
tg ?'t €
DSA - A Tool for Descriptive Text Analysis

A . B L A I R n N n I . S O M M E R V I L L E
Department of Computer Science, Uniuersity of Strathclyde, Glasgow G I I XH

This paper desuibes a tool for desuiptive text processing which can, after tuition by the user, split entity desuiptions
' into their constituent parts and associate a meartng with each of these parts. The program, in essence, is a form of
parcer generator where the class of texts which may be parsed are those descriptions which are set out in a
semi-structured way. Examples of such dcscriptions are catalague entrics in an electronic components catalogue,
descriptions offlora in a handbook of wild flowers and desuiptions of drugs in a formulary.

Oar system is novel in that the user need not analyse the structure of descriptions in advance and then describe that
stractare in aformal way. Rather, DSA (Description Structwe Analyser) dynamically'learns' the stracture of
descriptions by interacting with the user, who tells DSA what each part of a typical desuiption means. The desuiption
modcl built by DSA is then refined by seeking user advice whenever an unfamiliar description occurs. The system is not
restricted to the prccessing ofrigidly structured descriptions. It can create a parser to analyse descriptions which have a
vafiable sfiucture and can even tackle simple sentences of natural language,

Receioed July 1984

1. INTRODUCTION

An immense amount of valuable information is available
in the form of semi-structured entity descriptions.
Examples of entity descriptions include descriptions of
the characteristics of electronic components, descriptions
of drugs, descriptions of natural flora and fauna and
descriptions of the facilities available to the user of a
software system. In general, the user of these descriptions
is presented with a book containing many descriptions
and searches this manually to find the entities which are
of interest.

Clearly, it would be very valuable to have this
descriptive information accessible via some automated
information retrieval system. Systems, such as LEXIS, a
legal information system, are available where the text of
the description is held on a computer as well as on paper.
The user queries the description database using a
keyword-based information retrieval mechanism.

Unfortunately, keyword-based systems suffer from
major deficiencies because they have no knowledge of the
semantics of the text, as follows.

(l) The user must be aware of the synonyms which
might be used in the system for a particular keyword.

(2) The information retrieval system cannot handle
cross-references amongst descriptions. If entity A is
described as'like B', a search made using B's
characteristics does not normally retrieve A.

(3) The information retrieval system cannot take
keyword contexts into account. A search made using a
keyword 'bramble' returns descriptions containing the
phrase'unlike the bramble'.

The application of natural language processing
techniques to descriptive text makes it possible to make
some assessment of the meaning of that text and, in
principle, improve upon the performance of keyword-
based systems. Sagerr has built a system which processes
specific kinds of medical record and builds a patient
database system. Other work in text processing has also
been reported by Reeker et al.z and Granger et al.3

Our aim is to build an intelligent information retrieval
and description processing system which can process
entity descriptions, build a description database and

provide the user with intelligent database interrogation
facilities. This system will have four major components,
as follows.

(l) A description structure analyser. This program
makes use of the fact that descriptions are usually
organised in a structured way and that some information
is provided implicitly by the structuring of the
description.

(2) A semantic analyser. This program analyses the
actual text of each description and abstracts the meaning
from it.

(3) A database generator. This program takes the
output from the semantic analyser and generates a
database from it.

(a) An intelligent interrogation system. This program is
an information retrieval system which abstracts the
meaning of user queries and which generates commands
to retrieve entity descriptions from the database which
satisfy the user's request.

An early version of the semantic analyser has been
built,4 as has a database generator which outputs Prolog
clauses. Work on an intelligent retrieval system for
software components is in progress. This paper is
concerned with the description structure analyser (DSA).

The basis of this tool is that descriptions conform to
a standard format. This need not be rigid but, in the
diversity of possible description organisations there must
be some fundamental structure. This structure is
important as far as understanding the description is
concerned as it incorporates implicit information about
the entity being described. Important structural features
include description layout, punctuation, typography and
the use of keywords in particular positions.

