
l^ \&,.u$".'rXr - W"'rn-L 974o*s, I (+) Wt ixgS

lq B?b

Co-operation and communication
within an active IPSE

Thomas Rodden, Peter Sawyer and lan Sommerville

Most currently available Integrated Proiect Support
Environments achieve integration of proiect components
through the use of a cohesive set of tools layered on top
of a database management system. In addilion to the inte-
gration of tools and data, future IPSEs will be required
io support integration of the various activities within a
project. The ISM project is developing an architecture

for a prototype IPSE which supports activity integration.
fhe ipSn is implemented as a federation of intelligent,
co-operating agents which communicate with each other
and with IPSE users by message passing. This paper is

particularly concerned with the mechanisms employed to-permit
inter-agent and agent'user communications, both

to initiate actions within the IPSE and to enable the direct
manipulation of the IPSE object store.

Keywords; knowledge base, user interacnon, software
tools, programming environment, I P S E

In common with any engineering task, effective software
engineering requires the use of appropriate tools. In
reCognition of this fact, much effort has been invested
in pioducing software tools such as compilers, symbolic
de6uggers, program analysers, etc. The conce,pt 9f plo-
gramming environments arose from the idea of collecting
iuch tooli together into kits where users could apply
them at appropriate stages during the course of software
development.

Uniil is perhaps the best known example of such
a programming environment. The Unix system provides
a variety of different tools, but more importantly pro-
vides tool interconnection mechanisms (i.e. character
hles, I/O redirection, pipes, shell programming) which
allows tools to be used in concert. Outputs from one
tool can serve as inputs to others, thus powerful tools
and tool sequences can be built by putting relatively
simple tools together.

In programming environments like Unix the software
developer must take full responsibility for the application-
of the correct tools to the appropriate components of

Department of Computing, University of Lancaster, Bailrigg'
Lancaster LAI 4YR, UK

the design exercise. The environment itself encapsulates
little information regarding interdependence of tools and
components beyond that which can be expressed in
Maliefiles and shell scripts. Furthermore, the basic Unix
toolset is principally intended for programming support.
It does not provide a great deal of support for other
software process activities.

A project support environment differs from a pro-
gramming environment by providing support across a
broad spectrum ofproject activities, from initial specifi-
cation ihrough to product maintenance. Only if that
support is provided in such a way that the environment
views the various tools, not in isolation, but as a set
of interdependent activities forming part of a project
process, it can be said to be an IntegratedProiect Support
Environment (IPSE).

ASPECT'� and ECLIPSE3 are two examples of recent
IPSE designs which address the problem of supporting
the whole software development process with an inte-
grated set of software tools. Both environments are
iypical of current IPSE designs: a tool set is layered
arbund a project database, access to which is governed
by an object management system. The object manage-
ment system provides mechanisms for maintaining 991-
sistency among project components to a degree which
was not possible in older, file-store based environments.
A user interface based on bit-mapped workstations and
direct manipulation is provided on both of these systems.

The currint generation of IPSE systems, typified by
ECLIPSE, may be termed'passive' IPSEs, which exhibit
two levels of integration:

I Data integration via a database management system.
2 User interface integration via a consistent metaphor

and standards.

They do not support activity integration. The activities
involved in the ioftware process are initiated entirely
by user actions. In an active IPSE, as well as data and
interface integration, activity integration is also
supported. Information regarding interdependencies of
tooL and components may be used to initiate actions
automatically when some conditions are met. These
conditions may not necessarily be as a (direct) result

"
of external stimuli.

Because of the relatively unstructured nature of th€
software process and the non-deterministic patterns of

0950-7051/85104024049 $03.00 O 1988 Butterworth & co (Publishers) Ltd
Knowledge-Based SYstems240

,6j

{r

$
, ! l
+

;' i:

activity activation, we have used techniques which have

oreviously been appueJ in artifrcial inteliigence (AI) and

i;;;fi;t-b;sed'ivstems to the development of an

active IPSE.--ift.-fpSg
contains a knowledge base' part of which

i"i;;; project modet' This model encapsulates the

il;;ffi; ta ptoj"crt, aims, products' resources' time-

;;;l;;;;;.i *hi"-tt *"t identifieda as being necessary

i;;klid the problem of complexity in large soJtware

;;;;;tffi proj."t..
-ittit

itttbt-aiion is embodied

*iiii" rtt"ip5e ut ou3""ts' By manipulating these know-

ffiil;;;;t ttt.ipsb is abll to reason about an evolv-
ins proiect, integrate G uutio"t transformations which

