SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 19(4), 371-391 (APRIL 1989)

The ECLIPSE User Interface

IAN SOMMERVILLE
Department of Computing, University of Lancaster, Bailrigg, Lancaster LAl 4YR, U.K.

RAY WELLAND
Department of Computing Science, University of Glasgow, Glasgow GI12 8§00, U.K.

STUART POTTER
Software Sciences Ltd., Deanway Technology Centre, Wilmslow Road, Handforth,
Wilmslow, Cheshire SK9 3ET, U.K.

AND

JOHN SMART
CAP Group Ltd., 40—44 Coombe Road, New Malden, Surrey KT3 40F, U.K.

SUMMARY

This paper describes the user interface facilities of the ECLIPSE integrated project support
environment. This interface is based on a consistent metaphor called the ‘control panel’ metaphor
and includes standard help and message-handling systems. The paper describes these as well
as some of the interface standards which have been developed. The interface has been
implemented on top of the ‘applications interface’, which provides a portable, hardware-indepen-
dent interface for software tools.

KEY WORDS Software engineering environment User interface ECLIPSE Help system

INTRODUCTION

ECLIPSE is a large-scale integrated project support environment (or IPSE) which has
been built in the U.K. by a consortium of universities and systems companies. It is a
database-centred environment with the database provided by PCTE (portable common
tool environment), an emerging European standard on which environments can be
built. ECLIPSE is intended to be a general-purpose environment which may be tailored
to support a variety of application domains, but the initial versions of the system will
concentrate on supporting real-time systems development using MASCOT and Ada
and data processing systems development using a method called LSDM.

An early design decision made in the ECLIPSE project was that integration should
not simply be at the database level but that the user interface (UI) should also present
an integrated system view. As ECLIPSE IPSE products are intended for release in
the late 1980s, it was decided that the user interface should be tailored exclusively to
bit-mapped high-resolution workstations. This decision allowed us to assume that each
engineer’s workstation would have significant local processing power and meant that

0038-0644/89/040371-21$10.50 , Recerved 7 December 1987
© 1989 by John Wiley & Sons, Ltd.

372 I. SOMMERVILLE ET AL.

we could design an interface which is based on graphics rather than on command
language interaction.

When this work began in 1984, no other IPSEs had been developed, and bit-mapped
workstations were only just becoming available. There was no directly relevant literature
on which we could base our work. However, concurrent with the work described here,
the ASPECT IPSE' adopted a different, more fundamental approach to user interface
construction.? Rather than build on top of existing facilities (and therefore live with
their limitations), the ASPECT project developed a complete user-interface system
from scratch, including a window manager. This allowed a very consistent model of
user interaction to be presented. This approach was not adopted in ECLIPSE partly
because we felt that the practical advantages (cost, reduced risk, portability) to be
gained by reusing existing software (such as the workstation window management
system) outweighed the limitations (lack of consistency and predictability) this some-
times imposed.

The lack of directly relevant work in this application domain also posed difficulties
when we came to consider fundamentals of cognitive science which might be relevant
to our work. Although work by Price and Cordova® on the use of mouse buttons,
Tullis* on menu design and Marcus® on screen design was taken into account, those
cognitive scientists with whom we discussed the general problem had difficulty in
understanding the concept of an IPSE, and ultimately presented advice which was so
contradictory as to be useless. However, more recent work (not available to us when
ECLIPSE was designed) such as that described by Dix et al.® may be more relevant
to environment-interface design, as these workers are considering this application
domain.

Unlike development environments such as Interlisp,” Cedar® or Smalltalk,®
ECLIPSE is an open environment and is not integrated around a single programming
language. The tight tool integration between language and support tools offered in
single-language environments could not be provided. Rather, we adopted an approach
which was pioneered in the Xerox Star system and made generally known in the Apple
Macintosh, whereby all tools adopted a common interface style and made use of a set
of standard routines to create their user interface. A detailed description of the approach
adopted, called Control Panels, is given by Reid and Welland. !

As part of the provision of a consistent framework of interaction, we decided that
all messages, including help texts, from the environment to the user should be presented
in a similar fashion. This can be accomplished by defining standards, but we decided
that a more reliable and cost-effective approach was to provide a standard messaging
system which is used by all ECLIPSE tools. In practice, we discovered that help texts
are quite different from other messages, so we have built a separate handler for help
texts and have a mandatory requirement that all tools should provide help frames
describing their use.

This paper is exclusively concerned with a general presentation of the ECLIPSE
user interface and does not describe specific tools developed during the ECLIPSE
project. We present a brief overview of ECLIPSE and describe the user interface
metaphor which is a standard approach for interacting with all ECLIPSE tools. The
interrelated help and message systems are then described and, finally, we discuss our
approach to implementation.

The initial prototype implementation of the ECLIPSE UI was as a set of C programs
which interacted directly with the facilities provided on Sun workstations, However,

THE ECLIPSE USER INTERFACE 373

the decision to base ECLIPSE on PCTE, which provides its own set of UI primitives,
and the commercial requirement of portability meant that we needed an alternative
approach which was less closely tied to Sun library software.

Thus we have based the final UI implementations on what we call the ‘applications
interface’. This is an interface layer between ECLIPSE applications and the Ul
primitives provided by the workstation. In ECLIPSE, the applications interface has
been mapped onto the underlying SunView primitives and, at the time of writing, an
implementation using the PCTE UI facilities is under way.

This paper describes a development project rather than a research project. Our
objective was to build an interface to a very complex system which helped the user to
master that complexity; we did not set out to carry out fundamental research in Ul
design nor to build a generalized user-interface management system. All of the software
described here has been written in C, is currently operational on Sun workstations and
is now shipped as part of the ECLIPSE IPSE product marketed by the industrial
collaborators on the ECLIPSE project.

