Prb'z_. Eul G
Confricncs, Dbl
Sept. 198%

DES - Support for the Graphical Design of Software .
1997

Stephen Beer and Ray Welland
Dept. of Computer Science
University of Strathclyde
Glasgow G1 1XH, Scotland
Stephen@uk.ac .strath.cs

lan Sommerville
Department of Computing
University of Lancaster
Lancaster LAI 4YR, England

Software design methods such as JSD, MASCOT and Structured Design have been in
existence for some time now and most of these methods utilise graphical as well as textual
notations for describing designs. These graphical forms quickly convey the overall structure
and interconnections of a design more easily than straightforward textual descriptions.
However, the full impact of design diagrams employing these graphical notations has been
severely restricted in the past due to the lack of automated facilities for production and

maintenance of such diagrams. This contrasts markedly with CAD developments in other
engineering fields.

This paper describes DES (the Design Editing System) - a system which investigates how such
graphical support may be provided in a generalised way for software engineering purposes.
DES comprises of 3 tools: a shapes editor (SHAPES) for defining the shapes of a method, a
language (GDL) for describing a software design method and a graphical design editor (DE)
which is driven by tables generated from the first 2 tools. The system is implemented in C on a

Sun workstation using the pixrect graphics layer and the panel user interface package.

Ata very high level of abstraction a design diagram can be viewed as a number of symbols and
a number of rules concerning the physical and logical constraints on those symbols. A novel
feature of DES is that it is not geared towards any specific method. Rather, the tool builder
defines the syntax, semantics and shapes of a design method using the high level tools
SHAPES and GDL. This increases the applicability of the system since MASCOT and JSD
users, for example, may utilise the same system facilities.

This paper presents each of the tools, emphasising how method specific checks may be
specified in GDL and enforced during design editing sessions.

261

1 Introduction

A major aim of software engineering is concerned with bringing methodical practices into the
various phases of the software life cycle. At the present moment there are a very wide variety of
methods within the phase of software design. Examples of such methods include JSD
[Jackson83], Structured Design [Constantine79], Petri-Nets [Peterson81] and MASCOT
[MASCOTS0]. Many of these design methods have associated graphical techniques to
complement or replace textual design descriptions. Structured design, for example, provides
for two diagram types: structure charts and dataflow diagrams.

These graphical techniques have been in use for some time now but are not as widespread as
one initially might expect. One reason often put forward is that a design diagram lacks formality
and cannot capture the same amount of detail as a straightforward textual description. This is
true in many cases, but their major use is in conveying overall system structure and
interconnections in a more easily digested form. The absence of automation from the design
process, we believe, is a key reason as to why these graphical techniques are not in common
use.

allows metal components to be designed graphically; the design information is then passed to a
cutting machine which automatically cuts the part to specification. Support for graphical
techniques within the area of software engineering, however, has been acutely scarce.

One reason for this is the sheer number of methods that already exist and the number of
methods likely to be developed in the future. Many reasons can be stated for the existence of
each, among these being the area of applicatic_m. For example, JSD is more suited for the area

The work described in this paper has been taking place within the context of ECLIPSE
[Alderson85] which aims to provide an integrated project support environment fqr different

ECLIPSE is that many different graphical techniques should be supported and that designs
created can then be captured in the project database and manipulated by other tools. A common
user interface across design support tools is another requirement.

One approach to providing design support is to build a specific design editor for each method
from scratch, However, given that we have a situation where many different methods do exist
and more will be devised it seems much more sensible to abstract the general concepts of
design methods into a design editing system which has the capability of being tailored for a
specific method.

can be described more formally.

The next section in the Paper presents an overview of our System and compares some related
work in the area of describing software design methods. This is followed by brief descriptions
of each of the three constituent tools. The task of checking a design diagram finally concludes
the paper.

