Direct manipulation of an

object store

by Pete Sawyer and Prof. Ian Sommerville

Integrated project support
environments (IPSEs) are intended to
provide a cohesive and integrated set of
tools to support the process of design
and development in software
engineering projects. Much current
research is concentrated on maximising
the degree to which these tools can be
integrated. This paper briefly describes
the architecture of a prototype IPSE
which attempts to achieve a high degree
of integration using techniques drawn
from the disciplines of intelligent
knowledge-based systems, office
automation and object-oriented
programming. The remainder of the
paper deals with the design of a user
interface to the IPSE based on direct
manipulation. It argues that this
provides a consistent and integrated
method with which users can interact
with the objects in the IPSE’s object
store.

1 Introduction

The current generation of integrated project support
environments (IPSEs) provides tool kits designed to aid the
construction of large software engineering systems. The
breadth of support and degree of integration which these
IPSEs achieve are generally greater than that provided by
the earlier programming environments from which they are
linearly descended. Partly as a result of their ancestry,
however, they fall some way short of providing completely
integrated support because they embody the notion that the
tools should be applied to project components by users.

It has been suggested that intelligent knowledge-based
systems techniques have the potential to give software
engineering tools a degree of built-in intelligence which

214

would reduce their dependence on user-initiated actions. For
this idea to be successful, these smart tools would need to
be part of an IPSE structure which itself possessed a degree
of knowledge about the components residing within it. The
IPSE would need to be able to view a project as a cohesive
whole, instead of each component in isolation. It is clear
that if an IPSE capable of achieving these goals is to be
built it will necessitate a radical departure from the design
of existing IPSEs.

The ISM project is intended to demonstrate the potential
of the application of artificial intelligence (Al) techniques to
the support of software engineering projects. The project’s
resources have been concentrated on designing a set of
basic facilities for a knowledge-based IPSE and producing
demonstration applications of support for some of the high-
level activities involved in software engineering. These have
historically received less attention than lower-level,
programming-oriented activities which many existing
environments support.

The ISM knowledge base includes a model of each project
which it supports. This project model encapsulates the
knowledge which, early in the history of programming
environments (Ref. 1), was identified as being necessary for
tackling the problem of complexity in large software engin-
eering projects. Information about a project, its aims, pro-
ducts, resources, staff etc. is embodied within ISM as
objects which encapsulate the system’s knowledge about
them. ISM is able to reason about an evolving project and
take over some tasks which, in current IPSEs, are the
responsibility of humans.

If ISM is to provide truly integrated support for software
development, it is essential that users are presented with a
consistent way of viewing the state of the system. A user
interface based on the concept of direct manipulation of ISM
objects is being designed. It is argued that this presents the
user with an easy-to-use interaction style and provides a
natural mapping on to the underlying data representation.

"2 Background

In common with any engineering task, the activity of soft-

Software Engineering Journal November 1988

ware engineering can be aided by the use of appropriate
tools. Much effort has been invested in producing software
engineering tools: compilers, symbolic debuggers etc. Pro-
gramming environments arose from the idea of collecting
tools together into sets where they could be invoked as
appropriate during the course of software development.

UNIX (Ref. 2) is a successful example of such a program-
ming environment. Here the sets of tools provided by the
various shells are superimposed on the underlying oper-
ating system kernel; components associated with software
development (source code, object modules, documents etc.)
are simply held in the filestore. In programming
environments like UNIX, the user (developer, programmer)
has full responsibility for the application of the correct tools
to the appropriate components of the design exercise. The
environment itself encapsulates little information regarding
interdependencies of tools and components. For this reason,
a programming environment such as UNIX cannot be
regarded as providing integrated support; rather, it is a col-
lection of independent, manually invoked tools.

A project support environment differs from a program-
ming environment by providing support for all the activities
involved in a project, from initial specification through to
product maintenance. Only if that support is provided in
such a way that the environment views the various tools,
not in isolation, but as a set of interdependent activities, can
it be said to be an infegrated project support environment.

Aspect (Ref. 3) and Eclipse (Ref. 4) are typical of current
IPSE designs in which a tool set is layered around a project
database, access to which is governed by an object manage-
ment system. The object management system provides
mechanisms for maintaining consistency among project
components to a greater degree than filestore-based
environments are capable of.

The current generation of IPSEs embodies a fundamental
limitation to the degree of integration which they achieve
because they are essentially passive. That is, they exhibit
integration on two levels:

e data integration via a database management system
e user interface integration via a consistent metaphor and
standards.

They do not support activity integration in as much as the
activities involved in the software process are initiated
entirely by user actions.

ISM is an attempt to address the problem of activity inte-
gration. It uses knowledge-based systems techniques to
tackle the relatively unstructured nature of the software
process and the non-deterministic patterns of activity acti-
vation.