THE ECLIPSE ENVIRONMENT

ECLIPSE is a software engineering environment which has been developed in the
U.K. It is a large-scale project (150+ person-years) which has been implemented by
three systems companies and three universities with funding support from the Alvey
Directorate. The Alvey Directorate manages the U.K.’s national research programmes
in software engineering, VLSI, artificial intelligence and user-interface design.
ECLIPSE runs on Sun workstations and provides an object-management system
built on top of PCTE along with a number of tools which are geared towards the
support of software design. The system provides access to fine-grain data by making
use of a two-tier database.!' The structure of ECLIPSE is illustrated in Figure 1.
The tools which are available in the initial version of ECLIPSE include a generic
design-editing system which may be tailored to support any design method based on
diagrammatic techniques,'? an Ada cross-compilation system for Intel 286 processors

ECLIPSE User Interface

Sun Workstation [

Public Tool Interface X

NN c Tool Interface \
7000 meaedTodls 1

Figure 1. The structure of ECLIPSE

374 I. SOMMERVILLE ET AL.

and associated host tools to support that Ada system,'* a design-support system for
MASCOT and a design support system for LSDM. MASCOT# is a design method
for real-time systems which is widely used in the European defence community. LSDM
is a development of SSADM!'S which has been adopted as a U.K. Government standard
and which is used, fairly widely, in European and in some U.S. organizations.

As well as the work described here, other work in the general area of user interaction
with software engineering environments has been carried out as part of the ECLIPSE
project. This has involved investigating the use of iconic interfaces to complex environ-
ments and developing a generic graphical editing system. However, as this work is
peripheral to the main UT programme, we have not covered it here. An overview of
the ECLIPSE system is given by Alderson et al.'® and a comprehensive description
by Bott.”

ECLIPSE is built on top of the portable common tool environment, PCTE, '8 19
which was developed by a consortium of European countries as a common basis
for environments. PCTE provides an object-management system based on an entity
relationship model that manages a database distributed over a network of workstations.
It also provides primitives for user-interface support and process management. It is
compatible with Unix System V so that Unix applications may run without change
under PCTE.

METAPHORS AND STANDARDS

In designing an integrated interface to ECLIPSE there were two distinct problems to
consider. How should the interfaces of individual tools be represented and what should
the overall environment in which ECLIPSE tools execute look like? Systems such as
the Apple Macintosh have an instantly recognizable ‘house style’ which is used for all
tools. An application has a menu bar across the top, giving access to pull-down menus,
each window used by the application has a title bar, which can be used for moving or
closing the window, scroll bars are standardized, etc. We wished to design a similarly
recognizable house style for ECLIPSE and to ensure that tools behaved consistently
during common operations such as start-up and shut-down.

The best developed examples of integrated user interfaces are those based on the
‘desk-top’ metaphor. We argue that this metaphor is not relevant for the majority of
the user roles identified for ECLIPSE, and our observations suggest that experienced
software engineers find this type of interface counterproductive. The reason for this is
that its principal entities are office documents with a limited set of allowed operations
such as move, delete, etc. Software engineers are concerned with programs, designs
and specifications which have different sets of allowed operations (such as compile,
link, check, etc.). The number of possible operations applied to software is, typically,
much larger than those allowed using the desk-top metaphor, and the operations are
not readily represented using simple iconic representations.

The facilities provided by the window-management system of a workstation, such
as the Sun, are aimed at expert users. They are not suitable in their raw form for the
less technical users of ECLIPSE. Therefore, we looked for some compromise between
the easy-to-understand but simplistic desk-top metaphor and the terse command lan-
guage offered by systems such as Unix. In short, we sought to develop a graphical
interface with sufficient functionality for the more experienced user. The approach
which was finally adopted is termed the ‘control panel’ metaphor.

THE ECLIPSE USER INTERFACE 375

Control panels

The concept of control panels was introduced to provide the unifying metaphor for
the ECLIPSE UI. The objective is to stimulate the control panels which are available
with many complex pieces of equipment, to provide both status information and
controls. Analogous concepts are provided within ECLIPSE software control panels.
One lesson to be learned from hardware control panels was to avoid information
overload, the extreme example of which is probably an aircraft cockpit. Fortunately,
much of the information can be hidden using menus, thus avoiding having a screen
full of control and status information.

We identified five basic types of objects which are sufficient to provide the necessary
functionality in our control panels.

1. Button. A button is an object which when picked (‘pressed’) always initiates a
single action, such as screen dump. Every time a button is picked it initiates the
same action, its effect is not context dependent.

2. Menu. A menu displays a list of objects one of which can be chosen by the user
to initiate some action; a typical use is command selection. The contents of menus
may depend on the context in which the user is working.

3. State selector. A state selector is a composite symbol consisting of a menu and a
value. The value displays the current state and the menu provides a mechanism
for changing that state. An example of the use of a state selector is in representing
multiple modes; the value part of the state selector shows the current mode; this
value can be changed by selecting the new value from the associated menu.

4. Sign. A sign is a two-part object which has a fixed title and a value. The value
part may be static, dynamic (changed by the system) or user-changeable. A static
sign might be used to display the name of the current user, whereas a dynamic
sign could be used for the display of error messages. A user-changeable sign
might be used in an editor to display the name of the file being edited. To save
work to a different file, the user simply overtypes the old file name in the sign
with the new.

5. Light. A light is an indicator with a binary status, either on or off. Lights are
commonly used to indicate whether a window is current, that is, the window to
which the keyboard is attached, or a process is busy.

