[ESe e n RS —

Integrated project support
environments

Integrated project support systems facilitate large, long-lifetime software
developments, which are increasingly common in microprocessor projects.
lan Sommerville illustrates these systems with reference to one particular

first-generation IPSE

lhe paper presents an overview of integrated project
support environments (IPSEs) which are software develop-
ment environments intended to support large, long-
lifetime software projects. The logical structure of an IPSE is
discussed from the view that the IPSE is a set of layered
facilities. Each layer in the set is described. Standardization
is important for future IPSE development and standard
public tool interfaces are discussed. Common ADA
programming support environment interface set (CAIS)
and portable common tool environment (PCTE) are
introduced. Examples of tool and user interface integration
in an IPSE are provided using the Eclipse IPSE as an
exemplar. Deficiencies in current systems and future
developments in this area are addressed.

microsystems  software development environments  IPSEs
Eclipse

The high cost and the difficulties of developing software
ystems are well known. Accordingly, as the costs of
computer hardware have decreased, it has become more
and more cost-effective to provide individual software
engineers with automated tools to support the software
development process. Although it is possible to operate
software tools (now sometimes called CASE tools) in
conjunction with application systems, it is generally the
case that the activity of software developments is best
supported on a separate system which is termed a
software development environment (SDE).

A software development environment may be defined
as follows:

A collection of software and hardware tools which is explicitly tailored to

support the production of software systems in a particular application
domain.

There are two important points to highlight in this

Department of Computing, University of Lancaster, Lancaster LA1 4YR,
UK
Paper received: 19 December 1988. Revised: 30 January 1989

definition. Firstly, the software development environment
may include hardware tools. For example, microprocessor
development systems, which will be familiar to many
readers of this journal, often include an in-circuit emulator
as an integral part of the environment. Secondly, the
software development environment is specific rather than
general. It is intended to support the development of a
particular class of systems, such as microprocessor
systems, and does not contain facilities to support all
types of application systems development.

There are, in fact, many different types of software
development environment which are now in use. Some
examples are:

® Microprocessor development systems. These are
intended to support the development of embedded
software for a particular microprocessor or family of
microprocessors. They include facilities such as
in-circuit emulators, cross-compilers, remote debuggers
etc. in addition to program preparation tools.

® language-oriented programming environments. These
are environments geared towards the support of
programs in a particular programming language such as
PASCAL or C. Of course, the simplest language-oriented
environments are those for BASIC provided on many
personal computers, but more sophisticated environ-
ments include very specific language processing tools.
A characteristic of such environments is that they
include knowledge of the language under develop-
ment and, so, can provide more ‘intelligent’ support
for the development process. Such environments are
often created by adding language-oriented facilities to
general-purpose kemel environment such as Gandalf'.

® Knowledge-based systems development environments.
These environments, typified by systems such as ART
or KEE, are generally language-oriented environments
with additional very high-level facilities that are
specifically intended for creating knowledge-based
systems.

® Integrated project support environments. This class of

SDE is intended to support the production of large,

0141-9331/89/04254-09 $03.00 © 1989 Butterworth & Co. (Publishers) Ltd

254

Microprocessors and Microsystems

S e



long-lifetime software systems whose maintenance
costs typically exceed development costs and which
are produced by a team rather than by individual
programmers.

The range of different types of SDE is such that it is not -

possible to discuss all of these in a single paper.
Accordingly, this paper is concerned with integrated
project support environments (IPSEs) which, currently, are
geared towards large systems development. In principle,
such systems could also be useful for supporting the
development of smaller systems but, at present, their
relatively high cost means that their use is confined to
large projects.

An integrated project support environment may be
defined as follows:

A collection of hardware and software tools which can act in combination
in an integrated way and which supports the configuration management
of all of the products of the software development process. The
environment should provide support for all of the activities in the
software process from initial specification through to testing and system
delivery.

The key points in this definition are:

@ The environment facilities are integrated. Three types
of integration can be identified, namely data integration,
interface integration and activity integration. Data
integration means that tools can exchange data, that is
the outputs from one tool can act as inputs to some
other tool. User interface integration means that the
different facilities in the environment present a con-
sistent interface to the user. Activity integration means
that the environment includes embedded knowledge
of its tools and of the software process, and can
automatically schedule and control development
activities. Current environments support data inte-
gration and interface integration but activity integration
is still a research topic.

® All products may be subjected to configuration
management. The most expensive activity in managing
long-lifetime systems is ensuring that, for all versions of
the system, all of the documents associated with a
version (specifications, design, code, user documen-
tation etc.) are consistent. This is called configuration
management and automated support for this process
is an essential part of an IPSE.