;;""i;;;;diiJa to irt comporents'.and thus automate

many softwar" p.o".tt tasks'^The ability to reason about

a oroiect and generate transformations automatically

;."d4;;; *"lp3e with the attribute of being active'

ISM: AN ACTIVE IPSE ARCHITECTURE

The work described here has been carried- out in the

;;";;?a collaborative project called ISM5' The ISM

;;;j." ; ;"*ut"n ptoltu--t started-in october 1986

which is investtgattng ilie structure and applications of
"^k;;;La;t-uai"a

lFsf-tts main objective is to identifv

u ."iiuUf. irchitecture and develop a prototype for such

a system.
The project has concentrated on identifying a set of

n.n"ri"'iudirities integral to the design of an automated

?P$.iffieition, it f,as focused on projectmanagement

il;i,[t,' i"cluding planning, configuration manage-

ment and activity colordinati'on' Applications of these

iliim;; being built to further explore specific areas

i;;;;t 6 rcaliziaprototype ISM' and-an^initial system

;;;6. f"r compietion'in August 1988' This paper

describes the overall architeclure *!t:h is being

i"""^l.o-feO for ISM, and the facilities provided to support

""ii"ii, co-ordination, co-operative working and user

interaition. IpSE design,
i" ttre course of the prototy-pe actlve

,""ittq;. ;; uiili'"4 dtu*n fto- areas. of AI where

the technology ls Uoitt upptopriate and suffrciently

mature. In most current ""uiiottrn"ttts' tools are layered

"t"""Jitt. IPSE kernel, where users interact with them'

Bv contrast, oo, *od"i of an active IPSE has neither

;;h ;;;;'t"L"i in the accepted sense' but consists

l1"" i.a*"tion of co-operating agents (see Figure 'l)
*ftrcn

-"ttU"ay
.offi"i"ti cont&tual knowledge to be

invoked on an opportunistic basis'
An agent encapsulates both local data and the opera-

tions which mav be;;;i;J bv th9 agent' The external

interface to an ageni-it itt-"a 6v !tt9 Jet of its "*tl*l:

;;;;i;; 6pe?ations on data held bv an asent ls

;5;;ii;il;;;a bv sending.a.messase to the asent

requesting .o.. u"'io" Contro'iled access of data allows

rirlti"g.i information required by. a diversity of agents'

There is a finite set'lf meisages which may be accepted

il;i;;*-*he" "ach uulid *ettuge is processed by

the agent's "o,,t'pot'di"g operation' Agents may be

automated or human'
The integral part played by human :e"lq

does not

".*pio.iti the environmeni's claim 1o being active'

If all IPSE agents, both software and human' are pro-

ild;;;ff;, tr''nit'tv will all app:3r to the IPSE

to have u .on.,.t"nt-t*t"iiut interface' This enables the

automatic scneaurrni oi all agents to perform specifitc,

project-related tasks, as black-box processes'
'

A po*rrfrrl attribute of the IPSE' which is enabled

b;;Ji;i;;;;iJ architecture, is the abilitv to delegate'

Unlike most current environments' whose tools operate

;;;;d in isolation, many complex tasks .can be per-

i"tittJo ;t;;;ii;"ilv bv-agentJ co-operating' Thus' a

;;;pl;" operation may'be-<lisassembied into subtasks'

;;;t'';;ft;n ir d.t.git.d to the agent with the appro-

fi;.;tilt^;;;;;f"'* the subtask' e'g' the design
of an important program module may be running late'

X ;;;il;;rr"" of this could be thaf the slippage will

t";;i;J;otuJ bv temporarilv reallocating other

;;b;t;iitre design team to work on the module''i'ffiG-";
u"""ptubi" solution to this pr.oblem which

t"i"i.-i"ro ttt. resulting knock-on effects will involve the

""-"p"i"ti"t of the pioject manag€ment agent'] Plan-
;;i;;;,,;."n.a"ii"g agent, and one or more human