Once we had identified these basic objects, we designed a set of icons to represent them.
The set of shapes shown in Figure 2 is the result of experimenting with different
possibilities. As the project has progressed various minor changes have been made to
these icons. The guiding principles for designing the shapes were that they needed to
be easily distinguishable and sufficiently regular that they could easily be fitted into a
reasonable area and could contain text labels. Although we accept that the icons chosen
may be less than ideal from a graphical design point of view, the overriding pragmatic
consideration was the need to make most effective use of scarce screen space. The user-
changeable sign labelled “Title’ in Figure 2 includes the visual cue ‘->’ to indicate that
the user may provide an input by typing into the value part of it.

Provision is made for a two-state light to reassure the user that the system has not
crashed when a long operation is taking place. Tools should arrange for the light to
‘flash’ during time-consuming operations to indicate to the user that the system is still
active.

376 1. SOMMERVILLE ET AL.

State Menu Menu
Value => Value Value Selected item

Signs State Selector Menu

N
— State 1 _] State 2
Z

Button Lights

Figure 2. Control panel object representations

The ECLIPSE UI uses the concept of a control panel as the principal means of
controlling the major functions of both ECLIPSE as a whole and individual appli-
cations, such as a design editor'? that run under ECLIPSE. However, the control-
panel metaphor, like most metaphors, is not the answer to all problems. The control
panel is primarily of use for selecting options, setting contextual information, invoking
infrequently used major actions and invoking critical actions. Frequently used com-
mands that cannot be easily grouped are not sensible contenders for panel buttons
since the user would spend a great deal of time ‘mousing’ around the control panel.

For example, consider a text editor. The general movement and editing commands
within the text should be accessed via some other mechanism, such as keyboard
commands, function keys etc. Conversely, file selection, editing mode, display mode
etc. would be suitable actions for invocation via the control panel using, for example,
menus or buttons. Similarly, actions such as invoking the help system, closing the
window, aborting or terminating the application should be provided using control panel
facilities.

Control panel layout standards

Once we had settled on a set of concepts and symbols we needed to ensure consistent
use of these objects by defining control panel layout conventions. It was in this area
that fundamental work such as that of Marcus,’ Price and Cordova’ and Engel®® was
most useful. Based on this work, we formulated a number of outline standards regarding
the design of menus and the use of buttons in ECLIPSE.

1. Menu options should be centred on a block basis rather than on a per-line basis.

2. The ordering of options within a menu should reflect a logical grouping appropri-
ate to the task at hand. ’

3. Frequently used or safe actions should be placed at the top of a menu, less
frequently used or unsafe actions should be placed at the bottom.

4. ECLIPSE buttons are provided for both unsafe actions, such as ‘exit’, and actions
which do not fall naturally into a logical grouping, such as ‘help’.

5. A user selection from a menu should be confirmed visually by inversion.

To achieve visual consistency we recommend relative positions for the various objects
within the control panel. Signs should appear to the left of the control panel, followed
by state selectors and menus, then buttons and finally lights to the right of the control

THE ECLIPSE USER INTERFACE 377

panel. However, the designers of control panels often found good reasons (or excuses!)
to vary the positions of the objects. An example of a typical control panel taken from
the ECLIPSE help system is shown in Figure 6.

The details of application control panels vary, but certain objects appear in nearly
all control panels. For example, an ‘Exit’ button should always be provided and every
tool should use this button in a consistent way. The implementation of exit is obviously
application-dependent but confirmation of exit without updating is always required.

In general, confirmation of destructive actions must be provided via a pop-up selector
containing visual targets. The action must be confirmed by positioning the cursor over
a target and clicking a mouse button. The wording of the targets must be unambiguous
and they must be far enough apart to prevent accidentally hitting the wrong target.

The Sun software automatically includes a ‘name stripe’ at the top of every window
created: it cannot be removed without modifying the window manager, therefore we
decided to standardize its use. In ECLIPSE, the name stripe is used to display the
name of the component associated with the window and the component version details.

Screen organization standards

At the beginning of the project we attempted to define a general screen organization,
suitable for a variety of applications. Our objective was to establish a convention for
screen organization so that different tools presented a consistent window interface to
the user. Thus we hoped to recommend window sizes and layouts but toolmakers or
end-users could change these if warranted by particular circumstances.

In principle, the workstation’s 19 inch screen was capable of holding two windows
side by side, where each window is the size of a normal (A4) piece of paper. We
thought it desirable to be able to view two large windows simultaneously, as well as
smaller windows, but the limited screen size meant that a double A4 display left no
room for console windows, status displays or ‘parking’ of icons.

Experiments were carried out using a number of different founts available on the
Sun to try and achieve a compromise between a comfortable fount size and a usable
display area. The recommended aspect ratio for windows is that the sides should be
in the ratio one to root two or ‘golden rectangle’.?’ An attempt to define landscape
windows to fit this ratio, in the same orientation as the screen, led to windows which
were either too shallow to be usable or so large that only one would fit on the screen!

Our preferred layout was to have two portrait windows, in the recommended aspect
ratio, juxtaposed, but the only fount which would allow this was too small to read.
Therefore, a readable fount was chosen and windows defined to be the maximum
length which can be obtained, producing an aspect ratio of about 1 to 1:23. These
window dimensions are intended as guidelines for applications but some ECLIPSE
tools, especially those using graphics, require a larger working area.

Initially, we sought to avoid overlapping windows for the reasons set out by Cohen
et al.?> Overlapping windows can be awkward to manage, waste screen space and
difficult to find. Overlapping windows tend to increase the memory load on users and
require them to be familiar with the window manipulation facilities. A tiled solution
was considered, but our need for large windows (particularly for editing) made us
reject this approach. In practice, users of ECLIPSE use overlapping windows exten-
sively because many applications seem to need larger windows than can comfortably
be accommodated in half of the workstation screen.

378 I. SOMMERVILLE ET AL.

In summary, we failed to establish a workable standard for screen layout which
would be applicable to all ECLIPSE users. Given that screen sizes are unlikely to
increase significantly (because of cost and the space occupied), we believe that it is
probably impossible to achieve an acceptable standard where the user community is
experienced and diverse and where the applications require large window sizes.