Forexample, consider the followingpartial descriptions
taken from a handbook describing common British
mushrooms:

TUBER AESTMM Vitt. Truffie
CANTHARELLUS INFUNDIBULIFORMIS FT.
LEPISTA SAEVA (TRICHOLOMA) Orton. Blewit

The scientific name of the mushroom is always given in
upper-case letters and this is followed (not necessarily

460 THE COMPUTER JOURNAL. VOL. 29. NO. 5. 1986

directly) by the naming authority. The naming authority
is identifiable by the fact that it is always terminated witir
a full stop and appears on the same line as the scientific
name. Between the scientific name and the namins
authority may appear a bracketed name which is also ii
upper-case letters. Fungus taxonomy is not an exact
science, and this is an alternative name where the
particular species of the mushroom is disputed. If a
common name for the mushroom exists. it follows the
naming authority on the same line.

The objective of our work was to invent a tool which
could handle any form of structrired descriptions and
wtich could process a large number of desciiptions to
abstract the meaning inherent in the description
structure. Essentially, what was required was a form of
parser generator which, given a description ofa class of
descriptions, would create a structure analyser for these
descriptions

_Our initial approach to description processing was to
adopt a comparable approach to that used in parser
generation for programming languages.5,6 We defined a
metalanguage for describing descriptions and experi-
mented with this using a number of different types of
description. However, this approach lacked Reiibititv.
As the form of descriptions was not under our cont.ol.
we had to try to include every possible variation of
description in the formal description description. This
was impossible in all practical cases.

Our second attempt at the problem was more
successful. A typical description is input and the user
interacts with DSA to identify its constituent parts and
to associate a meaning with them. He or she assigns a
semantic name to each useful part of the description and
defines the relationship between an objecf and its
properties.

DSA builds a description'profile, in the course of its
interaction with the user. Further descriptions are input
and, if they match the profile, are analysed accordinf to
that profile. If they do not match, DSA returns to user
interaction mode for advice. Given more information
frgm the user, the profile is dynamically modified to
reflect the new possibility, and processing restarts. As
descriptions are processed, a more compleie picture of a
description structure is built up by DSA.

The_ advantages ofthis interactive tuition approach are
twofold.

(l) The user need not learn any formal notation for
describing description structure. He or she need only
know what the different parts of a description mean.

(2) The system is uniquely flexible. Any new variation
in description format may be incorporated even after
hundreds ofdescriptions have been processed. This does
not affect, in any way, description processing which has
already taken place.

In the remainder of this paper we describe, in outline,
the fundarnental principles underlying DSA and describe
the implementation of the structure analyser. The current
implementation of the system is in prolog? and runs on
ICL 2900 and DEC VAX computers.

2 . SYSTEM FUNDAMENTALS

DSA attempts to build a description profile by analysing
a number of descriptions and by modifying the profil-
dynamically to cope with new description formats is they

DSA _ A TOOL FOR DESCRIPTIVE TEXT ANALYSIS

arise. A description profile is built as a linked list of
frames, where each frame holds information about one
part of the description. For example, a profile of
mushroom descriptions has a frame holding thi scientific
name, a frame holding the naming authority, a frame
holding the common name and so on. The parts of a
frame are as follows.

(l). A typ" specification. This is made up of a type class
as discussed below, a type structure and

- ̂ a
type

representation.
(2) f,per assigned name. This is a name given to the

part of the description represented by that frame. This is
optional - some frames such as those which hold
punctuation or keywords are normally unnamed.

(3) A link. This component links thi frame with some
other part of the description. For example, if the frame
holds some dimensions, the link would retei to the frame
describ_ing the form of the dimensioned object.
^ (4). One or more pointers. Because dejcriptions are
flexible, there may be a number of alternaiive frame
organisations. The sequential order of frames need not
necessarily reflect the description structure, so pointers
are used to link frame sequences.

Consider the profile which might be built to describe
the initial line of a mushroom deicription above.
Frame I

Type: kernel; capitals
User-id : mushroom_name
Link : self
Frame pointer : 2

Alternative
Type : complex (

kernel; capitals
user-id : accepted_name
link :mushroonlname

kernel; constant ..(',
kernel; capitals

user_id : disputed_name
link : mushroom_name

kernel; constant ")"

)
User_id : mushroom_name
Link : self
Frame pointer : 2

Frame 2
Type : simple, normal case
User_id : naming*authority
Link : key
Frame pointer : 3, 4

Frame 3
Type : kernel, normal case
User_id : commollname
Link : key
Frame pointer : 4

Frame 4
Type : kernel, hard LF
User_id :
Link : nil
Frame pointer : 5

Frame 5 . . .