.agents.
The above example illustrates the requirement that

aqents must be asynchronous processes capable of run-

;i;; ;;;;""trv."rtt. project hanaserye-nt agent would

not be able to "u.r.. th" reicheduling of the project until

itr" pl""i.e agent.had established a preferred reallo-

cation of resources (the execution time of a rescheduling

;;;;;. ;"y be in ihe order of davs if human agents

;;;;;;;i;6, v"rit mav be requiry{ to respond to other

.u"ntt during ihe intervening period'

In principle, any agent may call upon any other agelt

," p.ii".tii^r'uy".9tding it a mlssage' This implies

that aqents must emLody inf6rmation about the services

off.t"i by potential collaborators so that messages are

not sent to agents which do not have appropriate

;;h";i;;t. witf, which to react' The approach which

ft"t-f.."
-t"ken

is to devolve this knowledge to an

intelligent mailer agent'
An-agent requiring a service. from the IPSE sends

u -"ttui. via thl mailer agent, which roules the message

lo-tf" o:pptopriate agent-to-respond to the request' In

"idiii"", itt.^ mailei igent allow-s users. (human agents)

to initiaie actions within the IPSE in the same manner

;.;t other agent, while also allowing other agents

to request servrces oi u "t"t as they would of any agent'

The mailer agent provides the user. with a range of

facilities to constnict a personalized interface to the

;ffi;; *ti"tt u.rir.rs him from the abundance of

messages common to actor-based systems6'7' Thus' as

;;il ;"t co-ordinating communications between active

;ft; trt. -uil.t alent can act as an electronic mail

svstem.

!

i
i
t

241

Figure 1. Logical view of active agent topology

Vol I No 4 SePtember 1988

. , . - . d: , ; i t* r .4:r ' , r |+ l*r .r ' l ! . i !S".

Att r ibutes
Loca l da ta

Figure 2. Conceptual view of an object

In addition to being able to initiate actions within
the IPSE.by-sending messages to agents via the ;"ii;;;
a specialized user interface based on direct manipu_
lation8 permits users to access the contents of the know_
ledge base. Consistency of data within the knowledte
base is enforced by the.opject browser agent. The objeit
browser co-operates with the mailer t6 translate user
reorrests into the message format appropriate to the
a! s responsible for the individual iiems bf data being
accessed.. The principle of protecting data frori
unauthorized access is therefore enforcdfu consistently
for all agents, human and otherwise.

KNOWLEDGE REPRESENTATION
Agents. are responsible for performing transformations
of entities within the IpSE knowledge_5ase. The contents
of the know_ledge base are distriduted among the set
of agfnts. _Knowledge is held within this pa-rtitioned
knowledge base as objccts. Object oriented programming
techniques e' 1 o were selected a s an appropri a te k-nowled gE
representation mechanism using the same rationa-ie
employed in the selection of agenis to embody the active
elements of the IPSE

Object oriented programming

Object oriented _programming enforces the principles of
info-.nation- hiding, encapsulation of dati a.rd pro-
ce(_ ,s., and provides a conceptually elegant means of
packaging information. Using an

-objeit
orientation

m-ethodology programs are structured as a collection
of independant objects communicating via message pass_
ing.. Objects encapsulate both attributes, data'private
to the object and methods. the operations whici may
be applied to the data.

^ Conceptually, objects are of the form shown in Figure
2. An object is a named instance of a class wheie a
class can be thought of as a template definition of an
object type. There may be multiple instances of any
class, each of which represents a different project artiiait
of the same type, e.g. there may be an object class
project___tneeting_minutes, an instance of which is
created after every project meeting.

A taxonomy of related object
-classes

may be repre_
sented by an inheritance tree. An object class will inherit
all attributes and methods defined for all its super
classes. Thus, as a naive example, a program which
models project resources may make .,i" 6f the classproject_ member, for which the following attributes and
methods are defined:

242

Attributes: Name; Grade; Location:
Methods: Assign.

A subclass, programmer, would inherit the attributes and
methods defined for. project_member, but may embody
the additional definitions:

Attributes: programming__skills; Current_
assignment;Mail address:
Methods: Send_on_training_course.

