
lntegrated project support
oenvironments

Integrated project support systems facilitate large, long-lifetime software
developments, which are increasingly common in microprocessor projects.
lan Sommerville illustrates these systems with reference to one particular

first-generation IPSE

fhe paper presents an overuiew of integrated project
s u ppo rt e nv i ro n m ents (lPSEs) w h i ch are softw are deve I o p-
ment environments intended to support large, long-
lifetime software proiects.The logical structure of an IPSE is
drscussed from the view that the IPSE is a set of layered
facilities. Each layer in fhe set rs descrbed. Standardization
is important for future IPSE development and standard
public tool intertaces are discussed. Common eoe
programming support environment intertace set (CAIS)
and portable common tool environment (PCTE) are
introduced. Examples of tool and user inbrtace integration
in an IPSE are provided using the Eclipse /PSE as an
exemplar. Deficiencies in current systems and future
developments in thrs area are addressed.

microsystems softwaredevelopmenlenvironments tPSEs
Eclipse

The high cost and the difficulties of developing software
,ystems are well known. Accordingly, as the costs of
computer hardware have decreased, it has become more
and more cost-effective to provide individual software
engineers with automated tools to support the software
development process. Although it is possible to operate
software tools (now sometimes called CASE tools) in
conjunction with application systems, it is generally the
case that the activity of software developments is best
supported on a separate system which is termed a
software development environment (SDE).

A software development environment may be defined
as follows:

A collection of software and hardware tools which is expticitly tailored to
support the production of software systems in a particular application
domain.

There are two important points to highlight in this

Department of Computing, University of Lancaster, Lancaster LAl 4Y&
UK
Paper received: 19 December 1988. Revised: 3O lanuarv 1989

254

--�

definition. Firstly, the software development environ ment
may i ncl ude hardware tools. For exam ple, m icroprocessor
development systems, which will be familiar to many
readers of this journal, often include an in-circuit emulator
as an integral part of the environment. Secondly, the
software development environment is specific ratherthan
general. lt is intended to support the development of a
particular class of systems, such as microprocessor
systems, and does not contain facilities to support all
types of application systems development.

There are, in fact, many different types of software
development environment which are now in use. Some
examples are:

o Microprocessor development systems. These are
intended to support the development of embedded
software for a particular microprocessor or family of
microprocessors. They include facilities such as
in-circuit emulators, cross-compilers, remote debuggers
etc. in addition to program preparation tools.

o Lan guage-oriented program min g envi ron ments. These
are environments geared towards the support of
programs in a particular programming language such as
pAscAL or c. Of course, the simplest language-oriented
environments are those for sAsrc provided on many
personal computers, but more sophisticated environ-
ments include very specific language processing tools.
A characteristic of such environments is that they
include knowledge of the language under develop-
ment and, so, can provide more 'intelligent' support
for the development process. Such environments are
often created by adding language-oriented facilities to
general-purpose kernel environment such as Candalfl.

o Knowledge-based systems development environments.
These environments, typified by systems such as ART
or KEE, are generally language-oriented environments
with additional very high-level facilities that are
specifically intended for creating knowledge-based
systems.

o Integrated project support environments. This class of
SDE is intended to support the production of large,

I
I
I

O't 41 -9331 / 89 /O4254-O9 $03.00 @ 1 989 Butterworth & Co. (Publishers) Ltd

Microprocessors and Microsystems

L

i
u" 13 No 4 May lele

E
ft

-&-

Figure 2. Structure of an tpSE

2s5

long-lifetime software systems whose maintenance
costs typically exceed development costs and which
are produced by a team rather than by individual
programmers.

The range of different types of SDE is such that it is not
possible to discuss all of these in a single paper.
Accordingly, this paper is concerned with integrated
project support environments (lpSEs) which, currently, are
gealed towards large systems development. ln priniiple,
such systems could also be useful for supporting the
development of smaller systems but, at present,lheir
relatively high cost means that their use is confined to
large projects.

An integrated project support environment may be
defined as follows:

A collection of hardware and software tools which can act in combination
in an integrated way and which supports the configuration managemenr
of all of the products of the software development process. The
environment should provide support for all of the activities in the
software process from initial specification through to testing and system
delivery.

The key points in this definition are:

o The environment facilities are integrated. Three types
of integration can be identified, namely data integration,
interface integration and activity integration. Data
integration means that tools can exchange data, that is
the outputs from one tool can act as inputs to some
other tool. User interface integration means that the
different facilities in the environment present a con-
sistent interface to the user. Activity integration means
that the environment includes embedded knowledge
of its tools and of the software process, and cin
automatically schedule and control development
activities. Current environments support data inte-
gration and interface integration but activity integration
is still a research topic.

e All products may be subjected to configuration
management. The most expensive activity in managing
lon g-l ifeti me systems is ensu ri n g that, for all versioni oT
the system, all of the documents associated with a
version (specifications, design, code, user documen-
tation etc.) are consistent. This is called configuration
management and automated support for this process
is an essential part of an lpSE.

o Facilities are available to support all software develop-
ment activities. This characteristic is a side effect of the
requirement that all products and documents should
be managed by the IPSE. lf automated management is
essential, the IPSE must provide support ford[software
development activities. Thus, the tools available in an
IPSE should support specification, design, documen-
tation, programming, testing, debugging etc.