The advantages of an active IPSE with activity activation
are as follows:

e It is possible to use a model of the development process
to drive that process. Development process activities may
be associated with IPSE agents which are activated asyn-
chronously by the presence or absence of some data. Thus
process quality and hence product quality are improved
because some of the uncertainties and informality of human
process management are removed.

e Software productivity is increased because developers
are given more ‘intelligent’ assistance by the environment.
They need not set out all actions in detail, but may simply

Software Engineering Journal November 1988

specify a goal which the active environment should attain.

e Resource management is improved because the
environment can maintain a detailed map of available
resources and schedule these accordingly. Incomplete user
knowledge of resources is often a major constraint on devel-
opment.

The ISM environment replaces the concept of tools by that
of agents. In contrast to current environments where tools
are layered around the IPSE kernel, ISM consists of a feder-
ation of agents which embody sufficient contextual know-
ledge to be invoked on an opportunistic basis. ISM is able to
reason about an evolving project, integrate the various
transformations which need to be applied to components,
and automate many software process tasks. The ability to
reason about a project and generate transformations auto-
matically embodies the IPSE with the attribute of being
active.

ISM’s active attributes enable the environment to assume
responsibility for much of what has hitherto been part of
the IPSE user’s workload. An example of this is provided
by an intelligent planning agent that would automatically
generate alternative plans for re-scheduling staff and
resources in the event of a project milestone failing to be
delivered on time. Bug fixes would be automatically distrib-
uted to recipients of affected system versions by an intelli-
gent configuration management agent.

In both Aspect and Eclipse attempts have been made to
provide user interface dialogue styles which are easier to
learn and more informative than the command languages
employed by earlier environments. The Eclipse user inter-
face employs a control panel metaphor (Ref. 5). Users inter-
act with tools by using a pointing device to select graphical
images on their workstations’ screens as if they were press-
ing buttons, setting toggles etc. on a piece of hardware. A
user interface design tool (Ref. 6) extends the metaphor by
allowing users to define the format of control panels inter-
actively, so that a control panel can itself be designed using
a control panel.

The user interface work in the Aspect project (Ref. 7) has
been more fundamental and has involved the development
of an autonomous display manager. This allows for the
rapid construction of user interfaces and has, in fact, been
demonstrated by developing a direct manipulation system
for the Aspect data model.

Smalltalk-80 (Ref. 8) is an environment which by our cri-
teria must be considered a programming environment
rather than an IPSE, but it shares two important features
with ISM. These are its object-oriented architecture and the
intimate relationship between the environment and its user
interface. Smalltalk’s designers realised that if the full
power of the environment and its language were to be prop-
erly exploited then a powerful and fully consistent user
interface would be required.

In Smalltalk-80, interaction with the environment is per-
formed through the browser. The browser allows objects
within the system to be viewed both in terms of their inter-
nal representations and their external interfaces. Writing
programs in Smalltalk-80 is achieved by using the browser
to define new classes of objects as sub-classes of existing

" classes. Smalltalk-80 has proved to be very effective for the

rapid prototyping style of programming, largely as a result
of the powerful and consistent user interface.
These user interfaces are examples of the direct manipu-

215

lation style of interaction (Ref. 9). Direct manipulation inter-
faces allow items to be displayed continuously for the
duration of the user's interest in the items. Instead of
having to know a complex command syntax, users perform
physical actions like pressing a button, or selecting a menu
item with a pointing device. When some operation has been
carried out on anebject, the effect 1s immediately visible to
the user.

For a large class of interaction operations, direct manipu-
lation reduces the amount of syntactic knowledge which
users must possess, permitting them to concentrate on the
task domain semantics. Users of well designed direct
manipulation interfaces are given the impression of being
inside a model world (Ref. 10) represented by the interface
itself. By contrast, the command language nteraction style
employed by many environments requires that users know
not only what they wish to do, but also the syntax of the
commands required to make it happen. The command lan-
guage is a medium through which users and the system
have a conversation about abstract entities not explicitly
represented on the user’s screen.

The ISM user interface uses a dynamic forms metaphor
to permit direct manipulation of ISM objects. Objects are
viewed as forms, where an object’'s attributes are repre-
sented as form fields and permissible actions which can be
performed on the object are displayed as buttons. Objects
may embody relationships which cause automatic propaga-
tion of values across attributes, and it is this feature that
provides the dynamic properties of forms within ISM. New
objects and object classes are themselves created by filling
in forms. In addition to imposing a highly consistent style
of mteraction, dynamic forms provide a useful framework
for encapsulating domain-specific knowledge which can be
used to provide an appropriate degree of automation.