262

ices into the
/ide variety of
JSD

SCOT

38 to

, provides

espread as
icks formality
on. This is

d

he design

n common

Is of

;n of logic
ngineering

>n passed to a
bhical

irce.

ser of
dstence of
for the area
ed

PSE
different

ement of
designs

. A common

ich method
od” Ts.exist
SpLs of

red for a

srimenting
ater for many
n method

me related
descriptions
7 concludes

2 A Design Editing System

A large number of graphical design techniques can be characterised as exhibiting a graph-like
.tructure composed of design objects. Each design object can be classified into one of the

following:

node denotes a software component, state, etc.
link denotes flow of control or data, etc.
label denotes the textual and graphical annotations of a design

These techniques whilst sharing the common properties of graphs tend to differ with respect to:

. the actual symbols used to represent design objects
. rules concerning how a design diagram may be constructed

Some of these rules refer to syntactic constraints such as ensuring that the name label of a node
appears completely within the perimeter of the nodes' symbol. Other rules refer to the semantic
properties of a design - for example, in designing a dataflow diagram it is generally considered
"good" design to have no more than 8-10 nodes on any one diagram.

The DES approach to providing design support for different methods is to provide tailoring
100ls to describe the essential features of a method and a generic design editor which is
configured by this method specific information. This is achieved by providing the following
three distinct tools (depicted in Figure 1):

SHAPES a graphical shapes editor allowing the representation of each design

object to be defined.
GDL a language for specifying the "grammar" of a method.
DE a generic design editor configured by tables from the previous tools

In this type of system there are two types of user. The method administrator is the person
responsible for setting up support for a design method. The end-user is a person who uses a
design editor to create design diagrams. The tasks performed by the method administrator in
tailoring an editor for a specific method are:

. Describe the types of design objects (node, links and labels) by writing a GDL

description
. Define how each object is to be represented using the SHAPES editor
e Tables created using the GDL compiler and SHAPES are then used as input to the

generic design editor, thus configuring it for a specific method.

End-users can now create design diagrams using the tailored DE. Diagrams may be stored and
retrieved at any time thus ensuring that the task of diagram maintenance is made easier.

263

Method
Specification

Rule and Type
Tables

— Design

Diagrams

commonly known analogy is available from compiler-compiler Systems. Such systems are used
to automatically generate compilers for languages specified with high-leve] tailoring tools. In
this area the observation has been made that compilers in genera] POssess the same common

. the lexical tokens of the language (eg. keywords, identifiers,
Operators, etc.)
G rules referring to how g Syntactically legal program may

be constructed from the available lexical tokens

program, and generates code to accomplish the remaining stages of compilation. The lex and

yacc generated code can then be linked, together with user-written code, to produce a working
compiler for the specified langua ge.

The DES approach in providing method support is similar, The major difference is that the
output from the tailoring tools are rables encapsulating method information rather than C code.

264

general

ful and

| systems are used
loring tools. In
ame common

7 differ in are:

fining such

of a language
pilation. The
yal

1. The 1ex and
duce a working

e is that the
er than C code.

Related work in providing graphical support for design methods shows slightly different
approaches. The work of [Woodman86] is inspired from the development of picture grammars
in the field of pattern recognition. The principle idea is that specific patterns can be described
using a grammar and the task of recognising a new scene corresponds with trying to parse it
according to known pattern definitions. Rather than return a value of "parse failed" or "syntax
error’, a weighting is returned and used in deciding how close a scene fits a known pattern.
Their application to software engineering diagrams is similar. Essentially it consists of
specifying what a dataflow diagram, for example, should look like. The grammar approach in
DES is similar except that the definition of the methods' lexical tokens is separated from the
specification of the method rules. In their work the symbol definition is an integral part of the
arammar.

I'rom Figure 1 it can be seen that the DE is essentially syntax driven - the syntax of the method
‘drives” the editor. Another grammar based approach in defining a method is contained in the
SEGRAS-Lab [Kramer86]. This system provides graphical support for Petri nets within a
syntax directed editing environment. Their grammar normally used for generating textual
syntax directed editors has been extended to allow context-sensitive constraints to be specified.
The end product here is a syntax-directed graphical editor. Our approach differs here in that
actual diagram construction by an end-user is accomplished with a non-restrictive interface.