® Facilities are available to support all software develop-
ment activities. This characteristic is a side effect of the
requirement that all products and documents should
be managed by the IPSE. If automated management is
essential, the IPSE must provide support for all software
development activities. Thus, the tools available in an
IPSE should support specification, design, documen-
tation, programming, testing, debugging etc.

At the time of writing, a number of first generation IPSE
systems are commercially available. These include Istar?,
Genos®, Eclipse* and Bis-IPSE> from UK suppliers and
systems such as Epos® and Maestro from European
suppliers. By contrast with developments in Europe, IPSE
work in the USA has tended to concentrate on the
development of IPSEs, such as the Rational environment,
which are tailored to support systems written in the
Programming language ADA. ADA was designed for writing
large-scale embedded systems and is a USA and NATO
defence standard. ADA-oriented IPSEs are often called
APSEs (ADA programming support environments). The

Vol 13 No 4 May 1989

Host computer with\

support environment

Downloaded
program

Figure 1.

Host-target systems

examples in this paper are drawn from the Eclipse
environment as the author was involved in the develop-
ment of that system.

Current IPSEs generally assume a host-target model of
software development (Figure 1) where a dedicated
system is used for software development and the
software is executed on some other target system. Such a
model will be familiarto users of microprocessor develop-
ment systems where it is the normal mode of working.
However, it should not be assumed that this model of
working is necessarily the best one for all types of system.
Although it is clearly necessary for embedded system
construction, there are many classes of application
system which could make effective use of the facilities
provided in an IPSE. Future generations of IPSEs may well
have operational modes which allow them not only to
support the development of application systems but also
to support these systems whilst they are in execution.

LOGICAL STRUCTURE OF AN IPSE

The current generation of IPSEs exhibit a variety of
structures but share a common logical structure where
tools and user interface facilities are integrated around a
kemel providing data and object management primitives.
A simplified model of this structure is shown in Figure 2.
This model is simplified because the layering in actual
systems is indistinct and tools may interact directly with
the data management and operating systems. Further-

User interface

IPSE toolset

Figure 2. Structure of an IPSE

255




more, the userinterface should not just be a tool interface
but should also offer users direct access to the underlying
IPSE kernel. Nevertheless, the structure shown in Figure 2
is useful in that it provides a basis for describing the
different components of an IPSE.

Operating system layer

It is generally the case that IPSEs are built on top of some
existing operating system. Currently, the majority of IPSE
products are built on top of the Unix operating system
although there is no fundamental reason why this need be
the case. Unix was chosen as the base operating system
because of:

® Portability. Unix is available on a wide range of
computers from different vendors. By choosing Unix as
a base system, the costs of porting the IPSE from one
machine to another are minimized.

® Hardware vendor independence. Most operating
systems are tied to a particular vendor’s range of
computers and decisions on operating system evolution
are made by the vendor. With Unix, application
developers can have a say in how the system evolves
with consortia such as X-Open which are concerned
with standardization.

® Workstation availability. The computational require-
ments of a large-scale IPSE are such that it is most
effective when operated on a network of workstations
rather than on a shared central computer. Unix has
become the de facto standard for workstation operating
systems.

As IPSEs become more widely used, it is likely that
non-Unix versions of the system will become available
(this is already happening for systems like Istar). The
most likely alternative operating system implementation
is DEC's VMS system simply because of the widespread
use of DEC computers in the realtime software domain.

Data management layer

The data management layer in an IPSE which may, in fact,
be combined with the object management layer, provides
the facilities of a database management system. It allows
different types of entity to be created, destroyed, related
and retrieved, and supports multiple relationships between
database entities. Of course, it should also provide the
security, recovery and back-up facilities expected of a
database system.

IPSE systems place specific requirements on the
underlying data management system. In particular, the
range of entity types which may be created may far
exceed the typical number of types in commercial
database systems. The size of individual entities which
have to be managed may be quite small (tens or hundreds
of bytes rather than megabytes). Transactions are typically
long-term (several hours) rather than short-term (fractions
of a second) as are common in commercial transaction
processing systems. A consequence of these require-
ments is that many commercial database management
systems are not well suited for use as the IPSE data
management layer.

The data management layer may be implemented

256

specially for an IPSE on top of the operating system
filestore; may be provided through a system such as
portable common tool environment (PCTE) (discussed
below) which has been designed as ari IPSE standard; or
may be provided via a proprietary database management
system. Each of these approaches has its advantages and
disadvantages.

Building a stand-alone data management layer has the
obvious advantages to the IPSE producer that the data
management facilities can be tailored to the specific
requirements of that IPSE and that the producer retains
complete control of its evolution. From a marketing point
of view, there is no need for buyers to invest in other
software licences. The disadvantage is, of course, high
production and maintenance costs. Many of the facilities
produced are simply replications of existing database
facilities and it is usually much cheaper to reuse existing
software than rewrite it anew.