An instance of a class w_ill have a state, defined by the
values of its attributes. Consider the foilowing insiance
of the class programmer:

Attributes:
Name: I.M.A. Hacker
Grade: Coder first class
Location: Room 21, MegaCorp House
Programming_skills: C, Ada, Unix. VMS
C_u1rent assignment: EFA flight simulator
Mail address: hacker@uk.co.megacorp.newsun

Within the IPSE knowledge base, attributes may have
class default values, are typid, and may have constraints
associated with them. Attribute consiraints may serve
not only to restrict possible attribute values as an exten_
slon to the typing scheme, but may also embody relation_
ships between attributes and be capable of generating
messages to other objects. Constraints applied to objeci
attributes may be used as a powerful

^mechanism -for

inferlng new attribute values from accumulated data,
1,n! for propagating knowledge across the system. In
thrs respect, the object attribute constraint mechanism
is similar to the idea of procedural attachment to frame
slots 1 1 .

INTER.AGENT COMMUNICATION

User interaction style

A major area of research in recent years has been the
design of user interfaces to compuier systems. Tradi_
tionally, the most common style of inteiaction with a
complex computer system has

-been
via a command line

rnterpreter such as that provided by the Unix c_shell.
Co.mmand interpreters piovide g."ui po*", and flexi_
bility and continue to enjoy p-opularity, particularly
among those who have investeC much time in gaining
experience with their rse. However, studies suggJst thai
the complex command syntax endemic to thii-style of
interaction can lead to considerable disorientation and
confusion on the part ofinfrequent or inexpert usersr2.

Modern_computer.workstaiions equlppia with high
resolution bit-mapped screens and pointing devices haie
now enabled alternative interaction styles- to challenge
the long standing supremacy of command line inte-r_
preters.

Interaction with ECLIpSE is performed via a user
interface which uses a control pinel metaphorr3. The
control_panel metaphor is an ixample oi the direct
manipulation style of interaction in which data items
are displayed continuously for the period of interest.
Instead .of having to know a complei command syntax,
users perform physical actions Hle pressing a Uutton,
or selecting a menu item with a poiniing divice. When
some operation has been carried out on an item, the
effect is immediately visible to the user. The design of
<lrect manipulation user interfaces are motivated bi the

Methods

Ope ra t i ons app l i cab le
to an object

Knowledge-Based Systems

Cc

ffir

ffi
Re

Figu

goal
arou
task-

Ur
manl
fillin.
is us
mani

Mail

The r
invoc
knorl
co-or
of in
a co-(
role <
this c,

Tht
percel
imple:
co-op,
a con
passin
ofvar
of el,
cornm

B y ,
interar
are us(
and t<
action
priate
is the
Thus,
gram I
then su
pleted
agent (
paradil
interfa<
the m,
directly
action r

V o l l I

C"*Pil"o::::

Mailer Agent

Figure 3. Interaction via the mailer agent

goal ofrequiring users to carry less contextual knowledge

iround with them, freeing them to concentrate on the

task-domain semantics.

{"ittoui""

However. while considerable research has been
directed toward the development of efficient and reliable
techniQues for the transfer of messages, until recently
compaiatively little effort has been expended on inter-
action with message handling systemsT'r6. Message
handling systems currently tackle many of the problems
generated by communication within collaborative
6nvironments by providing an efficient and reliable
communication medium. However, due to the historical
emphasis on the transfer of messages, and the subsequent
lack of dev..lopment of user interface techniques, the
presentation of information to the user tends to be
iudimentary and completely unstructured, generating an
effect which has been termed Information Overloadrs.

When information overload occurs the flow of infor-
mation is so rapid it makes it difficult for the user to
discover information relevant to him. To be effective,
systems must give message recipients the ability to discri-
minate between those messages they wish to read and
those of little relevance to themrs. Malonel? conducted
several studies of how various kinds of information are
shared in organizations. The most interesting of the
approaches he describes are cognitive filtering, where
the decisions are based on the topic of the message,
and social filtering, where decisions are based on who
supplied the information. Additional studiesls have
shown that the majority of messages within electronic
message systems are organizational, and a significant
amount of these are routine in nature. We believe this
will also be the case within an active IPSE.

Mailtray structuring
The structuring technique used is based upon the notion
of Mailtrays, which forms flows into and out of as
necessarytd. Each mailtray has a title, a number of
attributes, and an action list which describes how forms
should be processed. Additionally, each mailtray has
an associated guard list controlling the nature of the
forms held in the mailtray (see Figure 4).