3 Defining Method Symbols - SHAPES

The purpose of the SHAPES editor is to allow a method administrator to define the
representation (symbols) of each design object of a design method. Once created, the symbols
can be stored in method specific libraries which are used as input to the generic design editor.
The SHAPES user interface (Figure 2) consists of:

a control panel for selecting commands

a shapelist for storing/selecting shapes

a scrollbar for scrolling through the shapelist

a drawing area for constructing new shapes (symbols)

e o o o

Most interaction is via a mouse device except for the task of naming a symbol prior to storing it
on the shapelist. The shapelist initially consists of a number of primitive shapes. This list can
be extended by adding new user-defined symbols. The primitive shapes provided are text,
cllipse, rectangle (right-angled and round cornered), triangle, diamond and line with circle and
square being special cases of ellipse and rectangle. Whilst it is not possible to produce every
conceivable shape of every method from a combination of these primitives it is possible to
aenerate a very large percentage of them.

To define a new shape the method administrator first selects a primitive shape from the
shapelist using the mouse. This shape is then instantiated in the drawing area by defining its
enclosing boundary, again with the mouse. Any number of shapes can then be added and all,
orany subset, of these can be moved, stretched or deleted. Once created, a symbol can be
entered into the shapelist along with its name.

Atany time during a SHAPES session the user may store the current shapelist in a shape
library for later use as input to the DE. Therefore a shapes library consists of a number of user-

defined shapes each identified by a name and described in terms of basic, primitive geometric
shapes.

265

Shapelist
LineStyle

TRIANGLE
: Rnc\

ROUNDED Bo

FILLED Box

Strathclyde SHAPES Editor 2.9

(DEVELUF’MENT)

(_Erase) (_Clear) _Ouit)

Input Library:
Output Library: MascoT

Shape Name: subsystenl

Figure 2 - The SHAPES Editor

4 Describing a Method - GDL

The notation we have developed for describing a software design method is the Graph
Description Language. A method administrator describes 2 method by writing a GDL

266

et () e i o

Graph
GDL

description which is then transformed into tables using the GDL compiler. The compiler has
been constructed using lex and yacc and also employs the facilities of cpp - the C preprocessor.

The best way of describing the GDL is by example and the following fragment describes some
of the design objects of the MASCOT design method used in an editing session shown in
Eiguse’3:

type PATH is LINK ('src : NODE; dst : NODE)

type JUNCTION is NODE (parent : owned by SUBSYSTEM:
in_path :in set of PATH:
out_path : out set of PATH)

type PORT is JUNCTION
type WINDOW is JUNCTION

type SUBSYSTEM is NODE (junctions : owner of set of JUNCTION)

for PORT use SYMBOL (MASCOT port)
++ACCESS_INTERFACE (STRING)
++JUNCTION_NAME (STRING)

for SUBSYSTEM use SYMBOL (MASCOT.subsystem)
++ TEMPLATE_NAME (STRING)
++ COMPONENT_NAME (STRING)

assertion Junc_name_enclosed (SUBSYSTEM):
insti:
forall j; Member (Dependents (i),j)and GetType (j) = JUNCTION:
Encloses (GetLabel (i, SYMBOL), GetLabel (j, JUNCTION NAME))

The type JUNCTION is in fact a place holder in the type hierarchy so as to avoid unnecessary
repetition.

Types

In describing a design method the main task is to assign some type to each design object of the
method (ie. node, link or label). The base types of the language are node and link (ie. the
basic constructs of any graph) and a hierarchy of types is formed from these. In the example
shown the type PATH is introduced stating that any instance of a PATH should have
parameters src and dst of type NODE. The type SUBSYSTEM is based on NODE and has only
dependent (or child) nodes. A child node is always associated with some parent node and any
operations affecting the parent also affects its children. In our example a child node of a
SUBSYSTEM node is of type JUNCTION which in effect is a PORT or a WINDOW. Having
introduced the node and link types attention is now turned on how label types are defined.