Basing systems on so-called public tool interfaces
(PTIs), which have been designed for environment
support, has the advantages that these should form a
standard and their facilities should specifically support
environment operations. A disadvantage is that these
interfaces have been designed by committee and,
inevitably therefore, are a compromise between a variety
of conflicting requirements. Furthermore, the existing PTls
are simply interface definitions rather than implemen-
tations and the number of available, high quality
implementations of these systems is currently limited.
PTls are discussed in more detail below.

The advantage of using a proprietary database
management system (typically a relational system) is its
ready availability and, given that a widely used product is
chosen as a base, the certainty of long-term support. The
costs are generally much lower than for building data
management facilities into the IPSE. The major dis-
advantages are the need for buyers to purchase the
database management systems (DBMS) as well as the IPSE
(they may well already have a different DBMS) and, as
discussed above, the fact that the technical requirements
of the IPSE may not match well with the facilities provided
by the DBMS.

The performance of the data management software is
critical to overall IPSE performance and it is in this area that
many, if not most, existing IPSE products are deficient. Itis
very difficult to build a high performance data manage-
ment system to support a variety of complex relationships
between alarge number of relatively small dataitems, as is
required in most IPSEs. This factor is probably the most
significant constraining factor in the development of IPSE
technology.

Object management layer

It has already been suggested that integral configuration
management is a characteristic of an IPSE and the facilities
provided in the object management layer are critical if an
effective configuration management system is to be
provided. As suggested above, the object management
layer may be implemented on top of the data manage-
ment layer or may be integrated with it.

The separation between object management and data
management is useful because it is possible to provide
different realizations of the object management system
(OMS). As discussed above, the data management layer

Microprocessors and Microsystems




may be built directly on top of a file system or using a
database management system. The object management
facilities are a logical interface which is independent of
this implementation and need not be changed if the
underlying data management layer is reimplemented.

The role of the object management layer is to provide
basic primitives which allow configuration management
to be implemented. A configuration management system
is concerned with the different versions of system
documents, including specifications, designs, code, test
data, manuals etc., and the maintenance of the relation-
ships between these versions. Therefore, the OMS should
provide a means of Creating objects whose type reflects
development process types. Thus types supported by the
OMS might be ‘PAscaL code’, ‘Mascot design’ etc. which
map onto underlying data management types such as
‘Text’ or ‘Diagram’. Furthermore, the OMS should provide
facilities allowing attributes such as ‘creator’, ‘creation
date’ etc. to be associated with objects.

Given that objects can exist in a number of different
versions, the OMS must therefore be able to maintain
three different classes of relationship (see Figure 3). These
are:

"\ Object-object relationships. All versions of one
object have the same relationship with all versions of
another object. An example of such a relationship is
the relationship between design descriptions and
associated program components. Given that they are
updated in step, it is sufficient to maintain the
relationship between the objects and to compute
which versions of each object correspond.

(2) Object-version relationships. All versions of an object
have a relationship with a single version of another
object. An example of such a relationship is where an
objectrepresents a component intended for use on a
specific operating system. The relationship may be
between that object and a version of a library
component for that operating system. Another
example of such a relationship is where a component
makes use of another component but always wishes
to use the most up-to-date version of that com-
ponent. By utilizing sensible defaults, the user of the
Component need not be informed when new
versions of the ‘used’ component are produced.

- Version-version relationships. A version of an object
hasa relationship with a version of another object. An
example of such a relationship is where a component
uses another specific component. Given that the
combined component works in a predictable way, it
is important to ensure that changes to either com-

System
9bjects

ponent do not affect the particular workings of an
instantiation.

It must be emphasized that the OMS is not, in itself, a
configuration management system but, by supporting the
relationships shown in Figure 3, it provides a foundation
for the implementation of such a system,

IPSE toolsets

The types of software tool that are provided with an IPSE
clearly depend on the development application domain
which the IPSE is intended to support. Thus, there can be
no definitive, complete list of software tools that are
available with an IPSE. However, given that an IPSE is
intended to support all activities in the software develop-
ment process and that some of these activities (like the
production of user manuals and project management) are
common to all application domains, all IPSEs should
provide the following types of tool.

® Configuration Mmanagement tools. As already discussed,
configuration management is an integral part of an
IPSE. Configuration Mmanagement tools include tools
for version control, change control, impact analysis,
configuration information tools, and tools to support
building a system from its components.

® Documentation tools. These include text editors, word
processors, diagram editors etc. to support the
production of system and user documentation.

® Project management tools. These include tools to
support management activities such as cost estimation
and scheduling.