Mailtrays are active elements which accept or reject
forms depending on their guard list. A tray's guard list
is composed by its agent and describes the criteria for
adding forms to the tray. The agent is free to create
an interface reflecting its particular classification of
forms, which may be fine tuned as required. Addition-

Users interact with the active IPSE using a direct
manipulation style of user interface based on form-
filling. The following sections describe how this principle
is uJed to initiate actions within the IPSE, and to
manipulate objects within the knowledge base.

Mailer agent

The mailer agent controls all agent interaction and agent
invocation within the IPSE framework. The sharing of
knowledge is fundamental to any system which promotes
co-operative workingla. In addition, the co-ordination
of interacting agents is a major consideration within
a co-operativi syitem such as the Active IPSE. A major
role oi the maiier agent is to aid in the realization of
this co-operation.

The mailer agent's primary concern is how agents
perceive their interaction with an active IPSE' Our
implementation of an active IPSE is as a federation of
co-bperating intelligent agents with the a-bility to share
a common information space, while utilizing message
passing to collaborate on the disassembly and solution
bf vari-ous tasks. This architecture is similar to how users
of electronic message systems perceive the mail
community to which theY belongls'

By adopting this model agents may. have a consistent
inteiaction inierface where exactly the same methods
are used to send mail to system users, to file mail received
and to initiate system actions. An agent initiates any
action within the IPSE by passing an object to the appro-
priate agent, the conceptual view utilized by the mailer
is the fiiling in and 'sending' of forms to other agent'
Thus, for an agent to initiate the compilation of a pro-
gram he fills in a Compile form (object). This form is
Ihen submitted to the mailer agent which mails the com-
pleted Compile form to the appropriate compilation
agent (see Figure 3). By extending the message- passing
paradigm used within the IPSE to encompass the agent
interfaie, the technologies and techniques applied within
the message handling systems community become
directly applicable to the realization of a cohesive inter-
action metaphor for the active IPSE.

Vol I No 4 September 1988

Approriate
Compiler
AgentCompile Tray

,W
Compiler Report

Report Form

243

Figure 4. MailtraY comqonents

allv. since mailtrays are dynamic in nature' an agent

"ui'u-"na this intirface as requirements change'-*brttiO.t
a member of a project team (a human agent)

developing a component which interacts with various

;;;;;;;"1. developed bv other team members' He mav

*"i.ft't. "tt"nge the various forms used so that all forms

;;;;ilg piog.u. errors are grouped'. He may also

*-irtt t" ioliatJ all communicaiion with any of the

compiler agents used.*ild;
tJ tti *o"ra define a number of trays in order

that relevant forms are structured so that forms requiring

ir"."aiut. attention are dealt with directly, and routine

lot are processed in as automated a manner as

oossrOle. Trays are defined by their creating agent using

I""-tAt *fti.it define what is placed in a tray' an{ 9n
;;;;J ";aion list, which describes what should be

done with the forms placed in a particular.$ay'-tt
" d."ition wheiher or not a form is placed in. a

-uiftiut is controlled by the tray's Guardlist' The

ffiffilt i; ; tist of predicates which can be applied

i"ltt"-"irtitutes of u iotm. If all the tests on a form's

"ittif"L. tt.ceed, the form passes that guard and is

uJO.a to a tray's contents. Any number of guards may

il. ut.o"iut"d with a mailtray, and a form is accepted

if any of these guards is true'"
T'ri"l"utJ tiit ro. the tray defrned to collate all forms

regarding debugging might simply be:

Guard all clrcs debug

This would allow all forms belonging to the class debug

;;';;i;;;G trav. However, if the-user wished to collect

;;;;iili;" foims from a particular pt-oi:"I'sav spread-

;;;;;, il;h;"o"rJurt"t tht utttibui" list to allow onlv

i
--

', ,.gutding spreadsheet to be added to the tray

tv t.pr""i"g thJguard above by one of the form:

Guard all cltss debug
t
I

project :'spreadsheet'

For a form ,o ,o"""J.totly negotiate this guard it must

l. oi "tu.t debug and have an attribute called project

with a value 'sPreadsheet''-Wtt"n
a form is placed in a mailtray the Action List

fot tft"i tiay is interpreted' Actron- lists consist of a list

ti"orn-unis to be executed' Each command is of the

form:

Action Head --' [Action BodY];

The action head consists of the action name followed

;t1G ;i"t. of forrns to which the action applies' If

the form is of the class appearing in the action head

ihen the succeeding action Uoay is executed' Each action

6oOV it written iria notation consisting of if then and

244

Id's ttall GI'ARDS

Frf i : Ian and not (PetE)