3 An object-oriented IPSE architecture

The ISE{ environment has an actor-based architecture
which maps naturally on to its functional view of a collec-
tion of independent, co-operating agents. Agents are asyn-
chronous processes holding responsibility for different
aspects of poject support, and include ISM users who are
treated as human agents. Agents respond to messages from
other agents, by invoking behaviours to perform some
action. Messages may arrive for processing in any order,
and a behaviour responding to a message may involve
issuing messages to other agents. The response time of an
agent’s behaviour may vary greatly, and in the case of
human agents be of the order of months for certain tasks.
ISM agents embody knowledge local to their domain of
responsibility. Changes to the state of the environment are
performed by the application of this knowledge to the sym-
bolic manipulation of project artefacts. An object-oriented
programming paradigm has been adopted for the implemen-
tation of project artefacts. These ISM objects encapsulate
both local state data (attributes) and the operations which
may be performed on that data (methods). Hierarchical
relationships between classes of objects are represented by
inheritance networks; attributes and methods defined for an
object class are inherited by any sub-classes of that class.

An object-oriented extension to Prolog (ISML) is used as -

the ISM implementation language. Among Prolog’s distinc-
tive features are its declarative style, which permits know-
ledge bases to be rapidly prototyped using facts and rules.

216

This characteristic 1s exploited by those components of ISM

agents which perform logical inferences to reason about.
project artefacts and determine appropriate reactions to

changes of the project state. ISML’s object-oriented exten-

sion imposes a partitioning of the otherwise flat Prolog

name space and enforces a discipline of manipulating

Wodies of related data as objects instead of as arbitrary sets

of facts and rules.

ISM 1s implemented on top of the UNIX operating system
running on a network of Sun-3 workstations. ISML 1s used
as an inference engine and a knowledge base, but there are
classes of activity for which its use is inappropriate. Many
existing Sun and UNIX tools are integrated into the
environment both as individual agents and as components
of agents. Examples of these include C compilers, mail
transfer programs, window management systems etc.

The aim of the ISM project was to demonstrate the feasi-
bility of constructing an environment based on ‘mtelligent’
agents. Practical considerations (performance, space uti-
lisation etc.) were of secondary importance. In general, the
implersentation of an object store in an applicative language
like Prolog is probably too inefficient for lirge-scale use.
However, the direct manipulation system described here
could be readily supported on top of any object store.

3.1 The ISM federation

The ISM federation consists of a collection of active
agents, each responsible for some aspect of project support
and for managing a part of the ISM knowledge base. These
include a project management agent, a configuration man-
agement agent, a communication agent etc.

Project artefacts are themselves ISM objects which are
logically passed around inside the ISM system. When a user
writes a piece of C code for example, an instance of the class
¢_source_code is created. To announce a project meeting, an
nstance of the class meeting announcement 1s created, and
this has very different processing requirements than the
c_source_code object.

it 1s intended that ISM will possess enough knowledge to
apply the appropriate agent(s) to an object and that agents
will embody sufficient local knowledge to apply themselves
in the correct way. Thus a compiler agent would invoke the
appropriate compiler depending on the language of the code
to be compiled. Should the attempt to compile fail, then an
object containing the information relating to the failure
would be created and passed to the user who submitted the
object containing the source code.

ISM users are treated as members of the set of agents, so
that to the ISM knowledge base they will loock like any
other agent. Consider a project member Fred, who might be
a member of the class user with the following attributes:

Name :Fred Smith

Staff number 27

Grade ‘programmer
Languages :ada, ¢, pascal, prolog
Projects JISMZ, nimrod aew
Holiday :03/06/88-19/06/88

A mazler agent incorporates knowledge about mail distribu-
tion. Given user information, the ISM mailer would infer
that a meeting announcement for (say) ISM2 which does not
fall within the period 3rd to 19th of June 1988 should be

Sofiware Engineering Journal November 1988

sent to Fred and any other user with appropriate attribute
values. Whoever issued the meeting announcement can be
relieved of the task of explicitly sending copies to all inter-
ested parties and of storing a file copy.

4 Manipulating objects using dynamic
forms

The principal characteristic of the ISM user interface is that
it integrates users with the environment. Whether an ISM
agent is actually a person or a program is largely transpar-
ent to the environment because the same communication
protocols are used for both.

Users interact with the environment by directly manipu-
lating objects within it. This means that a user does not
have to remember a host of different command styles for
different operations. In the UNIX C shell, for instance, users
are expected to know which arguments, if any, are associ-
ated with particular commands. Experiments undertaken as
part of the ISM workt suggest that complex command lan-
guages such as those used by UNIX are deficient in this
respect, especially among novice users, or those who are
unable to invest a great deal of time in familiarising them-
selves with a particular interaction style.