Labels

The for-use declaration is the construct for specifying the label types to be associated with a
node or link type. In the example, a PORT type has one symbolic (iconic) label and two textual
labels.The reserved word SYMBOL indicates that this label is the one used to represent an
instance of the PORT type on a diagram. The name MASCOT port refers to a symbol named
port stored within a shape library named MASCOT.

Assertions

267

t within a SUBSYSTEM, SO as to reduce design complexity, for
example. Further details of the GDL and its capabilities can be found in [Beer87 and

S The Generic Design Editor (DE)

The major facilities of the DE allow the user to:-

* add, move or delete images Tepresenting design objects

* create a design diagram larger than the designers' workstation window,

* view the tota] diagram at a reduced size

° annotate the diagram only, not the underlying design, with text, boxes or lines.
* utilise a grid facility for aligning objects

The object oriented dpproach to user interaction has been pursued throughout the development
of the DE. The functions available to the designer are applied to a currently selected object from
the design. The current selection may consist of a node, link, label] or combination of.
Functions are applied consistently across all objects wherever it is sensible to do so. It is
nonsense to edit the graphical symbol of g node but sensible to textually edit its Iabels.

The implication here is that the designer points at an object to make it the current selection and
then applies some editing function, such ag delete or move. The converse to this philosophy is
the function-oriented approach where a function js first selected followed by the objects to
which the function ig to be applied. The choice of interface essentially depends on whether
user-interaction is more natural with the object or the function,

The DE has been implemented on a SUN workstation running under the Suntools window
environment. The user interface (see Figure 3) consists of a tool window subdivided into the
following four subwindows:

. drafting area where g design is constructed,
. a control panel giving access to the editing functions and object types,
. two subwindows containing scroll bars, These allow the the drafting area to be

moved around the total ares of the diagram.

268

1ts of a design

EM must be
constraint which

h appear within the
" to the number of
lexity, for

187 and

er having

| drafting

ner. A designer
iagram as opposed
ign objects of a

Sorf{ 5.

the development
lected object from
ation of,

‘do so. It is

ts labels.

>nt selection and
is philosophy is
he objects to
s on whether

bols window
ivided into the

types,
ifting area to be

—
2]
o)
=
+
(7]
&
o
o
~<
w
§

\\
Zsssaoe I

1ssaage l
(

wayshsqng Buissaaody

waisdsgng 3nding

Figure 3. The DE User Interface

269

=
=
1]
@]
(=)
3
[0}
=
c
(0]
ke
@
b
o
3
[=]
o
Gl
@
)
=
=
=
[0}
[
i
i
o
©
7
=
=
=
=]
=
@
&
o
=

UoLjed3suowap

sapoy dag

o
<
2
=

Gl S
UJ
© g%
o b
bl
= Ko
=N .
S B
3

J03Lp3 ubLsaq A3LSJBALUn 8PA[dY3BI3S

(IN3INd013A30) B°2

Editing functions are selected from a control panel [Reid86] containing pull down menus and
"soft" buttons. The designer selects an node, link or label type from the menu and then adds
this to a design by fixing the position for its graphical image on the diagram.

with a node or link. Therefore, the label is a generic object for capturing textual and graphical
descriptions. Labels have a defined enclosing boundary, contain a value and may be
manipulated in the same fashion as other objects of the design.

As mentioned previously, the DE has built-in knowledge that the design must be in the form of
a graph. The one restriction implicitly enforced by the DE is that a link must originate from and

end at a node. This prevents a design from being created where dataflow links, for example,
lead to or originate from nowhere.

node are also applied to its links and labels, for example, if a node is deleted then all its
associated links and labels are also deleted- it makes no sense for them to reference a non-

existent node. In the same Wdy a move operation automatically moves all links and labels
associated with a node.