The first frame holds the scientific name, which is in
upper-case type and is linked to itself, which indicates that

THE COMPUTER JOURNAL, VOL.29, NO. 5, 1986 461

A. BLAIR AND I . SOMMERVILLE

this is the description key. There is an alternative tbrm
of this frame where the alternative type structure is more
complex. Notice that the components of complex types
may have their own names and links.

The second frame is linked to the key and is the naming
authority, which is in normal type. The pointers here refer
to either the third or the fourth frame. as there need not
be a common name for the mushroom. The third frame
holds the common name, again linked to the key, and the
fourth frame indicates that the first line of the description
is always terminated with a linefeed.

2.1. Type specification

At the most primitive level, descriptions are simply
strings of characters (letters, numbers, spaces, punctu-
ation) but these are generally too elementary to be useful.
Rather, we base our description processing on the
following six 'kernel' types.

(l) Words - sequences of letters, numbers and selected
punctuation characters such as hyphen (-) and apostrophe
(') .

(2) Phrases - these are unbroken sequences of two or
more words which are all in the same typeface. Examples
of phrases are' LILY OF THE VALLEY',' Wood blewit'
and'Common starling'.

(3) Punctuation symbols - these are single or multiple
character symbols such as semi-colon, colon, full stop,
etc.

(4) Integers - unbroken sequences of decimal digits.
(5) Indentation - this is sometimes crucial in structur-

ing a description so is included as a kernel type.
(6) Linefeed - like indentation, new lines are some-

times critical structuring features which have an implicit
meaning.
There are many description components which are more
complex than kernel types. We thus provide a type-
definition mechanism which allows the user to define
types by naming a sequence of kernel-type objects.

Simple types are sequences of kernel constructs which
are considered as a single, indivisible entity. For example,
the size of an entity might be expressed as '26 cm.'. The
user might thus define a simple type size to be a
combination of the kernel types (integer), (word) and
(full stop). Once this has been defined and the context
established, the system then automatically associates
these kernel objects under the name size. It is not possible
to access the internal components of a simple type.

Sometimes we want to consider a sequence of
associated kernel or simple-type objects as a single type
yet access components or flelds of that type. For example,
a date, such as '6th June, 1984' given as part of a
description is clearly a single component but is made up
of a sequence of simple types. We may wish to treat this
as a single entity or to access the year component, the
month component, etc. Therefore we allow complex types
to be defined where a name is associated with a grouping
of kernel types and the individual fields may be accessed.

Both simple and complex types are identified inter-
actively by the system user. DSA splits the text into
kernel-type objects and presents these to the user. He or
she must then specify how these kernel types are
associated to form simple or complex types.

As well as kernel, simple- and complex-type objects, a
description often contains passages of unstructured

narrative text. These are not intended for processing by
DSA so, at any time, the user may suspend analysis. The
description text is passed through DSA and tagged as
unprocessed text for later semantic processing.

As an example of how the elements of a description are
typed consider part of the description of an edible
mushroom. taken from Jordan.s

BOLETUS TESTACEOSCABER Secr.
Habitat: typically under birch but also occasionally in
mixed woods; prefers open woodland or fringes of
woods; solitary: on soil;
Dimensions: cap 5-20cm. dia.

Part of the representation of this description fragment
which shows the association of text with a frame, type
structure, and user-defined type names is as follows:

KERNEL (phrase [word, word])
'BOLETUS

TESTACEOSCABER' (caps), MUSHROOM_NAME
SIMPLE (abbreviation [word, dot])

'Secr.' (normal),
NAMING_BODY
KERNEL (linefeed)'LF' (hard)
SIMPLE (heading [word, colon])

'Habitat:' (bold
constant)
NOPROCESS (typically under birch. . .) HABITAT
KERNEL (linefeed)' LF' (hard)
SIMPLE (heading [word, colon])'Dimensions:'(bold
constant)
COMPLEX (KERNEL (word) 'cap' (normal
constant);

SIMPLE (range [integer, dash, integer]' 5-20' (normal) CAP_SIZE
SIMPLE (abbreviation [word, dot] 'cm.,