The ISM user interface approach has been to use a
declarative rather than a command-driven style of inter-
action. To initiate some action, a user supplies information
to the system and ISM decides what to do with it. To avoid
natural language processing, some structure has to be
imposed on the user-supplied information. Dynamic forms
structure the way users interact with ISM while providing a
framework which can exploit built-in knowledge.

Form-based user interfaces are not a new idea (Ref. 11),
and have been used in data processing systems for many
years. Recent research has been devoted to using them as
front ends to systems which run on machines equipped with
high-definition bit-mapped displays and pointing devices.
Cousin-Spice (Ref. 12) is an example of such a system;
Hayes describes how information in a form is structured
into two types of field. These embody information rep-
resenting commands, and that representing parameters. The
former type of field (henceforth referred to as a button)
merely needs to be selected by the pointing device to
execute the command (pressing the button), while the latter
requires a value to be associated with it by typing into a
space adjacent to the field’s label.

Ordinary form systems do not, however, exploit the struc-
ture imposed on information to the degree that dynamic
forms can, although simply providing users with a set of
fields to indicate the extent of information required can
often be helpful.

Dynamic forms are similar to what, in the Information
Lens system (Ref. 13), are called semi-structured messages.
Malone observes that these semi-structured messages
‘enable computers to process a much wider range of infor-
mation than would otherwise be possible’. The structure

t The experiment took the form of a questionnaire which asked
UNIX users questions about how they used their systems. The
questionnaires were given to a broad spectrum of users, from
novices to ‘gurus’ both within academia (Keele and Lancaster
Universities) and industry (Software Sciencies Ltd.). The subject
evidently arouses strong passions among all categories of users,
but most expressed some dissatisfaction with the interaction style.

Software Engineering Journal November 1988

imposed by the forms, as a framework, can encapsulate
much information in fields which would otherwise have to
be extracted by parsing of free text. It is relatively simple,
given the structure of a form fype, to express interdepen-
dencies between fields as if the form were a spreadsheet.
This feature enables much automatic processing of informa-
tion.

Dynamic forms’ power of direct manipulation stems from
the fact that they are merely the physical representation of
ISM objects. Thus a user filling in a form is actually cre-
ating an object. Any object visible to the ISM knowledge
base can be viewed as a dynamic form.

As suggested above, forms are typed; i.e. a different form
exists for each kind of operation. One would expect that a
form used to build an object module from the most recent
versions of its components would have a different set of
fields and buttons from a form used to announce a project
meeting. Form types can be, and usually are, defined hierar-
chically. For instance, the meeting_announcement form type
is a specialisation of the more general mail type. This
ability to define form types incrementally maps neatly on to
the class inheritance features of ISML in which forms are
implemented.

New form types can be defined by any ISM user, simply
by defining a new object class. Form types within existing
data processing systems are typically defined by a system
administrator, and ordinary users are restricted to using
what they are provided with. Within ISM, however, it is
recognised that individual users may not only have very
specific personal requirements, but may also make a valu-
able contribution to providing a rich set of form types for
particular applications across the ISM system.

The meeting announcement form type, introduced above,
is defined as an object class, and is analogous to an empty
form template. Fig. 3 illustrates the creation of an instance
of such a form. By filling in a meeting announcement form
we effectively create an instance of that class. By filling in a
field value we assign values to the attributes, and by press-
ing a button we send a message which invokes the corre-
sponding method.

The ISM dynamic forms interface can be summarised as
follows:

e Dynamic forms are typed, abstract entities representing
objects within ISM. There is a one-to-one mapping of forms
to objects, where a form is the physical representation of an
object on a user’s workstation screen. To interact with a
form is to directly manipulate the form’s underlying object.
New form types can be defined hierarchically, with new
types inheriting features from their super-types.

e Fields are typed, and can be assigned default values.
Inter- and intra-object relationships between fields
(attributes) can be expressed. This permits ISM to attempt
to complete as much of the form as possible, as and when
the information becomes available, and to oversee a user’s
interaction with an object in real time.

e Form buttons map on to object methods. Methods rep-
resent an object’s external procedural interface. A method is
essentially a procedure which may be called by sending the
owning object a message; thus pressing a button on a form
at the user interface results in a message being sent to the
underlying object in the ISM object store. Syntactically, a
message consists of a selector, corresponding to the name of
the method to be called, followed by a list of one or more

217

ISM

ISM object store

object library
agent

user interface

g agent

mailer agent

ISM agents

Fig. 1 Logical view of the user interface’s relation-
ship to ISM

arguments. Arguments are typed and declared with the
object method definition. Argument values are context
dependent and their type declarations serve to indicate the
range of values which may be assigned. The argument
typing scheme is necessary to assist the resolution of argu-
ment values at run time. Users are, as far as possible, pro-
tected from the need to know about the details of a method
declaration in terms of arity and argument types in order to
call the method. Examples of method argument types
include:
[the id of the object to which the message is sent
[0 the value of one of the object’s attributes
(] a value which is not embodied by the object’s name
or attributes (for example, an object of the class document
may have a print method with an integer argument
specifying the number of copies required; a textual string
giving an English description of the criteria constraining
the range of argument values is included in the argument
type declaration; this is used to prompt the user for an
argument value via a pop-up form in the event of the
method button being pressed).