Apart from these common tools, the IPSE should be
populated with tools appropriate for the project appli-
cation domain. As an illustrative example, the following
tools might be included in an IPSE intended to support
the production of software for a target microprocessor
system.

® Host-target communications software. This links the
development computer to the computer on which the
software is to execute (the target machine).

® Target-machine simulators, These are used when
target-machine software is being developed so that it
may be executed and tested on the host machine.

® Cross-compilers. These are language processing
systems which execute on the host machine and
generate code for the target machine.

® Testing and debugging tools. These might include test

Object-object
relationship

0l1.0 ol.l ol.2

Yersions

Version-version
relationship

Figure 3 OMS relationships

Wl 13 no 4 May 1989

Object-version
relationship

03.1 03.2 04.2

257



drivers, dynamic and static program analysers, and test
output analysis programs. Debugging of the host of
programs executing on the target should be supported
if possible.

@ Graphical design editors. These are editing systems
which allow the graphical representation of a design to -
be edited and which are tailored to support a realtime
method such as Mascot” or Darts®. The editors should
incorporate design knowledge and should not simply
be diagram editors.

Different levels of tool integration can be achieved
within an IPSE. Ideally, tools should be tightly integrated
with the OMS so that they work with system objects rather
than more primitive entities such as files. If this is the case,
configuration management procedures can be enforced
automatically by the tools. However, it is currently an
unrealistic requirement that all tools must be tightly
integrated with the OMS, as this precludes the use of tools
that have been written for general use rather than use
within a specific IPSE. Thus, IPSEs must support a foreign
tool interface whereby tools can check-out objects from
the IPSE into their own data space, operate on these
objects and then check the transformations back into the
IPSE data space.

A relatively recent tool development, which has
become possible with the availability of low-cost personal
computers, is CASE toolsets. These are graphical tools
which are intended to support a software development
method and, as these systems develop, they are acquiring
IPSE capabilities. To date, they have been applied mostly
in the commercial systems domain. Space does not
permit a discussion of these tools in this paper. Readers
interested in this topic are referred to the edition of IEEE
Software on this topic which is included in the further
reading list.

User interface

It is now accepted that an effective user interface to a
system is critical if that system is to be accepted by users
and make a significant contribution to the software
development process. IPSEs are inherently large and
complex systems and a good user interface is essential.

The IPSE user interface is an important integrating
mechanism in that a common and consistent user
interface provided across IPSE facilities reduces the
software engineer’s leaming time when a new tool is used
and reduces the probability of mistakes when switching
from one tool to another. The reduction in user errors is
particularly important because IPSE tools often carry out
similar tasks on different types of object. There may be
different editors for plain text, program text and graphics
and, if these editors have different ways of initiating the
same operation (such as delete), it is inevitable that a user
will confuse the interface operations.

User interfaces fall into two classes:

(1) Interfaces that can be provided on devices with
limited processing power. Typically, there are
conventional character-oriented terminals with very
limited graphics facilities. The display device
constrains the interface designer to a character-
oriented interface.

(2) Interfaces that can be provided on workstations with

significant inbuilt processing power and, usually, a

258

high-resolution graphics screen and a mouse. Such
interfaces may be so-called WIMP interfaces, standing
for Windows, Icons, Mice and Pointing.

Although it is clear that the software industry is moving
towards development environments that are based on
networked workstations, there is still an immense invest-
ment in character terminals linked to central computing
systems. Some IPSE vendors have chosen to address
this market and have based their IPSE interface on a
character interface.

By contrast, in some IPSEs, such as Eclipse, a decision
was made early in the system’s development that the
constraints imposed by character interfaces were so great
that only workstation interfaces would be supported. In
the same way as vendors of engineering CAD systems do
not provide facilities on inadequate hardware, it seems
reasonable that a comparable decision should be made
by vendors of systems to support software engineering,

A number of problems must be faced by IPSE user
interface designers.

@ IPSE users make up a very heterogeneous community.
They range from highly experienced software engineers
who use the system several hours per day, through
software managers who make occasional use of the
system, to secretarial staff with little computing
background or experience.

® The nature of software project developments is such
that staff may have to work with a number of different
development systems. It is important that their inter-
face is such that learning time is minimized.

@ The range and functionality of tools hosted by the IPSE
is very wide. Provision of an integrating approach
across these functionalities is very difficult.

@ The structures which are created in the IPSE database
are complex and provision of a comprehensible model
of these to the user is difficult.

WIMP interfaces that make use of direct manipulation
techniques, as discussed by Shneiderman?, allow the user
access to IPSE facilities via pointing and menus and do not
require a complex command language to be learned. For
most IPSEs, such an approach is probably the most
effective in supporting the diverse Ul requirements.
Interface integration as provided in the Eclipse IPSE is
discussed later.