THE MESSAGE SYSTEM

As well as the information displayed as part of the normal running of an ECLIPSE
tool, there are occasions when a tool wishes to output messages to the user for
information, errors, diagnostics etc. The ECLIPSE message system provides the tool
builder with the software to handle these messages and provides the user with some
ability to choose how and when these messages are displayed.

One of the characteristics of a project support environment like ECLIPSE, is the
wide variety of potential users and their knowledge and skills. A great deal of thought
was given to how a message system could accommodate this variety and still maintain
a consistent approach. Other systems have adopted a number of approaches in an
attempt to solve this problem, including classifying users on skill level such as novice,
experienced, expert, or by layering messages so that the user can repeatedly ask for
more levels of detail. It is very difficult to tune this sort of system as a user’s skill level
may be much higher in one task than another and he or she may get frustrated with
messages which are too terse or verbose.

The method chosen for ECLIPSE involved three main design decisions:

1. Separate the message texts from the code.
2. Structure the message texts.
3. Link messages into the help system.

The first is fundamental and involves grouping the message texts into message sets.
These sets are not built into a tool but are read at run-time. This allows alternative
message sets to be provided without rebuilding the software. Thus message sets in
languages such as French or German can be produced or special, more explanatory
messages created for training purposes.

The objective of the message is to be positive and guiding rather than negative and
accusatory so each message contains a brief summary of the problem and a suggestion
of what to do about it. The experienced user who recognizes the problem may read no
further than the first few words whereas the novice, or indeed the expert encountering a
message for the first time, may read the whole message.

The structure of the message is equally important. The messages are single lines
allowing parameter substitution so that run-time specific information, such as the name

of a database object, can be incorporated. For example, a message in the system might
be:

Interaction: “Writing to file $1 is not allowed; Check file protection”:
Help-> Write protection.

This specifies the message type (Interaction), the message text where the parameter
$1 can be substituted with the file name which the user has tried to access, and a link
to the help system.

THE ECLIPSE USER INTERFACE 379

If the message itself is not sufficiently explanatory, the user can call for help. Each
message can be linked to a frame of help information as described in the following
section. To display the relevant frame the user simply selects the ‘Help’ button, which
is available from every ECLIPSE tool. The user then has access to all the help frames
relevant to the current context plus as much detail as has been stored in the help
database. Displaying this information in a separate window of the workstation enables
the help text to be viewed alongside the problem.

The message system and the help system are closely related. Their relationship 1s
illustrated in Figure 3.

Message types

All ECLIPSE messages are typed and the tool builder decides at which points in the
code a message should be generated. Generating a message simply involves specifying a
message identifier plus any substitution parameters and a message type.

Message types fall into three classes:

1. Interaction messages. These are messages which provide details of the status of
an ECLIPSE interaction. The interaction message types are information, warning,
error and fatal. Messages of this type are generated by tools for users, although
it must be emphasized that there is no need to indicate the message type to the
tool user.

2. Input messages. These are messages of type comment which allow users to provide
feedback to tool builders.

3. System messages. These are messages which provide system information and
which are generated by tools for tool builders and system administrators. The
types in this class are metric, diagnostic, tracking, console, security and system.

Comments are a way of capturing users’ observations about ECLIPSE and any of
its tools. During any session, a user is able to record comments about any problems
encountered or about any feature of the system which he or she likes or dislikes.
Comment messages are logged for subsequent analysis by tool builders.

Help frames
Message texts
s
Message Help
system system

Figure 3. The help and messaging systems

380 I. SOMMERVILLE ET AL.

Having assigned the type, the tool generating the message calls the message system,
which extracts the required message text, prepends the type descriptor and routes it
to a number of possible destinations depending upon the type of the message.

Message routeing and logging

One of the most irritating features of some software systems is the generation of
unwanted messages which interrupt a user’s work. One of the design objectives of the
ECLIPSE message system was to allow users to control the messages generated by
ECLIPSE tools.

Each ECLIPSE user has an associated message log in which all generated messages
may be retained. This facility was included to allow an evaluation of ECLIPSE usage
and to record, in an unambiguous way, problems which users encountered with
ECLIPSE software. Messages may be directed to the log as well as the user’s screen.
In fact, the message system recognizes three possible destinations:

(1) the uset’s current window
(i1) the console
(i) the user’s message log.

The destination of each message type is governed by a routeing table which allows users
to change the destination of messages between sessions or between tool invocations. The
table assigns to each message type zero or more of the possible three routes (to ignore
a class of messages, zero routes are specified). For example, a user might wish to
suppress all information and warning messages but see errors. He or she might choose
to display fatal messages (messages which result from an unrecoverable error) in the
current window and on the console as well as recording them in the message log. All
other types might be routed to the message log for later analysis. Any messages logged
are time-stamped and include extra information about the tool involved.

Many of the system functions in ECLIPSE use the message log to record events
such as logging on and off, tool invocation and deletion, hence providing an event log
for a users” ECLIPSE session. The log is simply a text file and can be processed by
any of the text handling utilities to produce reports or statistical information.

THE HELP SYSTEM

On-line help systems have been used extensively and with mixed success in a number
of environments. The prime objective of a help system is to give users the information
they need quickly and to assist them to relate that information to the task in hand. All
too often, users have to search through reams of information by which time they may
have forgotten the original problem. Alternatively, by the time users return to their
task, the details of the help information may have been forgotten!

The ECLIPSE help system attempts to overcome both these problems. First, it
keeps track of what the user is doing and offers context-related help; secondly, it
displays the help text in a separate window thus allowing the user to compare that text
with the output from the current task.

In general, help systems can be classified into three broad types:

(1) tutorials
(i) on-line manuals or reference volumes
(iii) memory job/contextual help.