4.1 ISM user interface functionality

The principal requirements of the ISM user interface are
that users must be able to browse the object store and
manipulate its contents. In other words, the user needs to be
able to find out what is in the object store, look at individ-
ual objects, create new objects, modify existing objects (but
only if permitted to do so) and define new object classes.

Three components implement the ISM user interface:

e The user interface agent itself is responsible for physi-
cally presenting objects on the screen, handling user input,
mouse clicks etc. It performs the translation of objects into
forms based on the simple attribute-to-field, method-to-
button mapping.

e The object library agent is essentially a server to the
user interface. Requests from the user for information about
some object or group of objects is relayed by the user inter-
face agent to the object library. The object library searches
the object store, collects information about the required
object(s) and returns information regarding class instances,

218

object attributes and methods etc. to the user interface. By
constraining the way operations are performed on objects
by the user interface, the object library ensures that the
integrity of the object store is maintained and that the user
interface is protected from unpredictable behaviour such as
Prolog backtracking.

e The mailer agent is responsible for what happens to
objects once they have been created or modified by the user
interface. As an example, an instance of the class compile
would be sent to the compiler agent for processing. This is
a logical view of course; in fact the mailer would send a
compile message to the compiler agent with parameters
unified with attribute values of the instance of the compile
class — source code location, compiler options etc.

Fig. 1 represents a logical view of the relationship of the
ISM user interface to the ISM as whole.

Browsing the object store:

Browsing the object store can be done on two levels: a
definition level and an instance level. The definition level
provides information about what classes exist, whereas the
instance level permits the manipulation and creation of par-
ticular class instances. To date, work has been concentrated
at the instance level.

Browsing at the instance level enables users to see what
instances of a class exist. A user can view individual
instances as completed forms, and create a new instance by
filling in a blank form.

Fig. 2 illustrates an example of browsing at the instance
level. The narrow window labelled ISM user interface,
containing the three buttons labelled Browse, Define and
Quit, represents the top-level ISM control panel:

e The Browse button permits objects within the object
store to be manipulated, and objects representing new
instances of existing object class definitions to be created.

e The Define button permits the definition of new object
classes.

e The Quit button terminates the user’s dialogue with
the system.

In the scenario represented by Fig. 2, the user has pressed
the Browse button, causing the user interface to send a
message to the object library requesting an instance of the
class view instances to be created and displayed as a form.
The object class view_instances is designed specifically to
facilitate the viewing of instances of other object classes.
Once created by the object library, the instance of
view_instances resides within the ISM object store until the
user interface instructs the object library to delete it.

The instance of view instances is represented by the
form labelled view_instances: view instances 0
which partially overlays the top-level control panel. Because
objects of this class exist only for the duration of their
display, users are not required to assign them names.
Instead, ISM generates unique identifiers of the form
view_instances {(n).

The form view_instances: view instances 0 con-
sists of two sub-windows:

e A control panel containing buttons representing the
messages defined for the class view instances. These are
the methods close, delete and send, which are generic to

Software Engineering Journal November 1988

all ISM objects and have the following functionality:
(1 With the close method, object classes such as
view_instances, which are designed for the purpose of
communicating information between users and the
environment, are defined to be a subclass of display_class
in which the definition of the close method is unified
with that of the delete method. This is not the case with
ISM object classes representing more persistent items of
data in which the method merely removes the form from
the display.
[0 The delete method removes the form representing
the object from the display and deletes it from the ISM
object store, releasing the space which it occupied. The
operation of this method is subject to constraints which
determine whether deletion of the object is permissible.
(0 The send method removes the form representing
the object from the display and dispatches it to the mailer
for appropriate processing by other ISM agents.
The methods create instance and view_instance are
described in the sections on creating and viewing an
instance.
e The lower sub-window contains four fields: instances,
object class, subclasses and superclasses, corre-
sponding to attributes defined for the class view_instances.
The icons labelled set (a train set) and unique (a large
number one) adjacent to the attributes indicate their type.
Attributes of umique type may have a maximum of one
value; set types may have zero or more non-duplicated
values. Two additional classes of attributes exist: bag and
bigtext. An attribute of type bag may have zero or more,
possibly duplicated, values. bigtext attributes are used for
unstructured attributes — source code, mail text etc. By
default, the first value of set or bag type attributes is dis-
played by the form. Users may traverse the list of values by
clicking a mouse button on the attribute name. Alterna-
tively, a full listing of the values may be viewed by selec-

ting the view all option from an attribute’s menu. Similar
facilities exist to permit the viewing of bigtext attributes.