Figure 5. MailtraY interface

assisnment statements in conjunction with form

tt"ttiting primitives (mail, save, forward, etc')' e'g' ,a
rrii-"v *i.h to process forms of class code lesl only

*tt.t ft.i has ten fbrms of this type' His action list for

the-appropriate tray would contain the actior^ batch:

batch:code-test+[
no-forms:no-forms* l ;
Save test---forms
f no forms : 10

then
I

fl"g;
no-forms : 0;'|

I

l ;
No forms is a user-dehned attribute associated with the

ii"i l"'*tti"ft this action belongs' Flag is a form handling

ptiiniiiu. which informs the mailtray owner that the tray

requires attention.--in.uituUtv,
the user definition of guards and actions

in order to program a message interface ingurs a learning

ou".t "ua.
.io irirrirrrir" the effects of this learning over-

head an amenable user interface is adopted (see Figure

il. ift. mailtray systems' user interface utilizes an icon-

L'urJi.pt.teniati,on to allow the easy examination and

-"til"iiti"n of mailtrays. The interface is implemented

;;; tijh resolution bit-mapped screen (Sun-3) and.ules

;;;;it"? manipulation of iions via a mouse in addition

i.-t.VU""tA input. A user wishing to interact with our

u.tiuJ rpSB wbuld select the appropriate form using

ifr. tttont", complete the form ailequired, and submit

itti fot* to the system by sending the folm via the appro'

piiate tray. Similarly, all response^s from the system

ptaced in ihe appropriate trays by reference to each trays

guard definitions.

OBJECT BROWSER AGENT

The IPSE object browser allows users to interact with

t:il.td; by directly manipulating objects within the

tr"r,ir.ag" base. Th'e system usT 1 . dynamic forms

-tt"ptt"? Uased on a mappin^g of objects within the

knowledge base to sland"ti f6t-ut windows (form$

on a wo-rkstation screen. It is designed to facilitate a

o""ru'utiu"ratherthanacommand-drivenstyle.ofinter.
action. To initiate some action' a user supplies 1t{oq11:
tion, and the IPSE (specifically the mailer agent) dectoes

what to do with it.
Form-based user interfaces are not & n€w idea'o' and

t aue lUe"tt used in data processing systems for many

years. Recent research hai been devoted to tttilg.,lj

ad front-ends to systems running on machines equlppcs

with hig
devices. ,
in which
types of
cornman
oriented
attribute
forth ref
device tt
while the
a value I
adjacent

In the
sented a
value to
field is fi
ponding

Dynar
Lens Syr
is obser'
as a frat
fields wl
the parsi

Dynar
objects,
in a for
Any obj
a s a d y
of constr
assistant
assigns r
inferenc,
within a
be prop
spreadsl

Dynar
classes,
The mec
sity of c
of sourc
user cor
electron

Users
attributt
left to t
to make
an obje,
task is :
further t

The r
priate I
object b
,90urce_
form, o:
source_
mailer r
their pr
< Ada_
priate (t

The c
ofa nun
the mail
borative
managel
the bror

V o l l N
Knowledge-Based SYstens

1e
1g
^y

with high-definition bit-mapped display"s -a-nd
pointing

ffi;;;:-a;;rin-Spic"'i is an example of such a svstem

in which informatton irr a form is structured into two

tvpes of field. These "-UoOV i"ftrmation^-representing
commands, and that t"'pt-es"titiog pT^"T:tti:'In object- '

oriented terms, tlrey-'are a-nalJgous to- methods and

attributes respec'very. itt. io..Jt type..of field (hence-

forth referred to as.a ;il;") tt ta'ittaay the pointing

device to execute 'nt"Jtiund Qressing-the button)'

while the latter (hencef"t'itt
-ttf*tid

':.T:-O:D requires

o talue to be assocrated with it by typing into a space

iAiu".n, to the field's label'""i"-tr"
ipsE object browser' objecj a.tJrilutes are repre-