6 Design Checking

In a software design editing system the provision of drafting facilities for automating diagram
production is important. What is even more important, from the point of view of ECLIPSE, is
that the underlying design is captured in the project database. A neat looking diagrarp is of no

Other design support tools have demonstrated the need for method specific checking of a
design [Jones86, Stephens85] but a novel feature of the DE is that checking is enforced at three
levels and at various times throughout an editing session. These checks are all closely

integrated with the GDL description of the method being supported and the three levels can be
defined as :-

. "connectedness"
. layout and semantic constraints
. completeness checking

In the case of a node the strong typing of parameters can be used to enforce correct design
automatically. This is so because each node has associated links defined as being either in or
out. Subsequently, in the DE, at the time when a link is added to a design the parameter lists of
both the source and destination nodes can be checked. This check ensures that the link type is

consistent with the legal types of the source node's out links and also with the destination
node's in links.

The method rules to be enforced in the DE are called assertions. These are compiled by the
GDL compiler into rule tables which drive the DE. These assertions could be enforced at
different times in an editing session, as described later, but we believe that the best approach is
to allow the user to specify when checking should take place. At this time any object in error is
highlighted and made the current selection. An appropriate message is displayed in the control
panel and the designer can then apply functions to the erroneous object to correct the design.

270

e el ey o

] AN A

~

O = —

LI I ol

—

al
ta
as

own menus and
“and then adds

‘aphical symbol
1l and graphical
nay be

be in the form of
riginate from and
, for example,

have an

the current object
1S applied to a
en all its

ENnce a non-

and labels

1ating diagram
of ECLIPSE, is
agram is of no
a major
Irafting tool.

king of a
nforced at three
losely

e levels can be

ect design

g either in or
irameter lists of
1€ link type is
lesti. on

ipiled by the
orced at

>st approach is
bject in error is
in the control

t the design.

Type checking can be enforced mainly through assertions if the link parameters are specified as
the generic type NODE and appropriate assertions on connections are written. Alternatively, a
strongly typed description removes the need for such assertions but increases the number of
checks each time a link is added to the design. This GDL trade-off effectively means striking a

balance between continuous checking (closer to syntax-directed editing) and user-initiated
checking.

In a GDL representation expression a label can be specified as being either compulsory or
optional. This information on the optionality of a label is transmitted to the DE through the
GDL generated tables and the presence of mandatory labels is checked at an appropriate time.

This is an example of a completeness check which can only be carried out under the control
of the user.

In interacting with the DE the end-user has freedom to construct a design diagram in any
appropriate manner. This is in contrast to other editing systems which provide a syntax-directed
user interface [Kramer86]. Design checking occurs in a non-obstructive manner. If an assertion
is violated then an appropriate warning message is output and the offending object highlighted.
The end-user can then choose to fix or ignore this error rather than being forced into a fixing it
before proceeding with the design.

The specific timing of checks is a contentious subject. The basic philosophy behind the DE is
that the designer should be given as much freedom as possible to construct a design diagram is
his or her own way. This is achieved by provided an object-oriented, modeless interface with
most of the design checking initiated af user specified times. Checking in the DE can be
classified on its timing during an editing session as follows:

1. implicit / restrictive There is implicit continuous checking throughout an editing session
because certain editing operations are restricted at certain times. For example, at the point
when a node is selected only certain label types are made available to the designer. This

ensures that, by restriction, the designer cannot associate a label of incorrect type with a
particular node.

o

immediate As soon as an editing operation alters a design certain assertions will be
executed immediately. For instance, these would include checking that a link has source
and destination nodes of the correct type.

3. user-initiated Rather than providing a syntax directed editor where the user is forced to
construct a design in a certain manner, the DE allows the designer freedom to develop a
design in whatever manner is favoured. Checking can be called at the desi gners'
convenience and may include assertions concerning completeness and consistency,
assertions about spatial arrangement of objects and completeness of label sets.