PUBLIC TOOL INTERFACES AND
STANDARDIZATION

The notion of a public tool interface as a standard for an
IPSE data and object management system has already
been introduced. In this section, this notion is discussed
in more detail together with the important question of
standardization.

The initial proposal for what is now called a public tool
interface was put forward by Buxton' in a document
setting out requirements for a support environment for
ADA. In that document, he proposed the notion of an ADA
programming support environment (APSE) which w&
layered with the innermost layer being a so-called keme!
APSE. This kernel APSE would insulate the environment
facilities from the underlying hardware, operating system
and data management facilities, and would provide
object management primitives.

Microprocessors and Microsystem

o o R e e

& ge N

la
Ct

at
d.
ot

er
Fe
su
all
are

pre
pre
fac
sta
she

pre

Su‘
an

apy
fail
rest

PC

Vol

<...-II‘IIIII|||IIIIII-



After a number of environment projects were un-
successful, a working party in the USA (with European
representatives) was set up to a define a kernel APSE
interface standard and this became known as the CAIS
(common APSE interface set) standard. The initial version
of this standard (CAIS-1) was technically deficient in a
number of ways (e.g. it lacked any distribution support,
support for user-defined typing, or support for bit-
mapped workstations) and a revised version of this
standard was due for completion in early 1989. An
overview of CAIS-1 is presented in Reference 11.

In parallel with the American CAIS work, the European
Commission funded a multinational project under the
Esprit programme to define a comparable public tool
interface. This was called PCTE (portable common tool
environment)'? and the first version of the PCTE was
published in 1984. By contrast with the CAIS standard
which was ADA oriented, the PCTE standard was Unix and
C oriented and was intended for general-purpose rather
than language-oriented environment support. Initial
implementations of the PCTE were completed in 1985
and implementations are now available on a number of
workstations.

The author is not aware of commercially available
environments based on CAIS, but the Eclipse environment

‘hich was funded by the British Alvey programme has
been built on top of PCTE. It is clear that PCTE also suffers
from a number of technical deficiencies and work is now
underway to produce a revision of this interface.

Space does not allow a detailed description of either
the PCTE or the CAIS and there are obviously marked
differences between these environments. However, as
the revised version of the CAIS is likely to have much in
common with the PCTE it is appropriate to consider
general facilities that are provided in the PCTE and which
are likely to be part of CAIS-2.

In terms of the above layered model, the PCTE defines
both the data management and the object management
layers, although the data management facilities are less
complete than those included in a generalized DBMS.
Object management is based on an entity relationship
attribute (ERA) model where objects are represented by
database entities, may participate in relationships with
other objects, and may have inherent attributes. A similar
model is used in the CAIS. Unlike CAIS-1 , however, PCTE
~ntities are typed and user-defined subtyping is supported.

~rexample, from a basic type Text, itis possible to derive
subtypes such as PASCAL-Source-Text. This specific typing
allows tools to check that the objects that they manipulate
are indeed of the correct type and thus the scope for error
is reduced.

As well as object management facilities, the PCTE also
provides facilities for execution management allowing
Processes to be started, terminated and controlled;
facilities for interprocess communication including
standard Unix pipes and signals, message passing and
shared memory; and I/0O facilities comparable with those
Provided in Unix.

To provide data recovery and resilience, the PCTE
Supports the notion of transactions where a transaction is
an atomic set of actions whose effect on data is either to
3pply all or none of these actions. This means that if a
failure occuyrs during the transaction, it is possible to
festore the database to a consistent state.

th process and OMS distribution are supported in the
E. It has been recognized that development environ-

Yol 13 No 4 May 1989

e ey

ments are likely to be built using a network of work-
stations and it is possible to distribute executing processes
across this network. Thus, a process controlling a number
of compilations, say, could set each compilation off in
different network workstations. Similarly, data need not
all reside in a single system but may be distributed over
different nodes in the network.

The PCTE provides a number of user interface primitives
which are designed for controlling bit-mapped work-
stations and, in fact, a complete model of user interaction
has been defined. However, a more general standard in
this area is emerging (X-windows'3) and it is possible that
the next revision of the PCTE will incorporate this
standard rather than the existing primitives. This change
will have little effect on existing implementations of the
PCTE as these have tended to exclude the PCTE Ul
primitives. Workstation tools that have been built use the
basic interaction primitives produced by the workstation
manufacturer.

The PCTE suffers from a number of detailed technical
deficiencies, particularly in its model of transaction and
distribution, which it is not appropriate to discuss here.
However, its most significant general deficiency is its lack
of access control over and above the simple Unix
facilities. This means that the PCTE is not an adequate
basis for the construction of secure systems (as required
by the military, for example) and efforts are underway (the
NATO-funded PCTE+ project) to define how such access
control facilities can be included in the PCTE.