Viewing an instance :

The example illustrates a stage of a user’s interaction
where values have been assigned to attributes, and the
method view_instance has been invoked.

When first created, no values are associated with an
instance of the class view instances, and the user is pre-
sented with a blank form. In the example, the user has
assigned a value to the object class attribute, indicating
that he wishes to inspect instances of the class
meeting _announcement.

Constraints associated with object class embody relation-
ships between the other three attributes and enable values
of the other three attributes to be automatically inferred. On
receipt of the value of object class, the following values are
generated:

e The attribute superclasses has been assigned the
value mail, which represents the sole superclass of the
meeting announcement class.

e The null value has been generated for the subclasses
attribute, indicating that meeting announcement represents
a leaf of the inheritance network.

e A set of values for the instances attribute have
been generated. These represent instances of the class
meeting announcement resident within the ISM object
store. The value jun_23 tech mig is currently visible.

In the example, the user has opted to inspect the
jun_23 tech mtg object by clicking on the view instance
button. The message view instance has been sent to the
object library. The object library has resolved the value of
the method’s single argument to be the currently selected
value of the instances attribute and sent the message

view_instances: view instances 8

1instances
set

1

unique

object_class

: jun_23_tech_mtg

: meeting_announcement
meeting_announcement: jun 23 _tech mtg

subclasses

superclasses

Tocation i Macclesfield

unique

meeting_type : technical

unigue
date

subject

view all |

-uelzte all

Fig. 2 Viewing an instance of the class meeting announcement

Software Engineering Journal November 1988

219

‘view_instance(jun_23 tech_mtg)' to the view_ instances 0
object residing within the object store. view_instances 0
has responded by searching the object store for the required
object and returning its details to the user interface agent
via the object library.

On receipt of the message containing the object’s details,
the user interface agent has mapped them onto the form
labelled meeting announcement: jun_23 tech
mtg in the bottom right-hand part of Fig. 2.

The to attribute belonging to the jun 23 tech mtg form
illustrates the menu options associated with set and bag
attributes. The options available are view all, delete all
and add value. These supplement the editing operations
which may be directly applied to a selected value — namely
to delete or modify it.

Whether such editing operations on values may be
accepted by the object library is dependent on the con-
straints associated with the attribute definitions. Some
objects (for instance those representing archive components
of a project’s milestones) may be immutable. An attempt to
modify such an object would spawn a warning message
form.

Creating an instance:

Fig. 3 illustrates the creation of a new instance of
the class meeting announcement by invoking the
create_instance method. This causes a blank form labelled
meeting announcement: NULL representing the
class meeting announcement to be displayed. The example
shows the form in a state of partial completition by the
user.

Note that an additional field, instance name, is
displayed in the attributes sub-window of the
meeting announcement class form. Objects of the class
meeting_announcement are persistent in the sense that they

exist for longer than the duration of the user’s dialogue with
the environment. The user is therefore required to 2ssign
the object an identifier before invoking the send or quit
methods.

The subject attribute again illustrates dynamic forms’
ability to express inter-attribute constraints which automati-
cally infer values of attributes from user-supplied attribute
values.

Constraints associated with the subject attribute have
used the new subject value to parametrise a consultation of
the ISM knowledge base and so infer the set of project
members to which the message should be sent. These have
been duly assigned the to attribute. It is recognised that
such inferred values may not be correct in every context,
and (as with any attribute value) the user has the power to
edit them, provided that the values are not explicitly con-
strained to be immutable. In the case of the to attribute,
values may be added or deleted, but the system will com-
plain if an unknown name is added to the set.

On completion of the form, and assuming (as will usually
be the case) that the user wishes the new object to be pro-
cessed immediately, the send button is pressed. The object
library creates an object with identifier and attribute values
as allocated by the user. The object is then sent to the
mailer agent, which holds responsibility for forwarding it to
the appropriate agent(s) for processing. In the case illus-
trated, this would involve sending the object’s details to
each of the project members held by the to attribute and a
copy to a project_history agent.