(normal constant)
SIMPLE (abbreviation [word, dot]'dia.,

(normal constant))
CAP_DIAMETER

The type is identified (KERNEL, SIMPLE, NOPROCESS
or COMPLEX) and this is followed by a specification of
its structure. For example, the initial kernel type is a
phrase which, in this case, is made up of two words.
Following the structure specification is the associated text
which may be followed by a typeface specification where
(caps) means the phrase is all in upper case, (bold)
means that the element is in bold type, etc. This typeface
specification may optionally be followed by 'constant,
which specifies that the element never varies. For
example, the description of the fungus's habitat is always
introduced by'Habitat:'.

The final element (upper-case in the representation
above) is the name given to the element type. Thus, the
first phrase is known to the user as MUSHROOM_-
NAME, the narrative text following the emboldened
keyword Habitat is known as HABITAT, etc. Notice that
some parts of the description, such as punctuation, have
a structuring function only and do not provide
information about the entity being described - these are
not named.

2.2. Frame links

Frame links are included in a description profile so that
relationships between objects and their properties may be
recorded. This is best illustrated by a simple example:

462 THE COMPUTER JOURNAL, VOL.29. NO. 5. 1986

D S A _ A T O O L F O R D E S C R I P T I V E T E X T A N A L Y S I S

FORD ESCORT
Colour: Blue. Upholstery: Plush, Colour Grey

Here it is clear (to humans) that the first colour refers to
the car paintwork and the second to the car's upholstery.
In the description processing, the frame representing the
paintwork colour is linked to the key field (the car type)
whereas the upholstery colour is linked to the Upholstery
frame.

The frames which are set up (excluding punctuation
frames) and their associated links are shown below:

Frame I
kernel; 'FORD ESCORT';

link : self
Frame 2

simple (constant word 'Colour', colon): name: ' ':

l ink: ni l
Frame 3

kernel; 'Blue'; normal: name: paint colour:
l ink: key
Frame 4

simple (constant word 'Upholstery', colon):
name: ' ' : l i nk : n i l
Frame 5

kernel; 'Plush'; normal: name: upholstery:
link: key
Frame 6

simple (constant word 'Colour', colon): name: ' ':

l ink: nil
Frame 7

kernel;'Grey'; normal: name : interior_colour:
link : upholstery

The provision of frame links which are set up as part of
the initial profile development means that the system need
not keep a complex semantic model of a car, upholstery,
etc. in order to deduce the colour of the paintwork and
the interior.

name : car type:

There are four permitted types of link which may be
specified by the user.

(1) Self - if a frame is linked to itself this indicates that
this is the description key.

(2) Key - the frame is linked to the frame which is the
description key.

(3) Nil - the frame is not linked to anything
(4) User_id - the frame is linked to the frame whose

user identifier is specified.
Notice that the notion of a unique key which identifies

an entity is essential to our scheme. In all descriptions
which we have examined. such kevs are used.

2.3. Frame pointers

Normally, the frames in a profile are held in a linked list,
and frame matching takes place by chaining down that
list and matching adjacent frames. To handle alternative
possibilities, frames in a profile may have one or more
pointers which mark alternative frames and which allow
alternative frames to be skipped. Thus if a match fails,
pointer fields are examined and, if alternatives exist, these
are then matched. Once a match succeeds, pointer fields
are again used to select the next frame for matching.
Pointers are illustrated in the general frame example
above.

3 . SYSTEM IMPLEMENTATION

The current implementation of DSA is a stand-alone
program which processes descriptions and builds a
database of descriptions. This description database may
then be interrogated using a Prolog program.

The four main modules which make up the system
follow.

(l) The profile creation module. This module builds up
an initial picture of a description profile by user
interaction.

(2) The profile refinement module. This is normally
activated after an initial profile is set up. The profile is

Figure 1. DSA system structure.

Menu-driven
text analyser

6.oroN
prog.i,n\

Syntax and
semantic

recognition

Access
schema

description

Get # of
sample

descriptions
Prolog fact and schema database

THE COMPUTER JOURNAL, VOL.29. NO. 5. 1986 463

A . B L A I R A N D I . S O M M E R V I L L E

refinedbyinputting a number of other typical descriptions
so that a more complete profile description may be built
before information abstraction.