The PCTE and CAIS efforts representimportant steps to
standardization in the area of public tool interfaces and it
is clear that some standards are essential if third-party
vendors are to produce tools which can be integrated
with an IPSE. Furthermore, PTI standards will mean that
the costs of porting complete IPSEs from one machine to
another will be reduced. This will ultimately increase the
availability and reduce the costs of IPSEs.

Unfortunately, intemational political considerations
will perhaps mean that a single standard will not emerge
from the convergence of the CAIS and the PCTE efforts.
Logically, these systems are sufficiently similar for a
common standard to be produced but given that they
were derived in the US and Europe respectively, it is
probably optimistic to expect agreement to be reached.

TOOL INTEGRATION

It has already been suggested that one of the principal
benefits which derive from an IPSE is the ability to use
tools in conjunction rather than separately. As an
illustrative example of tool integration, the integration of a
design editing system, a Mascot support system and an
ADA cross-compilation system within the Eclipse IPSE
(Figure 4) is discussed. The Eclipse design editor'® is a
graphical editing system which may be tailored, using a
description language'®, to include specific support
facilities for a number of design methods. For example,
the Mascot instantiation of the editor includes some
knowledge of the Mascot method and disallows the user
from constructing designs which breach Mascot method
rules.

The Mascot support system includes further checks
which cannot readily be supported within the design
editing system and includes code generation facilities
whereby ADA code may be generated directly from

259




Ecli N Interactive
sign edito se Sehan

5 Design
“|representation

ADA library

Figure 4. Tool integration in Eclipse

Mascot design specifications. Although it is not possible,
in general, to generate control information, ADA package
specifications can be constructed automatically.

The interactive ADA development system (IADS) is an
ADA cross-development system for Intel 8086 and 80286
processors that includes ADA compilation facilities, program
downloading, and host test and debugging facilities. The
code generated by the Mascot support system can be
passed directly to IADS for compilation.

Using the design editor, a user creates a Mascot design
(some of which is checked by the editor) and saves this
design in the database. The Mascot tool system interro-
gates this structure, performs further checking and
generates ADA package specifications for the design
entities. Again, these are recorded in the IPSE database.
The ADA compilation system can access these structures
and compile them, entering them into the program
library.

Tool integration is straightforward because information
about how a tool structures its output is held along with
that output. The structuring information can be interro-
gated by other tools and used to access the logical data
structure.

USER INTERFACE INTEGRATION

Tool integration, as discussed above, is an important IPSE
facility but it is the author’s opinion that an equally
important role of an IPSE is to provide user interface
integration. User interface integration means that, as far as
possible, the differenttools in an IPSE present a consistent
interface to the user so that comparable operations in
different tools (such as saving the results of a trans-
formation, terminating a tool etc.) are always carried out in
the same way. Furthermore, the general mechanism used
to schedule and control the tools should be consistent
with the tool interaction facilities. There are several
different ways of achieving this consistency. A consistent
command language might be used; a standard menu and
window layout, as adopted on the Apple Macintosh, may
be used; or the approach adopted in Eclipse, a standard
interaction metaphor, may be chosen.

The Eclipse interaction metaphor is based on the
notion that interacting with a complex system such as an
IPSE or with a complex tool has much in common with
interacting with a complex piece of machinery. Machines
typically have control panels consisting of buttons to
initiate actions, lights and dials to provide state infor-

260

helptool

s o] [ [y o)
[eip ] [tiose |

[ setect |

[eearen]
jsd/method steps ’r
[ Select |

jsd current frame
method steps - Project selection and steps parent frame
Further Information
project
step 6
step 5 @

In ECLIPSE-v1, all JSD design information is
held in OBJECTS which are regarded as belonging
to a particular PROJECT. Selection of a PROJECT

to work in is treated as an initial "pseudo step" step 4
of the method. step 3

step 2
The six steps of the JSD method proper are: step 1

Related Topics

: entity action step control panel

: entity structure step
: initial model step Previous Frames
: function step step 1

: system timing step .

: implementation step

DADWN R

A1l the above STEPS (excluding PROJECT) have
associated with them predefined diagrams or

forms which may be used to record information
generated during the application of the JSD
method. Additionally, all STEPS (including
PROJECT) may have any number of text OBJECTS

in which the user may store any other information
he wishes.

Figure 5. Control panels in the Eclipse user interface

mation, and mechanisms such as sliders to provide
analogue input. In the same way, an Eclipse control panel
is built from buttons which initiate single actions, signs
and lights which provide state information (a light
indicates a binary state, a sign includes character infor-
mation such as the name of the entity being edited),
switches which allow discrete input states to be specified,
and menus which may be thought of as collections of
buttons or switches. The user interacts with the control
panel by pointing and selecting the appropriate elements
using the mouse.