7 Conclusions

Presented in this paper has been a description of some applicative research into providing
automated support for graphical diagrams within software design methods. The system can be
tailored at a very high level to support different methods. So far, descriptions for methods such
as JSD, MASCOT, state transition diagrams and dataflow diagrams have been defined.

The novel aspect of this work is the ability to be able to specify and enforce method specific
checking within a generic design environment. The true worth of a production-level version
of this work would be obtained within an integrated project support environment requiring
many different design methods to be supported

271

Acknowledgements

The work described here was funded by the Alvey Directorate, UK. Thanks are due to our
collaborators in the ECLIPSE project namely Software Sciencqs Ltd., CAP Industry Ltd.,,

Aberystwyth.

Personal thanks are also due to Alistair Blair, Stevie Keith and Jim Reid for providing good,
constructive criticism of this paper.

References

[Alderson835]
Alderson A., Falla M. E., Bott F., "An Overview of ECLIPSE ", Integrated Project
Support Environments, J. McDermid (ed) Peter Perigrinus London (1985)

[Beer87]
Beer Stephen, Welland Ray, Sommerville Ian, "Software Design Automation in an
IPSE", To appear in Proc. of 1st European Software Engineering Conference,
Strasbourg, France (Sep 1987)

[Constantine79]
Constantine L. L., Yourdon E., "Structured Design”, Prentice-Hall (1979)
Englewood Cliffs, NJ

[Jackson83]
Jackson Michael, "System Development”, Prentice-HaH(1983)

[Johnson75]
Johnson S. C., "Yacc: Yer Another Compiler Compiler”, Computing Science
Technical Report, No. 32 Bell Laboratories Murray Hill, New Jersey (97 5))

[Jones86]
Jones John, "MacCadd, An Enabling Software Method Support Tool ", Proc of 2nd
Conference of British Computer Society Human Computer interaction Specialist
Group, Harrison (ed) pp. 132-154 Cambridge University Press (23-26 Sep 1986)

[Kramer86]
Kramer Bernd, “Interactive Graphical Specification Using he Syntax-Directed
SEGRAS Nineteenth Annual Hawaii International Conference on System Sciences,
Bruce D. Shriver (ed) pp. 420-429 (1986)

[Lesk75]
Lesk M. E., "Lex - A Lexical Analyser Generator", Computing Science Technical
Report, No. 39 Bell Laboratories Murray Hill, New Jersey (Oct 1975)

[MASCOTS0]
MASCOT, "The Official Handbook of Mascor", Mascot Suppliers Association
Malvern, UK (1980)

[Peterson81]

Peterson James L., "Perri Ner Theory and the Modeling of Systems", Prentice-Hall
(1981)

272

due to our
ustry Ltd.,
of Wales at

viding good,

grated Project
5

ation in an
SICHee;

979)

cience
75)

Proc of 2nd
pecialist
Sep 1986)

cted
m Sciences,

iieclsnall
lation
tice-Hall

[Reid86]

Reid P., Welland R., "Software Development in View", Software Engineering
Environments, Ian Sommerville (ed) Peter Peringrinus London (1986)

[Sommerville87]

Sommerville Ian, Welland Ray, Beer Stephen, "Describing Software Design
Methodologies", The Computer Journal, Vol. 30 No. 2 pp. 128-133 (1987)

[Stephens85]

Stephens M, Whitehead K, "The Analyst - A Workstation for Analysis and
Design”, Proc of 8th International Conference on Software Engineering, IEEE
Computer Society Press London (28-30 August, 1985)

[Woodman86]

Woodman M, Ince D, Preece J, Davies G, "A Grammar Formalism as a Basis for

the Syntax-Directed Editing of Graphical Notations", Open Univeristy Technical Report
86/19, (1986)

273