THE ECLIPSE USER INTERFACE 381

The ECLIPSE help system concentrates on providing context help together with a
general browsing facility of available functionality. No attempt is made to provide an
interactive tutorial system.

It has been recognized that ECLIPSE will include a growing number of tools which
may be developed explicitly or may be brought in as foreign tools. The foreign tools
may have their own help systems, and the ECLIPSE help system is designed to enable
these ‘alien’ systems to be, at least partly, integrated. As an example, ECLIPSE
includes tools which are documented by UNIX manual pages, and the help system
provides a hook facility by which the relevant manual pages can be collected and
displayed.

The help information architecture

It is important to structure help information so that users can see the level of detail
appropriate to their current context and, at the same time, have the freedom to navigate
around the complete help database. The help database is held as part of the ECLIPSE
database and is organized to reflect the way ECLIPSE software is structured.

For each ECLIPSE tool, a help frame-set is produced to describe that tool. The
unit of help is the frame, and each frame has a name and title plus a page of information.
The frame-set has a hierarchic structure in which progressively more detail is provided
as the user descends the hierarchy. Links can also be added to refer to related frames,
both within the current frame-set and to frames in other frame-sets. The result 1s a
network database where frames are logically grouped with tools or components but
where it is possible to interlink the groups as desired. The help system then provides
the access points to this database plus the tools to navigate it. This is illustrated in
Figure 4.

Figure 4 is a simplified diagram of part of the help frame network. It shows two
frame sets, one for editing in general and another for editing software designs. By
following links, the user may easily move between these. Of course, the practical link
structure is much more complex than that shown in Figure 4.

As a software tool is used, the user’s context within that tool changes as different
phases or levels of processing are accessed. At each change, the tool records the help
context by maintaining a stack of references to help frames in the database. Each
ECLIPSE tool has a ‘Help’ button and, if this button is pressed, the context stack is

Editing pesian

editor
I I"_L__|
I |]
Text Pictures Designs Editing Checking

L s

lcons Diagrams Labels Entities

==

lcons Text

|

Figure 4. The help information architecture

382 I. SOMMERVILLE ET AL.

transferred to the help tool, which retrieves and displays the topmost frame on the
stack and stores the other frame references for subsequent viewing.

Figure 5 shows the stack structure where the user has invoked a tool (the design
editor), chosen a particular step in the tool (select text) and then encountered an error.
If, at this point, the ‘Help’ button is pressed, the stack contains three help frames, the
frame describing the error, the frame describing text selection and the high level frame
for the design editor. Initially, the frame showing the information most relevant to the
user’s current context (the error) is displayed. If this information is inadequate the
user can then call up further frames for display as required.

Selection errors

Error help text

> Object selection

Selection help text

The design editor

HELP stack
DE help text

Figure 5. The HELP stack structure

Help display and navigation

The help tool displays help frames in a separate window as illustrated in Figure 6.
The top two panels provide control facilities for the help tool, whereas the lower two
contain the page of help information and the primary navigation facilities.

The help tool is normally invoked from another tool with relevant context as
described above but it can also be invoked by command with suitable parameters to
identify the required access point into the help database. In each case, the help tool
runs asynchronously with other tools, and the user may read context-related information
or may browse the help database. If the user only needs a memory jog, the first frame
displayed might contain all the information he or she needs. If more information is
required the navigation panel is used to traverse the help database.

The first frame of information displayed can be replaced by one showing more detail
by the user selecting one of the entries under the title ‘Further Information’. A new
frame is displayed and the navigation panel is changed to reflect any further breakdown
of information available. Links from the current frame to other frames of interest are
listed under ‘Related Topics’ and can be selected in the same way using the mouse.

A history list of help frames visited is maintained under ‘Previous Frames’, enabling
the user to retrace his or her steps. This helps to avoid the problem, common to many
help systems, of getting lost in the help database and being unable to get back to the
original entry point. An allied problem is remembering frames of interest, and users
sometimes have to note frames to which they may wish to return. To avoid the chore

THE ECLIPSE USER INTERFACE 383

e
jsd/method steps : A
Jsd current frame
method steps - Project selection and steps parent frame
In ECLIPSE-vi, all JSD design information is i3 chor iaforegtien
held in DBJECTS which are regarded as belonging Sia
to a particular PROJECT. Selection of a PROJECT step 5
to work in is treated as am initial "pseudo step” step 4
of the method. step 3
step 2
The six steps of the JSD method proper are: step 1
1 : entity action step llz:::::]'l:g::?
2 : entity structure step
3 : initial medel step Previous Frames
4 : function step step 1
5 : system timing step
6 : implementation step
A11 the above STEPS (excluding PROJECT) have
associated with them predefined diagrams or
forms which may be used to record information
generated during the application of the JSD
method. Additionally, all STEPS (including
PROJECT) may have any number of text OBJECTS
in which the user may store any other information
he wishes.

Figure 6. The ECLIPSE help tool

of writing down frame references, the help system provides a marking facility whereby
the user flags (or marks) a frame as being of interest. The system then maintains this
list which is displayed in the navigation panel under ‘Marked Frames’.

If the user is browsing, select and search facilities on the help database are available
through the lower of the two control panels. If the name of a frame is known, this is
typed into the sign entitled ‘Frame Reference’, and ‘Select’ is invoked. That frame is
retrieved and displayed. If help is needed on a particular topic, a topic keyword i1s
typed into the sign, and ‘search’ is invoked. This compares the string against frame
names and titles in the database and each one containing the keyword will be recorded.
If a single match is found, that frame will be displayed. If more than one match is
found, their names and titles will be shown and the user may select one for display or
may mark a number of them for subsequent viewing.