(3) Database generation module. This module processes
descriptions and outputs a set of Prolog clauses which are
derived from the descriptions and the profile information.

(4) Database interrogation. This module makes the
schema of the Prolog database available to allow
user-written Prolog programs to interrogate the
database.

These components and their relationships are illustrated
in the block diagram shown in Fig. l.

3.1. Profite creation

The user inputs a typical entity description and this
module steps through that description, picking out kernel
constructs and establishing, by interacting with the user,
the structure and the associated meaning of the different
parts of the description.

DSA identifies kernel constructs and presents them to
the user in turn. He or she is asked to confirm or deny
complete syntactic representation. When a complete
syntactic unit (a simple or a complex type) is identified,
further dialogue establishes the status, semantic and
relationship attributes of the component. When this
process has been completed, the system registers this new
pattern and, in so doing, starts the learning process. As
further text is met, the system tries to use its accumulatine
knowledge to match simple and complex componenti
which it now knows.

The system is coded in Prolog, which has inbuilt
backtracking facilities. These are essential, as match
failure means we must go back and try something else.
This backtracking is not shown explicitly in the profile
creation algorithm below.

P R O F I L E C R E A T I O N

while not end of description do
if processing suspended then

identify non-proce ssable text
associate name and links with narratiue text

else
f * try to match existing complex construct * f
repeat

look for suitable complex construct
untiluser confirmation of matchor nofurther complex

constructs
if complex construct found then

get complex construct components
qllocate names and links within complex construct

else
f* can't get complex, try simple construct *f
rep€at

look for simple construct
untiluser confirmation of matchot nofurther simple

constructs
if simple construct found then

allocate user nqme
set up link

else
f* nothing auailable, must be kernel * /
get kernel construct
iI complete syntactic construct on its own then

allocate name
allocate links

else
f * must be a component of a larger

simple or complex construct to be defined* /
repeat

get kernel consftuct
put kernel constructs together

antil simple or complex construct formed
allocate name and links to construct

end if
end if
end if
end if
store construct in profile frame

end while

The system adopts a 'longest possible match, strategy in
that it first tries for non-processed narrative text, iiren
complex, then simple and, when all else has failed. kernel
constructs.

3.2. Profile refinement

The strategy used for profile refinement involves
matching the created profile with an entity description.
Each frame in the profile is matched anA, if successful,
the process continues until either the entire description
has been processed or a match failure occurs. Match
failures are common in the early refinement phase and
may have several causes. To illustrate these, consider the
following variations of mushroom descriptions.

l� LEPISTA NUDA (TRICHOLOMA) Cooke.
Wood blewit

2. TUBER AESTIVUM Vitt. Truffie
Five distinct possible causes of frame match failure mav
be identified

(l) The current frame element is not present in the new
text - text has been omitted. Say I above was processed
then2.In the first example, there are two scientific names
with the bracketed version being a disputed alternative.
When the second example is proceised, this is not
present - text has been omitted.

(2) The frame element is present later in the text _ new
text has been inserted before that element. Say 2 above
was processed before l. The naming authority would be
seen as following directly after the scientific name. but in
the first example text (the alternative name) has been
inserted.

(3) The new text illustrates an alternative form of the
current frame element. In I and 2 above, one form of the
common name is a phrase (Wood blewit), another form
is a single word (Truffie). Recall that these are considered
as distinct kernel types.

(a) The new text exhibits repetition, which is described
in previous frames of the existing profile. This is very
lengthy to illustrate by example bui is common when a
description is made up of segments each of which has
exactly the same structure such as a keyword, punctuation
then narrative. These may be represented by the same
complex type, so frames are simply repetitions of that
type.

(5) An alternative construct is preseqt but occurs later
' in the new text. This is an unusual situation and examples

from real descriptions are difficult to find. Say an initial

464 THE COMPUTER JOURNAL, VOL.29, NO. 5, 1986

D S A _ A T O O L F O R D E S C R I P T I V E T E X T A N A L Y S I S

profile was set up using the description 'ABC lmn' and
that a possible alternative for 'lmn' (a word) was a phrase
such as 'pqr stu'. The initial profile would be a constant
(ABC) followed by a single word. Now say a description'ABC 123 pqr stu' was input to reflne the profile. The
match fails at 123 because ABC is not followed by a word
but by an integer. The alternative to 'lmn' occurs later
in the description. An alternative profile consisting of a
constant (ABC) followed by an integer followed by
phrase or a word is therefore set up.

