functions. The idea of working with document sets rather than single document"s
helps to detect document inconsist€ncy and is an effective way of enJ-rring that all
required documents,are provided. Although our notions of consistency and Jomplete_
ness- are weak, they have the advantage that they may be easily undersiood and riadily
implemented. comments from software management in industrial software develoo'-

SOFTLIB 143

ment organizations have suggested that documentation inconsistency is one of their r4ost

serious froblems. Our system goes some way towards a solution to this problem'

our other important conclusion is that menu systems are not really suitable_ for the

complex tasks undertaken during software development. Although they allow fast and

effeciive access to systems which have few options, systems which allow complex

combinations of options are best supported using a query language. Our work has

highlighted a need-for much more reiearch in the general area of the user interface to

"o:-pii* roft*u." development tools, where tool users are experienced rather than naive.

Our system works besi for components which have a clearly defined function and for

component documentation which concerns a single component. It was not intended to

hanile use. documentation (say) where the system as a whole rather than as a set of

individual components is described. However, the problems of consistency and

completeness apply equally to that type of documentation. There is a need for a notatton

to specify interdependencies between parts o{ such docxmentation and component

docu-entation seti so that changes to one section may be reflected in other related

documentation.

REFERENCES

1. R. W. McGuff in, A. E. El l iston, B. R. Tranter and P. N. Westmacott, 'CADES - software engineering

in practice', Proc.4th Int. Conf. on Softuare Engineeing, Mwnich (1979).

2. H. Hunke (ed,), Software Engineeing Entironments, North-Holland' Amsterdam, 1981'

3. L. G. Stuci i and H. D. Walker, 'Concepts and prototypes of ARGUS', in Reference 2'

4. fuquirements for Ada Prcgramming Support F)ntironments: Stoneman, U S' Department oI Defense,

1980.
5. J. G. P. Barnes, 'The UK M-Chapse', Ada UK,Vetas, 4' (1983).

6. T. A. Dolott", f.. C. Uaigttt "na 1 n. Mashey, 'The programmer's workbench' , Bell Syst"Tech J ' 57 '

(6\, 2177 -2200 (r9'7 8).
Z. e.' t. Cot. ana n. Mottison, An Introduction to Prcgramming u:ith S-algtl, Cambidge University Press,

Cambridee, 1982.