The top control panel enables users to suppress certain types of message if they wish
(‘Error Level’). ‘Print’ allows a hard copy of the currently displayed frame to be made
and, if necessary, the user may seek help (‘Help’) on the help system. The comment
facility (‘Comment’) allows user remarks to be passed to tool builders and ‘Close’ closes
the window to an icon.

THE APPLICATIONS INTERFACE

Although various window-based systems can present comparable visual interfaces and
styles of interaction to the end-user, the underlying interfaces and mechanisms available

384 I. SOMMERVILLE ET AL.

to applications are different. This has the consequence that applications become bound
to particular window systems. Converting such applications to use a different window
system may involve major restructuring and modification because of the pervasive
nature of managing the user interface and because of the lack of standardization in the
software interfaces provided across window systems.

Some standards, such as the Computer Graphics Interface (CGI) exist, but these
address the problems of managing graphical images. There are not yet any comparable
standards for constructing interfaces which use window-based dialogue managers,
command interfaces or form-filling interfaces. An application which uses windows,
icons, a mouse and pop-up menus usually has to be written to interface with the
facilities supported by one specific workstation.

It is to be hoped that this situation will be rectified in future as a standard such as
the X-windows system* is adopted. Although X-windows has now been accepted by
a number of workstation manufacturers, it was not widely available at the time the
ECLIPSE UI was implemented. Furthermore, it is not supported by PCTE, and our
design constraints were that the system should operate using both Sun workstation and
PCTE UI primitives.

In ECLIPSE, our objective was to provide a high-level abstract interface that allows
user interfaces to be constructed in such a way that applications using this interface
remain independent of the actual I/O devices being used. They should not be bound
to the lower level windowing software interface. The end-result, called the Applications
Interface,? is an object-based software interface through which tools can interact with
the end-user without any knowledge of the style of presentation and without knowing
in detail how the end-user interacts with the user interface. It provides an implemen-
tation of control panels but is actually of broader utility and has been used in other
software products.

The Applications Interface is implemented by providing a textual description of the
interface objects and operations using a description language called FDL (frame
description language) and by providing an abstract procedural interface for applications.
Tools interact with the user via this procedural interface which is mapped onto the
underlying workstation software.

The abstract user interface

The basis of the high-level abstract user interface supported by the Applications
Interface is a hierarchy of objects representing the various classes of images that a tool
may need to construct its user interface. There are five levels to the hierarchy, denoted
as the screen, windows, frames, panes and fields. At the frame and field levels there
are several different classes of object, as shown in Figure 7. The object at the root of
the hierarchy, which cannot have a parent, is called the screen and represents the
whole output area available on a workstation. Within the screen, any number of window
objects can be defined although only one of these can be completely visible at any one
time. This restriction has been imposed in order to enhance the portability of the user
interface.

Each window can be subdivided into a set of areas called frames, of which there are
four different classes which support different functional uses of their areas:

1. A graphic frame supports the use of graphical primitives for drawing diagrams
and pictures. ‘

THE ECLIPSE USER INTERFACE 385

SCREEN
WINDOW
GRAPHIC TTYPE FORMAT MESSAGE CHOICE
FRAME FRAME FRAME FRAME FIELD
- TOOLMENU
PROMPT PANE MESSAGE
o|E] |]
| l | |
OUTPUT INPUT COMMAND CHOICE
FIELD FIELD FIELD | FiIELD
.LIGHT .SIGN .BUTTON .MENU
.TRIM .SCALAR .STATE

Figure 7. The hierarchy of user interface objects

2. A TTY frame emulates a normal character terminal so that tools which interface
to a character terminal can run unchanged on a workstation.

3. A formatted frame supports the control panel mode of tool interaction as discussed
earlier.

4. A message frame provides a textual output area used for all messages generated
by tools using this interface.

An example of a window containing one of each of the above frame classes is given in
Figure 8. This example also shows the FDL text which is used to generate the interface.
Only a formatted frame can be subdivided. These subdivisions are called panes, and
consist of a set of fields which a tool wishes to manage as a group.
Fields are the lowest level objects in the hierarchy and are generalizations of the
elements of a control panel through which a tool can interact with an end-user. There

386

I. SOMMERVILLE ET AL.

A message displayed in the
MESSAGE FRAME.

File to he displayed

Example .MDL D1 solayt

The grey area below is a

Below is a TTY Frame. Graphic Frame.

= The MMIMS Description File that produced this User Inter
ace

SCREEN [8]

1% MINDOW [1]
end [8]

(18,88) (1,2)80,20 Example

X

WINDOW [1]
UPDATE) /M1¢(An example User Interface
+defined in MMIMS Description Language)
.FRAME [13] (@8, B)48,5
.MSG_FRAME [11] (8,48)->,6
.TTY_FRAME [14] (6, B8)60,++
.GRAPHIC F1Z]N¢ = 7562) 155 17

Figure 8. The frame classes supported by the Applications Interface

are four classes of fields, some of which can have different styles of presentation when
visible on the user interface:

1.

Input class. This class implements the sign and menu control panel objects.
Fields may have a data value entered by the end-user, selected from a list of
values generated dynamically or supplied by the tool. The data value may be
required to satisfy a syntactic pattern and may be subject to a semantic validation
procedure; both of these requirements are specified in FDL.

. Command class. This class implements control panel buttons. When selected, a

field of this class causes some action, or command, to be executed. The action
may be defined by a procedure within the tool or may be a separate process. In
the latter case the process may be executed synchronously or asynchronously and
may use the T'TY frame as its I/O device. The action, its context and messages,
are all specified in FDL.

. Choice class. 'This class implements the state selector control panel object. Fields

have a fixed list of possible values, one of which may be chosen by the end-user
or the tool. The list of possible values is specified in FDL and is displayed as a
pop-up menu. The former style is used to define a state or context value, whereas
the latter is used to provide a list of actions from which to chose.