At the time of writing, a number of first generation lpSE
systems are commercially available. These include lstaf,
Genos3, Eclipsea and Bis-lpSEs from UK suppliers and
systems such as Eposb and Maestro from European
suppliers. By contrast with developments in Europe, lpSE
work in the USA has tended to concentrate on the
development of lPSEs, such as the Rational environment,
which are tailored to support systems written in theprogramming language ADA. ADA was designed for writing
targe-scale embedded systems and is a [Sn and NATO
defence standard. non-oriented lpSEs are often called
APSEs (ADA programming support environments). The

Figure 1. Host-target systerns

examples in this paper are drawn from the Eclipse
environment as the author was involved in the develop-
ment of that system.

Current IPSEs generally assume a host-target model of
software development (Figure 1) where a dedicated
system is used for software development and the
software is executed on some other target system. Such a
model will be familiarto users of microprocessordevelop-
ment systems where it is the normal mode of working.
However, it should not be assumed that this model of
working is necessarily the best one for all types of system.
Although it is clearly necessary for embedded iystem
construction, there are many classes of application
system which could make effective use of the facilities
provided in an IPSE. Future generations of lpSEs may well
have operational modes which allow them not only to
support the development of application systems but also
to support these systems whilst they are in execution.

LOGICAL STRUCTURE OF AN IPSE

The current generation of lpSEs exhibit a varietv of
structures but share a common logical structure where
tools and user interface facilities are integrated around a
kemel providing data and object management primitives.
A simplified model of this structure is shown in Figure 2.
This model is simplified because the layering in-actual
systems is indistinct and tools may interact diiectly with
the data management and operating systems. Further-

more, the user intedace should not just be atool interface
but should also offer users direct access to the underlying
IPSE kernel. Nevertheless, the structure shown in Figure 2
is useful in that it provides a basis for describing the
different components of an IPSE.

Operating system layer

It is generally the case that IPSEs are built on top of some
existing operating system. Currently, the majority of IPSE
products are built on top of the Unix operating system
although there is no fundamental reason why this need be
the case. Unix was chosen as the base operating system
because of:

. Portability. Unix is available on a wide range of
computers from different vendors. By choosing Unix as
a base system, the costs of porting the IPSE from one
machine to another are minimized.

o Hardware vendor independence. Most operating
systems are tied to a particular vendor's range of
computers and decisions on operating system evolution
are made by the vendor. With Unix, application
developers can have a say in how the system evolves
with consortia such as X-Open which are concerned
with standardization.

r Workstation availability. The computational require-
ments of a large-scale IPSE are such that it is most
effective when operated on a network of workstations
rather than on a shared central computer. Unix has
become the defacto standard forworkstation operating
systems.

As IPSEs become more widely used, it is l ikely that
non-Unix versions of the system will become available
(this is already happening for systems like lstar). The
most l ikely alternative operating system implementation
is DEC's VMS system simply because of the widespread
use of DEC computers in the realtime software domain.

Data management layer

The data management layer in an IPSE which may, in fact,
be combined with the object management layer, provides
the facilities of a database management system. lt allows
different types of entity to be created, destroyed, related
and retrieved, and supports multiple relationships between
database entities. Of course, it should also provide the
security, recovery and back-up facilities expected of a
database system.

IPSE systems place specific requirements on the
underlying data management system. ln particular, the
range of entity types which may be created may far
exceed the typical number of types in commercial
database systems. The size of individual entit ies which
have to be managed may be quite small (tens or hundreds
of bytes ratherthan megabytes). Transactions are typically
long-term (several hours) rather than short-term (fractions
of a second) as are common in commercial transaction
processing systems. A consequence of these require-
ments is that many commercial database management
systems are not well suited for use as the lpSE data
management layer.

The data management layer may be implemented

256

specially for an IPSE on top of the operating system
filestore; may be provided through a system such as
portable common tool environment (PCTE) (discussed
below) which has been designed as an IPSE standard; or
may be provided via a proprietary database management
system. Each of these approaches has its advantages and
disadvantages.

Building a stand-alone data management layer has the
obvious advantages to the IPSE producer that the data
management facilities can be tailored to the specific
requirements of that IPSE and that the producer retains
complete control of its evolution. From a marketing point
of view, there is no need for buyers to invest in other
software licences. The disadvantage is, of course, high
production and maintenance costs. Many of the facil i t ies
produced are simply replications of existing database
facil it ies and it is usually much cheaper to reuse existing
software than rewrite it anew.

Basing systems on so-called public tool inter{aces
(PTls), which have been designed for environment
support, has the advantages that these should form a
standard and their facil i t ies should specifically support
environment operations. A disadvantage is that these
interfaces have been designed by committee and,
inevitably therefore, are a compromise between a variety
of confl icting requirements. Fufthermore, the existing pTls
are simply interface definit ions rather than implemen-
tations and the number of available, high quality
implementations of these systems is currently l imited.
PTls are discussed in more detail below.

The advantage of using a proprietary database
management system (typically a relational system) is its
ready availabil ity and, given that a widely used product is
chosen as a base, the certainty of long-term support. The
costs are generally much lower than for building data
management facil i t ies into the IPSE. The major dis-
advantages are the need for buyers to purchase the
database management systems (DBMS) as well as the lpSE
(they may well already have a different DBMS) and, as
discussed above, the fact that the technical requirements
of the IPSE may not match wellwith the facil i t ies provided
by the DBMS.