Users are not constrained to assign values to every attrib-
ute when creating an object, but will be requested for
further information if that supplied is inadequate. It is left
to the various processing agents to attempt to make the
best sense of information encapsulated by an object’s attrib-
utes. This is an issue being addressed by the design of the

=
(create_instance)J((view_instance)

instances

object_class

subclasses

: jun_23_tech_mtg

: meeting_announcement

superclasses

AL 'kiﬁy

t

dcl-1sm2% screendump > f1g3

instance_nsme @ sep 2_tech mtg
location
meeting_type
date

subject

¢ user interface

to

Fig.3 Creating an instance of the class meeting announcement

220

Software Engineering Journal November 1988

ISM mailer agent (Ref. 14). The mailer agent provides a
framework capable of encapsulating the knowledge required
to reach decisions about the appropriate processing of dif-
ferent objects.

Defining a new object class :

The ISM user interface exploits the object-oriented class
inheritance mechanism for the incremental definition of new
object classes by permitting the sharing of code across
classes. The possession of the generic methods, close,
delete and send by all ISM objects is an example of this
form of re-use.

Fig. 4 shows an example of a form representing an
instance of the class class_definer used to create new class
definitions. The example illustrates the definition of a new
object class initiated by pressing the Define button on
the top-level ISM control panel. In the scenario, the class
tech_meeting announcement is being defined as a special-
ised case of the more general meeting announcement class.

The object class definer 0 has eight sub-windows,
described in turn from the top:

e The two top-most sub-windows represent the usual
control panel of method buttons and a sub-window contain-
ing those attributes specific to class definer instances.

The close and delete methods have the usual effect.
The send method will cause the information held by the
form to be used to (attempt to) define a new object class. If
successful, the class_definer object will be deleted from the
object store; otherwise, it will be retained for debugging
purposes.

The remove method will selectively delete any of the
new class’ method or attributes.

Attributes class, superclasses and subclasses are
all relative to the new class being defined. A user must

assign a value to class, but the other two may be left with
no value. If one or more values are assigned to superclasses,
they must all be the names of existing classes. In this case
the new class will inherit all the superclasses’ attribute and
method definitions unless explicitly overloaded.

e The next two sub-windows on the right-hand side of the
form are reserved for the methods and attributes which will
be defined for the new class.

The upper left-hand sub-window labelled methods is
used to create method definitions for the new class. By
clicking on the button icon, a button will appear in the
adjacent sub-window. The user may then type the method’s
selector (name) on the new button. In the example, a method
book room has been defined.

The left-hand sub-window labelled atributes contains
the four attribute type icons. The user can define an attrib-
ute by clicking on the icon of the desired type.

In the example four attributes have been defined:
subject, description, location and time. Note that
attributes subject and location are already defined for the
class meeting announcement, but these are overloaded by
the new definitions for all instances of the new class.

e The bottom left and right sub-windows are provided to
permit the user to define method bodies and attribute con-
straints.

In the example, the user has selected the subject attribute
with the mouse. The user interface has interpreted this as a
desire to define a constraint for the attribute and
emboldened the attribute name. The smaller of the bottom
sub-windows indicates the current status of its larger neigh-
bour; in this case that a constraint for the subject attribute
is being defined.

The larger sub-window has enhanced text editing facili-
ties. The example illustrates a portion of ISML code defin-
ing an attribute constraint designed to automatically infer

NG
%

: tech_meeting_announcement

superclasses: meeting_announcement,

subclasses

subject

description

location

time

(1] Done IsM
dei-1sm2% screendump > figd

= [Z]SubJect infer_Tocation(Subject) .

] infer_location(Subject) i~

=] infer_location(_)|

done_at(project_model,Subject,Site),
atom(Site),
infer_value(location,Site)

Fig. 4 Defining a new object class

Software Engineering Journal November 1988

221

the value of the location attribute on receipt of a value for
the subject attribute.

5 Future development

At present, browsing the object store at the definition level
merely allows the user to view a list of all extant object
classes. As the number of object classes belonging to a
project grows, users may experience difficulty identifying
those which are of interest. For example, a user may
suspect that a class exists which embodies most of the func-
tionality he requires but may not know where to look for it
or what it is called.

The user interface should provide a mechanism to permit
users to describe the features they require and perform
some pattern matching in an attempt to identify a sub-set of
potentially useful classes. As an example a user may issue a
request of the form:

‘show me an object class possessing attributes [name,
grade] and methods [assign]

which would return a list of classes with one or more of the
attributes/methods specified.

This mechanism would additionally provide enhanced
assistance for browsing at the instance level :

‘show me an object possessing attributes [[name, Fred],
[grade, programmer]]

However, in the absence of any method of focusing the user
interface’s search of the object store, the mechanism would
incur prohibitive performance overheads. The ability to
define hypertext-like links between heterogeneous but
related objects (objects of different classes but with similar
creation times or which refer to the same project component,
for example) is currently under investigation as a potential
partial solution to the problem.