Control panels are used within Eclipse to control tool
initiation and termination and in the interface of tools
which have been written to be integrated in Eclipse. It is
also possible to place a control panel ‘envelope’ around
other tools (such as a word processing system) so that at
least some of its interface is consistent with the IPSE
interface. An example of an Eclipse control panel is shown
in Figure 5.

Figure 5 shows the window layout of the Eclipse help
system (discussed below) with the control panel occupying
the top part of the display. Buttons are those entities
surrounded by a shaded rectangle, so pressing the ‘help’
button always initiates the help system (in this case, to
provide self-help!). The entity named ‘frame reference’is a
sign whose name is ‘frame reference’ and which indicates
the current help frame, namely ‘jsd/method steps’. The
other control panel entities are menus where the last
selected entity is displayed. Picking the top part of the
menu causes it to ‘pull-down’ and the user may then
choose from the menu entries.

As well as an integrating mechanism, the notion thatan
integrated user interface should provide consistent
facilities means that, in Eclipse, messages generated by
tools and help information provided for the user are
managed by a centralized messaging and help system
(Figure 6). Rather than each tool incorporating its own
help and message facilities, the tool simply provides the
message and help texts and they are always presented to
the user in a consistent way.

FUTURE DEVELOPMENTS

Although experience with IPSE-based development is
limited, it is already clear that the present generation of

Microprocessors and Microsystem?

L
0 =

—_

Vol

jA



User help information
and system messages

Help and
message tool

Help frame Help frame Help frame Help frame
texts texts texts texts
Messages Messages Messages Messages

Configuration
management
system

Mascot ADA
toolset System

Figure 6.  Integrated help and message system

software engineering environments suffers from a number
of deficiencies. This does not imply that the designers of
these systems have been negligent. It simply means that
problems that would be desirable for environments to
solve have been identified, but the solution technology
cannot yet be applied in IPSE products.

The major identifiable deficiencies in most present
environments are:

® The object store is passive rather than active. This
means that it is impossible to encode rules and actions
in this store and to specify that actions are triggered
when particular rules are checked. It is the responsibility
of users to decide on how most exception conditions
are handled and how to schedule the activities
involved in the software process.

® Most environments are single paradigm systems. This
means that they make use of an implicit view of
software developments, such as conventional life
cycle approach, exploratory programming, formal
transformations, or whatever, and this imposes a
structure on the environment and its tools. In fact,
there is no ‘correct’ paradigm and, increasingly,
systems must be built which require different paradigms
to be used for different parts of the system. To support
this style of development, an environment which
supports multiple paradigms is required. This need has
been explicitly recognized in the Refine environment'®
which goes some way to providing a multiparadigm
approach.

® Current IPSEs are oriented towards the support of
software systems yet, in many cases, whole systems are
made up of a mix of software and hardware. Typically,
hardware design takes place using CAD systems on
one computer and software design and production on
a different system. This forces premature design
decisions as to the partitioning of functions between
software and hardware and means that facilities such
as configuration management are duplicated and
(perhaps) inconsistent.

® Only simple management tools which help with
COmputations are supported. Although an IPSE might
include a PERT schedulerand a cost modelling system,
itis not yet known how to build tools which assist
with Management activities such as allocating pro-
grammers to projects, deciding when and how to
'eplan projects etc.

® IPSEs are currently seen as stand-alone systems which
are not integrated with other organizational computing
facilities, Details of project costs, personnel schedules
etc., which help in the IPSE and are processed by

Yol 13 No 4 May 1989

management tools, are also of relevance to othertools,
such as financial and accounting tools. In most
organizations, these tools run on separate computer
systems which cannot readily take their information
directly from the IPSE.

® [PSEs lack facilities for modelling the software develop-
ment process and for using that model to control the
process. Although systems such as Istar have taken
some steps to include process modelling facilities (Istar
includes the notion of a contract for each develop-
ment stage), it is clear that much more work is needed
in this area.

It has already been suggested that there are three levels
of integration which may be provided in an IPSE, namely
data integration, Ul integration and activity integration.
Current systems have not addressed the problem of
activity integration which probably requires both an
active object store and process modelling capabilities to
be included in the IPSE,

There are a number of research projects currently
underway'” '8 which are investigating how the next
generation of environments might be built. In general,
these projects are making use of Al techniques and, as
well as or instead of a database, the environment is
equipped with a less structured knowledge base in which
facts, rules and (sometimes) a process model is embedded.

FURTHER READING

A tutorial paper such as this can only provide a very
general overview of integrated project support environ-
ments. More detailed information can be found in the
publications listed below as well as in the cited references.