The performance of the data management software is
critical to overall IPSE performance and it is in this area that
many, if not most, existing IPSE products are deficient. lt is
very difficult to build a high performance data manage-
ment system to support avariety of complex relationships
between a large number of relatively small data items, as is
required in most lPSEs. This factor is probably the most
significant constraining factor in the development of lpSE
technology.

Object management layer

It has already been suggested that integral configuration
management is a characteristic of an IPSE and the facilities
provided in the object management layer are critical if an
effective configuration management system is to be
provided. As suggested above, the object management
layer may be implemented on top of the data manage-
ment layer or may be integrated with it.

The separation between object management and data
management is useful because it is possible to provide
different realizations of the object management system
(OMS). As discussed above, the data managemeni layer

M i cro p rocessors and Microsystems

lllPjlli._llecttv 9n top of a fite system or using aoaraDase manasement system. The objed managementfacilities are a t5gicat intl,.r"." *'t,il;1"#"p"ndent ofthis. imptementaiion and need ̂ ;t b; ciangea it theunderlying data management tayei L iJrnpl"rn"nt"o.
, Th" r9l9 of the object management tayei is to providebasic prim itives wh iih d row c8nri gu iuiiln-'rnunugement
to be implemented. A config_uratioi,un"j"rent systemis concerned with the different u;r;;;; of systemdocuments,,inctuding specificationr, J;r;;;, code, testd.ata, manuals etc., and the maintenance Ji ihe retation_ships between these versions. rhereforein" bfr4S shouldprovide a means of creating objects *n"r" typ" reflects
{9y9toq1ent process typei rn us typ;, ;;;rted by theoMS might be'pnsc,ql cgde,, ,rraurifrOlrffi;

etc. whichmap.onto underlying data management firpes such as'Text'.or' Diagram'. Ftirtherm ore, th; OMS s fr'Ju ta providefacilities allowing attributes such as ,.r"utof, ,creation
date'etc. to be associated with objectr----

Civen that objects can exist in a number of differentversions, the OMS must therefor" n" anf" to maintainthree different classes of relationship (*uligur" 3). Theseare:
'\

Object-object relationships. All versions of oneobject have the same rerationrrrip wiir,aitversions ofanother object. An example of slch i retationstrip lsthe relationship between design Aesciiptions anaassociated program componenti. Given that they areupdated. in .step, it is sufficient to maintain thereJationship between.the objects una io compure
. . which versions of each object .orr*ooni.(2) Obj ect-vers i o n re tation, f., i dr. nf iu" Ji J"1' .r u" o bjecthly"

1 relationship with a ,injf" u""-i"n"ot another.object. An example of such u,jutionri,if is where anobjegg represents a component intended for use on a
lp^:::ll:

operating.system. The retationship may bebetween that object and a version of
'a

librarycomponent for that operating system. Anotherexample of such a relationship is i,vhere u.,rrnpon"ntmakes use of another component but always wishesto use the most up_to_date version oi'it,ut .orn_
?^o:"nt By utilizing sensible defaults, the user of thecomponent need not be informed when newversions of the ,used, component ar" proOra"a.Venion-version retationsh ipr. t;;i#oi an objectnas a relationship with a vercion of anoitreioUlect. Anexample of such a relationship is where a componentuses, another specific component. Civen ttrat the
5-o,1oin9d component works jn u pr"Ji.tunt" way, itrs rmportant to ensure that changes to eiine, corn_

ponent do not affect the particular workings of aninstantiation.

It must be emphasized that the OMS is not, in itself, acon f i guration managem_ent system but, by s up porti n g theretationships shown".in Fis";;l;il ;;iils a foundationfor the implementation Jr such a ;;il;.

IPSE toolsets

The types of software tool that are provided with an lpSEclearly depend on the aevetopmeit "piltution domainwhich the lpSE is intended to support. Thus, there can beno .definitive, comprete rist of iort*ui" ioors that areavailabte with an tpS.E. Howev"i,-gi;J"'ti"t an tpSE isintended to suppoft alt acrivitiesl; ih;,;ft*"re devetop_ment process and that some of these activities (like theproduction of user manuals and proj;;;;ugement) arecommon. to all application domains, all lpSEs shouldprovide the following types of tool.
o Configuration management tools. As already discussed,configuration management is an i"t"ilf part of anIPSE. configuration management tools" incrude toorsfor version control, chang"e .""i.i"irpact analysis,configuration information tools, and tools to il;;;building a system from its .".;;;;";:
. Documentation tools. lhese inciuAe ieiieOitors, wordprocessors, diagram editors etc. to support the
_ g1g,lugtion of syitem and user documentation.
. rroJect management tools. These include tools tosupport management activities such as cost estimationand schedul ing.

Apart. from these common tools, the lpSE should bepopulated with tools appropriate tor. tne
"pro;ect

appli_cation domain. As an itLstrative ;_;.;i;, ihe roilowinetools might be inctuded in an rpsi'inifi;;";"ppo,i
the production of software fo, ;;;;;'iiiropro."rro,
system.