. Output class. This class implements control panel lights. Fields of this class may

be used to display fixed test and graphical images on the user interface as
commentary to assist the end-user.

Each object is defined to represent two rectangular areas which are always constrained
within the object’s parent in the hierarchy. Each rectangular area has a position and
extent relative to its parent and is specified in character units to avoid dependence
upon the pixel resolution of any actual workstation. This spatial relationship determines
where each object will appear when it becomes part of the visible user image.

THE ECLIPSE USER INTERFACE 387

The frame description language

In order to provide a machine-independent way of describing user interfaces, we
have developed a notation, called FDL (frame description language) which is used to
set out a textual description of the interface. This description is interpreted at run-
time by the interface management system to generate the actual interface displayed on
the user’s workstation.

The relationships between the tool, the FDL interpreter and the FDL description
are shown in Figure 9.

FDL Executing
interpreter tool

Screen

Display FDL description

Figure 9. FDL and tool interaction

We have deliberately excluded a detailed description of FDL here as it can be
considered as the ‘object code’ driving the applications interface. As discussed later,
neither tools nor interface designers need have detailed FDL knowledge.

FDL is used to define the hierarchy of objects that are required by a tool, together
with their relative positions and extents. The positions and sizes of the objects are not
available to the tool which uses the FDL, so that the layout of the objects may be
changed without affecting the logic and code of the tool. The FDL definition of the
objects may also specify the initial values of an object’s attributes, such as its visibility
and selectability.

The text which labels an interface object must be specified using FDL since it may
not be defined by the tool. The label part of a field allows that field to be selected by
the end-user typing the label name; if text labels are ambiguous the end-user has to
type a sufficient number of characters to identify the required field uniquely. Field
selection using a mouse is controlled entirely by the Applications Interface; the tool
has no knowledge of the mechanisms used and is not concerned with the input devices
available to the end-user.

The text associated with an object may be changed in the FDL without any effect
on the tool. The textual values of the choices in a fixed list must be specified using
the FDL; each choice has an integer value specified with it in the FDL definition, and
this integer is used by tools to reference that choice. This approach allows the order
and textual values of a choice list to be changed without affecting the logic or code of
the tool.

In order to decouple a tool from the FDL specification of its user interface, each
interface object has a name and a set of allowed operations associated with it. Objects
may be referenced with this name by the tool, and by operations to access its attributes.
Thus, tools have a completely procedural interface to an FDL specification and need
not be aware of any details of the interface description language.

388 I. SOMMERVILLE ET AL.

Dynamic control of the user interface

At any one time in a system interaction only a subset of all possible interface
operations are valid. If the user attempts an invalid operation, the conventional response
is to generate an error message and allow the user to retry. However, a better approach
is to modify the interface dynamically so that only valid operations are presented to
the user. The interpretative implementation of FDL makes such dynamic interface
modifications possible.

As well as allowing the position and extent of user interface objects to be described,
FDL allows the dynamic response of the user interface to end-user and tool operations
to be specified. For each type of field the FDL description sets out the actions to be
carried out when that field is selected by the end-user or activated by a tool.

For input fields, the FDL description may specify the text of a prompt, a message
to assist the end-user with data entry and a procedure which may dynamically generate
a list of data values from which a choice may be made. For example, say an interface
offers an Ada compilation facility which is initiated by picking an ‘Ada’ button.
The FDL description might include a procedure which examines the user’s current
workspace, selects those entities which are of type ‘Ada_source’ and presents a menu
of their names to the user. One of these names is then selected as the entity to be
compiled.

The FDL description may also include details of a syntactic pattern which the input
value must match, a procedure (or process) which can validate the input value, an
error message which is displayed if validation fails and a set of actions to be obeyed
when the field’s value is successfully updated. These actions can include changing the
values of the attributes of any of the user interface objects, including the visiblity and
selectability attributes. Thus, if an operation is invalid at some point in a user interac-
tion, selection of that operation in the interface may be disabled.

An example of where this facility is used is in the ECLIPSE MASCOT design
editor. Once an entity has been registered in a design database its semantics may not
be changed, although its position on a design diagram may be modified. Thus, once
registered, the operations available to the editor user are restricted so that destructive
operations are simply not presented in the editor operations menu.

For command fields the FDL can be used to specify the procedure (or process) that
provides the required operation, a message to be displayed before the command is
obeyed, whether the end-user is to confirm the action before the command is obeyed,
the context in which to obey the command, an error message to be displayed if the
command fails and a set of actions to be obeyed when the command is successful.

The user interface generator

FDL 1s a powerful notation for specifying interface objects and actions but is a fairly
low-level notation, and consequently interface definitions take some time to write and
to debug (see the FDL example in Figure 8). This is a particular problem when
designing interfaces, as this activity is one which requires a great deal of experiment.
Interfaces are generated, tested and then modified during development, and we disco-
vered that writing FDL code was an expensive business.

To speed up the process of interface generation, we have developed an interactive
interface construction tool.?® Given graphical representations of the basic interface
object classes, the interface builder can simply pick these and position them as required

THE ECLIPSE USER INTERFACE 389

on an interface template. There is no need for the user to know the details of the
underlying language, indeed, the interface designer need not even know that such a
language exists.

The tool which we have devised (Figure 10) provides the interface designer with
the ability to design ECLIPSE control panels. Basic control panel items (buttons,

menus, signs, etc.) may be selected and positioned on a display. The advantages offered
by this approach are

1. The designer is given assistance in laying out the interface.

2. End-users can become involved in interface design.

3. The time needed to construct new interfaces is reduced dramatically. The differ-
ence is perhaps the difference between carrying out computations using a spread-
sheet and writing a FORTRAN program to carry out the same computations!