The STARTS Guide 2nd edition NCC Publications
(1987). This is a general-purpose handbook which,
although mostly concerned with software tools for
realtime systems development, includes valuable general
information on software engineering and support
environments. It surveys the available and projected IPSE
products. It is due for revision in the near future.

IEEE Software Vol 5 No 2 (March 1 988). This is a special
issue of the journal which is specifically concemned with
CASE tools. It includes a good description of the state of
the art in this area and discussions of the difficulties with
current CASE toolsets.

IEEE Software and IEEE Computer (November 1987).
These two readable journals are combined to make a joint
presentation on software development environments. As
is common in American joumals, there is little emphasis
given to work going on outside North America. In essence
then, the articles summarize the state of American work in
this area which has a rather different orientation from
European work.

IEEE Transactions on Software Engineering Vol SE-14
No 6 (June 1988). This special issue is concerned with
environmental architectures and presents some interesting
articles discussing research in this area. It also contains
one of the few published articles on the CAlS interface.

REFERENCES
1 Habermann, A N and Notkin, D ‘Gandalf: software
development environments’ JEEE Trans. Software Eng.
Vol SE-12 No 12 (1986) pp 1117-1127

261




2 Dowson, M ‘Integrated project support with ISTAR’
IEEE Software Vol 4 No 6 (1987) pp 6-15

3 Higgs, M and Stevens, P ‘Developing an environment
manager for an IPSE’ in Sommerville, | (ed.) Software
engineering environments Peter Perigrinus, Stevenage,
UK (1986)

4 Bott, M F (ed.) The eclipse integrated project support

environment Peter Perigrinus, Stevenage, UK (1989)

5 Sellars, P W ‘IPSEs in commercial data processing’ in
McDermid, ] (ed.) Integrated project support
environments Peter Perigrinus, Stevenage, UK (1985)

6 Lempp, P ‘Development and project management
support with the integrated software engineering
environment, EPOS’ in Sommerville, 1 (ed.) Software
Engineering Environments Peter Perigrinus, Stevenage,
UK (1986)

7 Simpson, H ‘The MASCOT method’ BCS/IEE Soft-
ware Eng. J. Vol 1 No 3 (1986) pp 103-120

8 Gomaa, H ‘A software design method for real-time
systems’ Comm. ACM Vol 29 No 7 (1984) pp 938-949

9 Shneiderman, B Designing the user interface Addison
Wesley, Reading, MA, USA (1986)

10 Buxton, ] Requirements for Ada programming support
environments: Stoneman US Department of Defense,
Washington DC, USA (1980)

11 Oberndorf, P A ‘The common APSE interface set’ IEEE
Trans. Software Eng. Vol SE-14 No 6 (1988) pp 742-749

12 Gallo, F, Minot, R and Thomas, | ‘The object
management system of PCTE as a software engineering
database management system’ ACM Sigplan Notices
Vol 22 No 1 (1987) pp 12-16

13 Scheifler, R W and Gettys, } ‘The X window system’
ACM Trans. Graphics Vol 5 No 2 (1986)

14 Sommerville, 1, Beer, S and Welland, R C ‘The

Eclipse design editing system’ in Proc. Tst Eur.

262

Software Eng. Conf. Springer-Verlag, Strasbourg, FRG
(1987)

15 Sommerville, I, Welland, R C and Beer, S ‘Describing
software design methodologies’ Comp. J. Vol 30 No 2
(1987) pp 128-133

16 Smith, D R, Kotik, G B and Westfold, S ] ‘Research
on knowledge-based software environments at
Kestrel Institute’ IEEE Trans. Software Eng. Vol SE-11
No 11 (1985) pp 1278-1295

17 Kaiser, G E, Feiler, P H and Popovich, S S ‘Intelligent
assistance for software development and main-
tenance’ IEEE Software Vol 5 No 3 (1988) pp 40-49

18 Ambras, } and O’Day, V ‘MicroScope: a knowledge-
based programming environment’ [EEE Software Vol 5
No 3 (1988) pp 50-58

lan Sommerville is Professor
of Computer Science at the
University of Lancaster, UK.
He has been actively
involved in research in
integrated project support
environments for the past
five years, first at the
University of Strathclyde, UK
and, since 1986, at the

A University of  Lancaster.
o " m W'd  Other research interests
include software reuse and user interface engineering.
He is the author of ‘Software Engineering’, Addison
Wesley, Wokingham, UK, a widely used textbook which
has recently been published in its third edition.

Microprocessors and Microsystems

=l s s (R

——
- =

3

I

pr
Su

of
ad

fas
ac
m;
po
rec
ser
SOf

act
Tanr

mat
Pap,

Vol

———A