. Host-target communications software. This links the
-O^"I:9tl"lt computerto the compuieron which thesoftware is to execute (the target machine).I Target-machine simulators. T"heie'lle"Jr"O wn"ntarget-machine software is being O"u"fop"O so that it
1ay be executed and tested "i ih" f,Jiirnuchin".o Cross-compiters. t!::: "r" tu;s;;;; processingsystems which execute on the h"ost"machine andgenerate code for the target machine.

o Testing and debugging toirs. rhd" ,,grrt incrude test

System
ob,ec ts

0trcct
rtrtions

Version-vers ion
relat ionship

bte:. oMS relationships

Object-oblect
r e l a t i onsh ip

ih
r, *o 4 May le[e

257

drivers, dynamic and static program analysers, and test
output analysis programs. Debugging of the host of
programs executing on the target should be supponed
if possible.

o Graphical design editors. These are editing systems
which allow the graphical representation of a design to '

be edited and which are tailored to support a realtime
method such as MascotT or Dartss. The editon should
incorporate design knowledge and should not simply
be diagram editors.

Different levels of tool integration can be achieved
within an IPSE. ldeally, tools should be tightly integrated
with the OMS sothattheyworkwith system objects rather
than more primitive entities such as files. lf this is the case,
configuration management procedures can be enforced
automatically by the tools. However, it is currently an
unrealistic requirement that all tools must be tightly
integrated with the OMS, as this precludes the use of tools
that have been written for general use rather than use
within a specific IPSE. Thus, IPSEs must support a foreign
tool inter{ace whereby tools can check-out objects from
the IPSE into their own data space, operate on these
objects and then check the transformations back into the
IPSE data space.

A relatively recent tool development, which has
become possible with the availability of low-cost penonal
computers, is CASE toolsets. These are graphical tools
which are intended to support a software development
method and, as these systems develop, they are acquiring
IPSE capabilities. To date, they have been applied mostly
in the commercial systems domain. Space does not
permit a discussion of these tools in this paper. Readers
interested in this topic are referred to the edition of IEEE
Software on this topic which is included in the further
reading list.

User interface

It is now accepted that an effective user interface to a
system is critical if that system is to be accepted by users
and make a significant contribution to the software
development piocess. IPSEs are inherently large and
complex systems and a good user interface is essential.

The IPSE user interface is an important integrating
mechanism in that a common and consistent user
interface provided across IPSE facilities reduces the
software enginee/s learningtimewhen a newtool is used
and reduces the probability of mistakes when switching
from one tool to another. The reduction in user errors is
particularly important because IPSE tools often carry out
iimilar tas'ks on different types of object. There may be
different editors for plain text, program text and graphics
and, if these editors have different ways of initiating the
same operation (such as delete), it is inevitable that a user
will confuse the interface operations.

User intefaces fall into two classes:

(1) lnterfaces that can be provided on devices with
limited processing power. Typically, there are
conventional character-oriented terminals with very
limited graphics facilities. The display device
constrains the interface designer to a character-
oriented interface.

(2) Interfaces that can be provided on worktations with
significant inbuilt processing power and, usually, a

258

high-resolution graphics screen and a mouse. Such
interfaces may be so-called WIMP interfaces, standing
for Windows, lcons, Mice and Pointing.

Although it is clear that the software industry is moving
towards development environments that are based on
networked workstations, there is still an immense invest-
ment in character terminals linked to central computing
systems. Some IPSE vendors have chosen to address
this market and have based their IPSE interface on a
character interface.

By contrast, in some lPSEs, such as Eclipse, a decision
was made early in the system's development that the
constraints imposed by character interfaces were so great
that only workstation interfaces would be supported. ln
the same way as vendors of engineering CAD systems do
not provide facilities on inadequate hardware, it seems
reasonable that a comparable decision should be made
by vendors of systems to support software engineering.

A number of problems must be faced by IPSE user
interface designers.

o IPSE use6 make up a very heterogeneous community.
They range from highly experienced software engineen
who use the system several hours per day, through
software managers who make occasional use of the
system, to secretarial staff with little computing
background or experience.

o The nature of software project developments is such
that staff may have to work with a number of different
development systems. lt is important that their inter-
face is such that learning time is minimized.

o The range and functionality of tools hosted by the IPSE
is very wide. Provision of an integrating approach
across these functionalities is very difficult.

o The structures which are created in the IPSE database
are complex and provision of a comprehensible model
of these to the user is difficult.

WIMP inteffaces that make use of direct manipulation
techniques, as discussed by Shneidermane, allow the user
access to IPSE facilities via pointingand menus and do not
require a complex command language to be learned. For
most lPSEs, such an approach is probably the most
effective in supporting the diverse Ul requirements.
lnterface integration as provided in the Eclipse IPSE is
discussed later.

PUBLIC TOOL INTERFACES AND
STANDARDIZATION

The notion of a public tool interface as a standard for an
IPSE data and object management system has already
been introduced. ln this section, this notion is discussed
in more detail together with the important question of
standardization.

The initial proposal forwhat is now called a publictool
interface was put forward by Buxtonlo in a document
setting out requirements for a support environment fot
noR. In that document, he proposed the notion of an,cor
programming suppott environment (APSE) which wd
i"y""*a with-the innermost layer being a so-called kemel
APSE. This kemel APSE would insulate the environment
facilities from the underlying hardware, operating system
and data management facilities, and would provide
object management primitives.