When defining a new class’ method body or attribute con-
straint, users currently have to program in ISML. It is
unreasonable to expect users of ISM, who may be using the
environment to develop systems in Ada (say), to be familiar
with ISML. Work is currently in progress to identify a
range of common classes of attribute constraint which may
be expressed in a more concise syntax as a simple pro-
duction rule script.

6 Conclusions

This paper describes a user interface to an IPSE based on
an object-oriented programming paradigm. The power of
the user interface is derived from the simple mapping of
forms onto objects.

By treating every object as a form, the user interface pro-
vides a simple and consistent interaction metaphor which
embodies a degree of built-in automation and avoids
parsing of free text. Users directly manipulate the contents
of the environment instead of conversing with it through an
abstract command language.

The architecture of the environment is one of a federation
of co-operating agents. A high degree of integration is
achieved by modelling a project as a process and by the
adoption of a uniform communication paradigm between all
the environment’s agents. Users are considered to be

222

members of the environment’s federation of agents, each of
which have an explicit set of responsibilities.

Project artefacts are embodied as objects and iiiclude
messages between users, from the environment to users,
and from users to the environment. Objects are logically
passed around inside the environment for processing by
appropriate agents. New objects are created simply by the
process of filling in a form in which the environment per-
forms dynamic constraint checks and attribute value infer-
ence.

7 Acknowledgments

Thanks are due to our collaborators in the ISM project, Soft-
ware Sciences Limited and the University of Keele. The
research work is funded by the Alvey Directorate, UK.

8 References

1 WINOGRAD, T.: ‘Bregking the complexity barrier (again). Pro-
ceedings of ACM SIGPLAN-SIGIR Interface Meeting on Prog-
ramming Languages — Information Retrieval, Gaithersburg,
MD, USA, 1973

2 BOURNE, SR.: ‘The UNIX system’ (Addison-Wesley, 1982)

3 HALL, J.A,, HITCHCOCK, P., and TOOK, R.: ‘An overview of
the ASPECT architecture’, in McDERMID, J. (Ed.): ‘Integrated
project support environments’ (Peter Peregrinus, 1985)

4 ALDERSON, A., BOTT, MF.,, and FALLA, ME.: ‘An overview
of the ECLIPSE project’, in McDERMID, J. (Ed.): ‘Integrated
project support environments’ (Peter Peregrinus, 1985)

5 REID, P., and WELLAND, R.C.: ‘Project development in view’,
in SOMMERVILLE, I (Ed): ‘Software engineering
environments’ (Peter Peregrinus, 1986)

6 ENGLAND, D.: ‘A user interface design tool’. Proceedings of
First European Software Engineering Conference, Strasbourg,
France, 1987

7 TOOK, R.: ‘The presenter — a formal design for an auton-
omous display manager’, i» SOMMERVILLE, I. (Ed.): ‘Software
engineering environments’ (Peter Peregrinus, 1986)

8 GOLDBERG, A., and ROBSON, D.: ‘Smalltalk-80: language
and its implementation’ (Addison-Wesley, 1983)

9 SCHNEIDERMAN, B.: ‘The future of interactive systems and
the emergence of direct manipulation’, Behaviour & Informa-
tion Technology, 1982, 1, (3)

10 HUTCHINS, EL., HOLLAN,]J.D., and NORMAN, D.A.: ‘Direct
manipulation interfaces’, in NORMAN, D., and DRAPER, S.
(Eds.): ‘User centered system design’ (Lawrence Erlbaum
Associates, 1986)

11 SMITH, CD, IRBY, C, KIMBALL, R., VERPLANK, W., and
HARSLEM, E.: ‘Designing the Star user interface’, in DEGAN,
P, and SANDEWALL, E. (Eds.): ‘Integrated interactive com-
puting systems’ (North-Holland, 1983)

12 HAYES, PJ, and SZEKELY, P.A.: ‘Graceful interaction
through the COUSIN command interface’, International Journal
of Man-Machine Studies, 1983, 19,

13 MALONE, T.W., GRANT, KR, and TURBAK, F.A.: ‘The
Information Lens: an intelligent system for information sharing
in organisations’, 7z OULSON, M. H. (Ed.): “Technological
support for work group collaboration’ (Erlbaum, 1988) (in
press)

14 RODDEN, T., and SOMMERVILLE, I.: ‘Mailtrays: an object
oriented approach to message handling’. Report, Department of
Computing, University of Lancaster, Lancaster, England, 1987

"P. Sawyer and Prof. I. Sommerville are with the Department of

Computing, University of Lancaster, Bailrigg, Lancaster LA1 4YR,
England.

Software Engineering Journal November 1988