CONCLUSIONS

The objectives of the user interface project were to construct a portable, consistent,
appropriate interface to a project support environment which improved user’s pro-

E :
Tool Edit | |Pick Object Frame Type
e

E!irbrmsa | g I

FDL Attributes for sign

Field Label: Home Directory
b Action:
Field Value:

Validate: r_directory
Prompt message: Enter directory name
Generate List:
Information message: Not a directory

Help message: ¢sed with the Home button

Database description:

Graphics image:

Figure 10. The interface creation tool

390 1. SOMMERVILLE ET AL.

ductivity by speeding up system interaction, reducing learning time and reducing user
errors. The system which has been built offers a consistent interface (the ‘control
panel’), includes facilities to help users learn about the system, and is portable inasmuch
as it can be moved to another machine by rehosting the applications interface software.

We believe that we have been successful in achieving our initial objectives but, at
the time of writing, we have not yet carried out any formal evaluations of the ECLIPSE
UI. However, hooks and tools for evaluation have been provided with the interface
and it is intended to start an evaluation program in 1988. This will involve theoretical
interface modelling, user observations and questionnaires and analyses of the message
logs collected by the system.

ACKNOWLEDGEMENTS

The work described here was carried out as part of the ECLIPSE project, sponsored
by the Alvey Directorate, U.K. Thanks are due to all of the collaborators in that
project, namely Software Sciences Ltd., CAP Group Ltd., Learmonth and Burchett
Management Systems Ltd., University of Strathclyde, University of Lancaster, and
University of Wales, Aberystwyth.

REFERENCES

1. P. Hitchcock, A. Hall and R. Took, ‘An overview of the ASPECT architecture’, in J. McDermid
(ed.), Integrated Project Support Environments, Peter Peregrinus, London, 1985.

2. R. Took, ‘The presenter — a formal design for an autonomous display manager’, in I. Sommerville
(ed.), Software Engineering Environments, Peter Peregrinus, London, 1986.

3. L. A. Price and C. A. Cordova, ‘Use of mouse buttons’, ACM SIGCHI Bulletin, 262266 (1983).

4. T. S. Tullis, ‘Designing a menu-based interface to an operating system’, ACM SIGCHI Bulletin,
79-84 (1985).

5. A. Marcus, ‘Screen design for iconic interfaces’, ACM SIGCHI’85 Conference, Tutorial 4, 1985.

6. A. J. Dix, M. D. Harrison, C. Runciman and H. W. Thimbleby, ‘Interaction models and the
principled design of interactive systems’, Proc. Ist European Conf. on Software Engineering, Stras-
bourg, 1987, pp. 137-148.

7. W. Teitleman and L. Masinter, ‘The Interlisp programming environment’, in D. Barstow, H. E.
Shrobe and E. Sandewall (eds), Interactive Programming Environments, McGraw-Hill, New York,
1984.

8. W. Teitleman, ‘A tour through Cedar’, IEEE Trans. Software Engineering, SE-11, (3), 285-302 1985.

9. A. Goldberg, Smalltalk 80: The Language and its Implementation, Addison Wesley, Reading, Mass.,
1984.

10. P. Reid and R. Welland, ‘Software development in view’, in I. Sommerville (ed.), Software Engineer-
ing Environments, Peter Peregrinus, London, 1986.

11. J. Cartmell and A. Alderson, ‘The ECLIPSE two-tier database’, Proc. Ist European Conf. on Software
Engineering, Strasbourg, 1987, pp. 137-148.

12. S. Beer, R. Welland and 1. Sommerville, ‘Software design automation in an IPSE’, Proc. Ist European
Conf. on Software Engineering, Strasbourg, 1987, pp. 97-108.

13. R. Pierce, ‘Ada in the ECLIPSE Project Support Environment’, Proc. Int. Ada Conf., Paris, 1985.

14. H. Simpson, “The MASCOT method’, IEE/BCS Software Engineering ¥., 1, (3), 103-120 (1986).

15. G. Cutts, Structured Systems Analysis and Design Methodology, Paradigm Publishing, London, 1987.

16. A. Albert Alderson, F. Frank Bott and M. Falla, ‘An overview of ECLIPSE’, in J. McDermid (ed.),
Integrated Project Support Environment, Peter Peregrinus, London, 1985.

17. M. F. Bott (ed.), The ECLIPSE Integrated Project Support Environment, Peter Peregrinus, London,
1988.

18. 1. Campbell, ‘PCTE proposal for a public common tool interface’, in I. Sommerville (ed.), Software
Engineering Environments, Peter Peregrinus, London, 1986.

19. F. Gallo, R. Minot and I. Thomas, “The object management system of PCTE as a software engineering
database management system’, ACM SIGPLAN Notices, 22, (1), 12-15 (1987).

20

21

22.

23

24.

25,

26.

THE ECLIPSE USER INTERFACE 391

. 5. E. Engel and R. E. Granda, ‘Guidelines for man-display interfaces’, Technical Report TR00.2720,
IBM, Poughkeepsie, NY. 1975.

M. M. Danchak, ‘Alphanumeric displays for the man—process interface’, Advances in Instrumentation,
32, (1), 197-213 (1977).

E. 5. Cohen, E. T. Smith and L. A. Iverson, ‘Constraint-based tiled windows’, IEEE Computer
Graphics and Applications, 6, (5), 35-45 (1986).

J. Walker, ‘Implementing documentation and help online’, Tutorial 9, ACM SIGCHI’85, San Franci-
sco, 1985.

R. W. Scheifler and J. Gettys, “The X window system’, ACM Transactions on Graphics, 5, 2)
79-109 (1986).

J. D. Smart, ‘A man-machine interface management system for Unix’, Proc. Uniforum 1986 Conf.,
Anaheim, CA, 1986.

D. England, ‘A user interface design tool’, Proc. Ist European Conf. on Software Engineering,
Strasbourg, 1987, pp. 119-126.