(

I

t
t

t

c
t /
c
0
D

a

b
la
C(
n

d l

A

ol

m
er
Fc.
su
al l
af(

rs

r)r(
pr(
fa<
sta
sh.
l)t(

suJ
dn

apl
fail
resl

I
P(_,

M i cro p ro cessors and M i c rosYs|3fis Vol

After a number of environment projects were un_
successful, a working party in the USA (with European
representatives) was set up to a define a kernel ApSE
interface standard and this became known as the CAIS(common APSE interface set) standard. The initialversion
of this standard (CAIS-I) was technicaily deficient in a
number of ways (e.g._.it lacked any distribution support,
support for user-defined typing or support for' bit_
mapped worktations) and a revised ueoion of this
standard was due for completion in early 19g9. An
overyiew of CAtS-l is presented in Reference t l.

ln parallel with the American CAIS work, the European
Commission funded a multinational project under the
Esprit programme to define " .o.p"rable public tool
interface. This was called pCTE (portable common tool
environment)12 and the first u"Lion oitf," pCTE was
published in 1984. By contrast with the CA|S standard
which was Ron oriented, the pCTE standard was Unix and
c oriented and was intended for general_purpose rather
lhT language-oriented environirent support. Initial
implementations of the pCTE were completed in 19g5
and implementations are now available on a number of
workstations.

The author is not aware of commercially available
environments based on CAIS, butthe Eclipse environment
. hich. was funded by the British Alvey programme has
been built on top of pCTE. tt is clear thai pCfE also suffers
from a number of technical deficiencies and work is now
underway to produce a revision of this interface.

Space does not allow a detailed description of either
the PCTE or the CAIS and there are obviously marked
differences between these environments. However, as
the revised version of the CAIS is likely to have much in
common with the PCTE it is appropriate to consider
general facilities that are provided in the pCTE and which
are likely to be part of CA|S-2.

In terms of the above layered model, the pCTE defines
both the data lnanagement and the objea ,"nag"reni
layers, although the data managemenf facilities ire less
complete than those included in a generalized DBMS.
Obigct m.anagement is based on an"entity relationshif
aftribute (ERA) model where objects ur" r"br"r"nted by
9:j"bT". entities, may participite in relationships with
other objects, and may have inherent attributes. A similar
modet is used in the CAIS. Unlike CA|S_I, however, pCTE
^ntities are typed and user-defined subtyping is supported.
.,r example, from a basic type Text, it is pos;ible ao derivesubtypes such as pnsceL-SourcqTen. fhis sfecific typingallows tools to checkthatthe objects thatthJy manipulate

are indeed of the conect type a;d thus the siope for enoris reduced.

_ As well-as object management facitities, the pCTE alsoprovides facilities for execution management allowingprocesses to be started, terminated and controlled]
ITIIi:r.,t:l interprocess communication inctuding
:fl:ltd Unix pipes.and- signals, message passing anj
:nargg Temory; and t/O facitities companble with ihoseprovided in Unix.

To provide data recovery and resilience, the pCTE
supports the notion of transactions where a transaction isan atomic set of actions whose effect on aata is either toaplry all or none of these actions. This means that if ardrrure occurs during the transaction, it is possible toestore the databasJto a consistent state.
**l process and OMS distribution are supported in the' v. r. tr nas been recognized that development environ_

ments are likely to be built using a network of work_
stations.and it is possible to distribuie executing processes
across this network. Thus, a process controllin[a number
of compilations,. say, could set each compilition off in
different network workstations. Similarly, data need not
allreside in a single system but may bsdistributed over
different nodes in the network.

. The PCTE provides a number of user interface primitives
which are designed for controlling bit_mapped work_
stations and, in fact, a complete model of userinteraction
has been defined. However, a more general standard in
this area is em.erging (X-windowsl3) an-a it is possible that
the next revision of the pCTE will incorporate this
standard rather than the existing primitives. ihis change
will have little effect on existing-implementations of the
PCTE as these have tended t6 exclude the pCTE Ulprimitives. Workstation tools that have been built use the
basic interaction primitives produced by the workstation
manufacturer.

The PCTE suffers from a number of detailed technical
deficiencies, particularly in its model of transaction and
distribution, which it is not appropriate to discuss here.
However, its most.significant geneial deficiency is its lack
ot access control over and above the simple Unix
facilities. This means that the pCTE is not an adequate
basis for the construction of secure systems t* *q-lrir"O
Pt t: military for example) and efforts are unaerway (tfre
NATO-funded PCTE+ project) to define how such access
control facilities can be included in the pCTE.

The PCTE and CAIS efforts represent important steps to
standardization in the area of public tool interfaces and it
is clear that some standards are essential if tnird_party
vendors 1!e to produce tools which can be integiated
with an IPSE. Furthermore, pTl standards will meai that
the costs of porting complete tpSEs from one machine to
another will be reduced. This will ultimately increase the
availability and reduce the costs of lpSEs.

..Unfortunately, international political considerations
will perhaps mean that a single siandard will not emerge
from the convergence of thd CA|S and the pCTE efforts.
Logically, these systems are sufficiently similar for acommon standard t".b.^" pro.dlced but given that they
were derived in the US and Europe reipectively, it isprobably optimistic to expect agreement to be reached.

TOOL INTEGRATION

It has-.already been suggested that one of the principal
benefits which derive from an lpSE is the ability to ,ir"tgols in conjunction rather than separately. As anillustrative. example of toot integration, the integration of adesign editing system, a Masc6t support,yit", and anADA cross-compilation system within the Eclipse lpSE(Figure 4) is discussed. the Eclipse design "Jii;ri. ;;
qr:pl::l :diting system which may be tiitored, using a
::-:::?l'?l

tanguage,',. to inctude specific ,upp"ort
racltrttes for a number.of design methods. For example,
the Mascot instantiation of t-he editor inciudes some
knowledge of the Mascot method and disallows the userfrom constructing designs which breacf, fr4ar.ot method
rules.