When a match failure of any kind occurs, the user is
consulted to propose possible reasons for the failure. This
profile refinement process may be described algorithmi-
cally as follows.

PROFILE REFINEMENT

while not (end of text and end of profile) do
if end of text and not end of profile then

if end of profile not reachable by pointers then
confirm text has been omitted
insert end of profile pointer in current frame

end if
elsil not end of text and end of profite then

if propose text repetition then
insert backward pointer to repeated frame

elsif propose inserted text then
call profile creation to define insertion
adjust pointers as necessary

end if
else /* neither end of text nor end of profile * /

attempt text match in current frame
if no match then

use frame pointers to try other matches
if no match then

if propose alternatiue frame construct then
call profile creation to define alternatiue

elsif propose frame match later in text then
f* a complicated onel! * /
scan using all frames to find match
mark match position
back up to preuious match
f

* now we know bounds of the text which won, t
match * f

create a new frame to hold text between
matches

adjust pointer s accor dingly
elsif propose alternatiue frame construct later in

profile then
do the same as in later frame match aboue

elsif propose insertion of new frame then
call profile creation to define insert adjust

pointers
elsiI propose possible text repetitior then

put in backward pointer to repeated frame
else

/*defeated- we shold neuer arriue herel. x /
ABORT

end if
end if

end if
end if

end while

Profile refinement is a complex process involving a great
deal of user interaction and backtracking. However, we

have found that only a few descriptions need be processed
during the refinement phase to establish a prohle which
fits almost all descriptions. Further refinement is only
occasionally necessary. We have not yet encountered
descriptions which cannot be represented as a profile built
by the creation and refinemenf processes.

3.3. Database generation and interrogation
DSA is built as a stand-alone tool which generates prolog
databases. These databases are built using the refinei
description -profile to drive a text processor which
abstracts information from a description and which then
outputs that information as binary tuples (prolog
clauses).

^ For example, consider the following description
fragment:
AMANITA CITRINA Gray. False Death Cap

Habitat-: woods generally; scattered solitaryl on soil.
Dimensions: cap 4-l0cm. dia.; ...

The tuples generated from this fragment by DSA are as
follows:

key ('AMANITA CITRINA,).
mushroom_name ('AMANITA CITRINA').
naming authority CAMANITA CITRINA;, .Gray,).
common name ('AMANITA CITRINA,, . False Deaih

cap').
habitat (' AMANITA CITRINA', . woods generally ; . . .

on soil').
cap__dimensions (AMANITA CITRINA,, .4_l0cm.

dia.').
smallest_cap_size (',1-l0cm. dia.'. . 4,).
largest_cap_size ('4_l0cm. dia.,, : t0'i.

DSA also generates a schema for each type of description.
This schema is presented to the user und i, used when
information is to be retrieved from the database. For the
mushroom description, part of this schema is:

key (mushroom_name).
namingauthority (mushroom_ name, _).
commorlname (mushroom_name. _).
habitat (mushroom_name, _).
cap_dimension (mushroorn-name, _).
smallest_cap size (cap_dimension, _).
largest_cap_size (cap dimension,).

We have not yet devised any query language to access this
database. The user must write his oi h6r own prolos
program to retrieve information. For example:

Find the common name of a mushroom with cap size
between 3 and 9 cm. This query might be resolved by the
following procedure.

result (Common) : common_name (y, Common),
cap_dimension (Y, Range),
smallest_cap_size (Range, A),
A) : 3 ,
largest_cap_size (Range, B),
B (s .

First of all, this procedure finds a mushroom which has
a common name and holds this in y. It then finds the
range of cap dimensions and checks that the smallest cap
dimension is greater than or equal to 3. If failure occuri
here, the system backs up and finds another mushroom.
The same procedure is carried out for the largest cap size

THE COMPUTER JOURNAL, VOL.29, NO. 5, 1986 465
cPr 29