. The Mascot support system includes fufther checks
yl:.,1_.:nlot read.ity be supported within the designedrtrng system and includes code generation faciliti"es
whereby ,qon code may be generlted Jirectry rrom

-*-**--*"-

'r:i .
t-

;:;
il, vol 13 No 4 Mav 1989
jii\:

&
-

259

I nteract ive
ADA developmentMascot

tool set
Ec l i p se

des ign ed i t o r

: l f e p f e S e n l a l l O n [: . ; :] : : . : . : l 5 p e L l I l L d (r u I r > [; ; : : {

,ffi ,,,:':,,',':','ffi ,,':,:,:iIIIIII
:::::::::::::::::::::::::::::::;:::::::::::::: i :::::::::::::: EClipSe databaSe:::::::::: i :;;::::::::::::::
: : : : : : : : : : :

: : ; : : :
: : : . : : : : : : : ; : :

: : : : : : : : : : ; : . : : : :: ; : ; ; : ; : ; : ; : ; : ; : I : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; : ; ; ; : ; : ; : ; : ; : ; : I : ; : ; : ; : ; :

ADA package
spec i f i ca t ions

t f f i f l t f f intf f i f l r f f i f l

m e t h o d s l e p s - P r o j e c t s e l € c t i s n a n d s t e p s

I n E C L I P S E - V 1 , a l l J s D d e s i g n i n f o r n a t i o n i s

h e l d i n o 0 J € c T s u h i c h a r e r e g a r d e d a s b € l o n g i n g

t o a p a r t i c s l a r P R 0 J E C L S e l e c t i o n o f a P R 0 J t c T

t 0 u o r k i n i s t f e a t e d a s a n i n i t i a l
" p s e u d o s l e p "

o J t h € n e t h o d .

I h e s i x s t e p s o f t h e J S D m e t h o d p r o p e r a r e :

: e n t t t y a c t i o n s t e P
: € n t i t y s t r u c t u r e s t e p
: i n i t i a l n o d e l s t e p
: { u n c t i o n s t e p
: systen t i i l ing step
: i n p l e n e n t a t i o n s t € t l

A l l t h e a b o v e S T E P S (e x c l u d i n g P n 0 J E C I) h a v B

a s s o c i a t e d u i t h t h e h f . e d e f i n e d d i a g r a m s o r

f o r h s u h i c h n a y b e i l s e d t o r e c o r d i n J o r n a t i o n

g e n e r a t e d d u r i n g t h e a p p l i c a t i o n o t t h e J s D

n e t h o d . a d d i t i o n a l l y , a l l s l € P s (i n c l u d i n q

PS0JECI) hay have any number o t tex t oSJECTS

i n u l i c h t h e u s e r n a y s t o r e a n y o t h e r i n f o r m a t i o n

parent {r-e

Furti€r Infonation
p r o i e c l
s t e p 6
s t e p 5 O

ste! 3
s t e t 2
s t e p I

f,elated IoIics
c o n t r o l p a n e l

Preriors Fr-cs
s t e p 1

F,

S r

o
il

p
s(
C.

Figure 4. Tool integration in Eclipse

Mascot design specifications. Although it is not possible,

in general, to generate control information, eon package

specifications can be constructed automatically.
The interactive non development system (IADS) is an

ADR cross-development system for Intel 8086 and 80286
processors that includes non compilation facilities, progam

downloading, and host test and debugging facilities. The

code generated by the Mascot support system can be
passed directly to IADS for compilation.

Using the design editor. a user creates a Mascot design
(some of wfrictr is checked by the editor) and saves this

design in the database. The Mascot tool system interro-
gates this structure, performs further checking and

[enerates RoR package specifications for the design

entities. Again, these are recorded in the IPSE database.

The noR compilation system can access these structures

and compile them, entering them into the program

library.
Tool integration is straightforward because information

about how a tool structures its output is held along with

that output. The structuring information can be interro-
gated by other tools and used to access the logical data

structure.

USER INTERFACE INTEGRATION

Tool integration, as discussed above, is an important IPSE
facility but it is the author's opinion that an equally
important role of an IPSE is to provide user interface

integration. User interface integration means that, as far as
posJible, the differenttools in an IPSE present a consistent
intefface to the user so that comparable operations in

different tools (such as saving the results of a trans-
formation, terminating a tool etc.) are always carried out in

the same way. Furthermore, the general mechanism used
to schedule and control the tools should be consistent
with the tool interaction facilities. There are several
different ways of achieving this consistency' A consistent
command language might be used; a standard menu and
window layout, as adopted on the Apple Macintosh, may
be used; or the approach adopted in Eclipse, a standard
interaction metaphor, may be chosen.

The Eclipse interaction metaphor is based on the
notion that interacting with a complex system such as an
IPSE or with a complex tool has much in common with
interactingwith a complex piece of machinery. Machines
typically have control panels consisting of buttons to
initiate actions, lights and dials to provide state infor-

260

Figure 5. Control panels in the Eclipse user interface

mation, and mechanisms such as sliders to provide

analogue input. In the same way, an Eclipse control panel
is built from buttons which init iate single actions, signs
and lights which provide state information (a light
indicates a binary state, a sign includes character infor-
mation such as the name of the entity being edited),
switches which allow discrete input states to be specified,
and menus which may be thought of as collections of
buttons or switches. The user interacts with the control
panel by pointing and selecting the appropriate elements
using the mouse.

Control panels are used within Eclipse to control tool
initiation and termination and in the interface of tools
which have been written to be integrated in Eclipse. lt is

also possible to place a control panel 'envelope' around
other tools (such as a word processing system) so that at
least some of its intedace is consistent with the IPSE
interface. An example of an Eclipse control panel is shown
in Figure 5.

Figure 5 shows the window layout of the Eclipse help

system (discussed below) with the control panel occupying
the top pan of the display. Buttons are those entities
surrounded by a shaded rectangle, so pressing the 'help'

button always initiates the help system (in this case, to

provide self-help!). The entity named 'frame reference'is a

sign whose name is'frame reference'and which indicates
thl current help frame, namely'jsd/method steps'. The

other control panel entities are menus where the last

selected entity is displayed. Picking the top part of the
menu causes it to 'pull-down' and the user may then
choose from the menu entries.

As well as an integrating mechanism, the notion that an

integrated user intefface should provide consistent
facilities means that, in Eclipse, messages generated by

tools and help information provided for the user are

managed by a centralized messaging an<j help system
(Figure 6). Rather than each tool incorporating its own

hJlp and message facilities, the tool simply provides the

message and help texts and they are always presented to

the user in a consistent way.

FUTURE DEVELOPMENTS

Although experience with IPSE-based development ts

limited, it is already clear that the present generation ol

I

1

(
(

. (

:

i

P
r'

r t l

a
{
e

Microprocessors and Microsystens Vol

L

H e l p a n d
message too l

Help f rame
texts

He lp f r ame
texts

Help f rame
texts

help informat ion
and system messages

Figure 6. lntegrated hetp and message systern

s9ft.rwgre engineering environments suffers from a numberof deficiencies. Thiidoes not i;ttthui'in" a"rign"o orthese systems have been negligeni. lt ii.piy means thatproblems that would Oe aeiiriUte foi "nlrir"nrnenrs tosolve have been identified, but tfre sof ution technologycannot yet.be applied in lpSE products.
the major identifiable deficiencies in mosr presentenvironments are:

r The object store is passive rather than active. This
T:??r that it is impossible to encode rules and actionsIn rnts store and to specify that actions are triggeredwhen particular rules are checked. lt is the responsibility
of users to decide on how rnort ""."ption conditionsare handled and how to schedule the activitiesinvolved in the sofrware process.

a Most environments are single paradigm systems. This
l:ans that they make use of an implicit view ofsonware developments, such as conventional lifecycle_ approach, exploratory programming, formaltransformations, or whatever,

'anj
this iriposes astructure on the environment and its tools.' ln iict,there is no ,correct,. paradigm

-anl,'Increasingly,

systems must be builtwhich require different paradig;;ito be used for different parts of the ,yrt"r. fo suppoftthis style of development, an environment whichsupports multiple paradigms is required. This need hasueen expttcttty recognized in the Refine environmentt6
wntcn goes some way to providing a multiparadigmapproach.

t Current IPSEs are oriented towards the support of
l"9".T

rY:,ems yet, inmany casei.*n.f " sysrems aremade up of a mix of software and hardware. Typically,
lldware design takes place urinj-Cnil'rystems onone.computer and software design-and production on
l"l,'j::""1^ :I'l:T rhis forcei f,",i"iu," desisnuecrstons as.to the partitioning of functions betweJnsoftware and hardware and m6ans that facilities suchas configuration management are duplicated and(perhaps) inconsistent.

t
"O^j^.::lple

management toots which hetp withLurnpurattons are supported.. Although an lpSi might
iH"*: T*T scheduier and a cost m"odelting sysrem,
::,1: not yet known how to buitd tools whictr assistIfith management activities suctr ii Jtocating pro_
|lTT"".to projects, deciding wtre;;; how to

t Fiil':[':'""ff;';""" as stand-arone systems whichare not intesrated. with "th"r;rg;;;;i;;-iomputin gracilities. Details of project."rii, p""""nll schedulesetc., which hetp in tti" ipsE ;i -"";;;"ssed by

lU t: No 4 Mav 1989

management tools, are also of relevance to other tools,such as financial and accounting tools. ln mostorganizations, these tools run on ,6purut" computersystems which cannot readily tak" ih"i, information
directly from the lpSE.

o IPSEs lack facilities for modelling the software develop_ment process and for using that modelto .ontrot if,"process. Although systemi such as lstar have takensomesteps to include process modellingfacilities (lstar
includes the notion of a contract i"i "a.f, develop_ment stage), it is clear that much more work is neededin this area.

. jt has already been suggested that there are three levelsof integration which layt" pr"uiJ"A in un tpSE, namelydata integration, Ul integration u"J uai"ity integration.Current systems have not addressed the problem ofactivity .integration which probJiy *q"ir"s both anactive object store and_process modelling capabilities tobe included in the lpSE.
- --"" 'D

There are a number of. research projects currentlyunderwayl7,l8 which are investigitirij-tow the nextgeneration of environments mighi be"built. fn g"nerJ,the.se projects are making ur" o"t nt t""Jt,]liques and, aswell as or instead of a iatabar", tt "-'"nuironment isequipped with a less structured tno*f"ag" base in whichfacts, rules and (sometimes) a process mod'J is embedded.

FURTHER READING

A tutorial paper such as this can only provide a verygeneral overview of integrated project ,r'jpport environ_ments. More detailed information-can be iound in thepublications listed below as well as in tf,e citeO references.
. Ihe SIARTS Guide 2nd edition NCC puOtications
(1.987).

. This is a general_purpoi" traiJroot which,
3lt^q"gh mostly . cdncerned *itf., ,"tt*"re toots forreatume systems development, includes valuable g"narutinformation on software engineeih!'-anO supportenvironments. lt surueys the avaiable in? proj".t"d lpSEproducts. lt is due for revision in the neir-future.

IEEE Software Vol 5 No,2.(March .l9B8). This is a special':t19 of the journat which ii ,p"iiriiurrV.oncerned withCASE tools. lt includes a good descrifii'o" of the state ofthe art in this area and diicussion, "iif," Oitficulties withcurrent CASE toolsets.
IEEE Sottware and IEEE.Computer (November 19g7).

I!* y.g readabte journats are i"rnUin"J i" make a jointpresentation on software development environments. Asis common in American journals, tf,"r" i, iittr" emphasis
g1u.n l,o workgoing on outside Nortfr nmeiica. In essencethen, the articles summarize the state of nmeiican work inthis area which has a rather different orie]rtation fromEuropean work.

IEEE Transactions on Software Engineering Vol SE_.| 4No.6 (June 1988). This speciar issue"is concerned withenvironmental architectures and presenl ilme interestingarticles discussing research in this "r"i li "iro containsone of the few pubrished articres on ttrecRtiint"rf".".

REFERENCES
1 Habermann, A N and Notkin, D ,Gandalf:

software, development environments,IEEE fuir,. Iirtt*"re Eng.Vot SE-l2 No 12 (je86) pp 111 7_11:; ;-"

261

2

3

1 1

1 2

1 3

1 4

Dowson, M 'lntegrated project support with ISTAR'
|EEE Software Vol 4 No 6 (1987) pp 6-15
Higgs, M and Stevens, P'Developing an environment
minagerforan IPSE'in Sommeruille, I (ed.) Software
engineering environments Peter Perigrinus, Stevenage,
uK (1e86)
Bott, M F (ed.) The eclipse integrated proiectsupport
environment Peter Perigrinus, Stevenage, UK (1989)
Sellars, P W'lPSEs in commercial data processing'in
McDermid, | (ed.) lntegrated proiect support
environments Peter Perigrinus, Stevenage, UK (1985)
Lempp, P'Development and project management
support with the integrated software engineering
environment, EPOS'in Sommeruille, | (ed.) Software
En$ neeri ng Envi ron ments Peter Peri gri n us, Stevenage,
uK (1986)
Simpson, H 'The MASCOT method' BCS/IEE Soft-
ware Eng /. Vol 1 No 3 (1986) pp 103-120
Gomaa, H 'A software design method for real-time
systems'Com m. ACMYoI29 No 7 (198a) pp 938-949
Shneiderman, B Designingthe user interface Addison
Wesley, Reading, MA, USA (1986)
Euxton, I Requirements for Ada programming support
environments; Stoneman US Department of Defense,
Washington DC, USA (1980)
Oberndorf, P A'The common APSE interface set' IEEE
Irans. Softwa re Eng.Vol SE-l4 No 6 (1988) pp 742-749
Gallo, F, Minot, R and Thomas, | 'The object
management system of PCTE as asoftware engineering
database management system' ACM Siplan Notices
Yol 22 No 1 (1987) pp12-16
Scheifler, R W and Gettys, | 'The X window system'
ACM Trans. Graphics Vol 5 No 2 (1986)
Sommerville, l, 8eer, S and Welland, R C 'The

Eclipse design editing system' in Proc. 1st Eur.

Software Eng. Conf. Springer-Verlag, Strasbourg, FRG
(1e87)
Sommerville, l, Welland, R C and Beer, S'Describing
software design methodologies'Comp. /. Vol 30 No 2
(1987) pp 128-133
Smith, D R, Kotik, G I and Westfold, S f 'Research

on knowledge-based software environments at
Kestref lnstitute' IEEE Trans. Software Eng. Vol SE-1 1
No 11 (1985) pp1278-129s
Kaiser, G E, Feiler, P H and Popovich, S S'lntelligent
assistance for software development and main-
tenance' |EEE Software Vol 5 No 3 (1988) pp4O-49
Ambras, I and O'Day, V'MicroScope: a knowledge-
based programming environment' IEEE Software Vol 5
No 3 (1988) PP 50-58

1 5

1 6

1 7

1 8

I

9

1 0

I

r,
n
s

n
ir
il

m

A
pr
SU

m
a l
of
ad
mi

fas
ac
mi
po
re(
ser
sol

act

Tarr
mat
Pap,

lan Sommerville is Professor
of Computer Science at the
University of Lancaster, UK.
He has been actively
involved in research in
integrated project support
environments for the Past
five years, first at the
University of Strathclyde, UK
and, since 1986, at the
University of Lancaster.
Other research interests

include software reuse and user intertace engineering
He is the author of 'Software Engineering', Addison
Wesley, Wokingham, UK, a widely used textbook which
has recently been published rn its third edition.

262 M icro processors and M icrosystens
Vol