J;J;i;Id.,"*a'*"ir'oa' ;: b"l!gl':'ro assign a

value to an object,s ulku"t", the corresponding form

iiiJf, nff.O io-ho i"uote an object's method the corres-

ponai"g button is Pressed'
Dvnamic fo*' u'" ti-ilar to what' in the Information

L#$ilt;. ir9 ;;ii;;ft-'tructured messages' It

is observed ,t ut ,n"
"Jt*ture

imposed .b1 the jt^Tl

;- ;il;;ork' can encapsulate TY:h't:f"*atron
rn

frelds which would ottrliwise have to be extracted by

the Parsing of free text'

DYnamic fo*t utt the physical representation of

obieits within tr''e tnowilOgi riase,11,11t,a user flrlling

i"*;i;;"i;-uttuurv tt"ating.or modifvine an object'

Any object visible "i ti" lttfrledge base ca-n be viewed

as a dynamtc lornr' ln{o"ou"t' .ihe
powerful concept

of constraini"g ut"'f*t'eiatiottsttips inaUt"s automatic

assistance to be provided to the us9r..'-lltus' as a user

assisns values to form?relds' the system is able to make

infeiences uUot't tt'" uui"-o of uttoiia-ted attributes' both

;ffi;ft;ot' oui"a uoundaries' Inferred values may

il."pi"p"g"t"O u"to"t attributes as if the form were a

spreadsheet.
Dynamic forms.are used to create instances of object

classes, ui"* "*"t'iiinttunt"t and define ne'rr classes'

The mechani,t " ri3.iilit t"o"grt to €ncompass a diver-

sitv of obje"t cta'seJ"it"- p3*"itit "!]::lt' such as files

of source code, to i*ttt atiigned specifrcally to provide

user control of th;;;;;' i""tt at forms for sending

compon€nt."f lry,,:bj'Jlif,f [Ti;:]l,Tlt jiiff t#*1
set of objects resrdrng. ,esponsible.
i;d; il;. for which- the object brovser ts I

These objects may oe manipulated in the same manner

;';;y ;il"; ou:L"t' ii';;' th" ott''t interface to the

obiect browser rs tt*"ng"tuUle and tailorable to

individual user's requirements'"T;;-;;;;i'i -il;;-;;i;uot' (and inter-object)

inferencing -""nut'-, the IPSE s "bltill^ to interpret

ilc"oi,;ffi Juiu, una-ile tailorable nature- of the user

il;"".?;"";;;t;;id; tne uasis or the Dvnamic Forms inter-

ilil;i;ptt"t. pvU-ic forms ire not a unidirec-

;iJ;i #ffi;ia r* uiio*i"e users to provide input

to the system. U'"tt u"a IP:SE interact via dynamic

iil;, .iiitt tttt svstem dvnamicallv. illyqtine 1t11
*ppii"o "iiribute values and providing run-time assts-

tance by spawnmg ou"tgto"tO processes' infering new

attribute values, etc'

Obiect browser functionalitY
ifi pti""ipal requiremenis of the object browser are

that users musr oe ;i;; inspect the contents of the

knowledge bu,", u"f,"'i-o""t" objects within it' i'e'

the user needs to b;
^ablt

i; find out what is in the

"iit"i-"".i- look at individual objects' create new

obiects, modify .*itiing'oUi"cts (but-only if permitted

to do so; and define new obJect classes'

Two compon""t' i*pt"*ent the object browser agent:

I The user interface: is responsible,,for phYlball|
'

;;";,itg ouiecf, on the scrien' handling user input'

mouse clicks, "'"' ri p"iiot^s the mapping of objects

into forms'
2 An object library: is essentially a- server to the user

interface *trictr'iorms ttre oUiect browser's interface

to the mailer "gi"i' una hence to^the rest of the

IPSE. Reque"t ii""i ih" uttt for information about

some object -'gt""p "t objects is. relayed !y the

user interfac. to it. ob5."t library. The object library

initiates ,"ut"t"'-oi ihe tcnowiedge base' collects

iti"t ",i* uUo"t ttt" required object(s) and returns

the object data to the user'

The mailer agent collaborates with the 9bjlt
libr11

to co_ordinate seaiching of the knowledge base, ancl

;;t;J;Gry of objecti toappropriate agents on com-

ptetion of their manipulation by the users'

245

NS

ng
3r-
Ire
)n-
nd
ted
ses
ion
cur
'ing
mit
)ro-
tem
:ays

with
r the
orms

the
rms)
rte a
nter-
,fIIl&-

:cides

, and
many
them
ipped

/stems

electronic mail to other users'-'
U..^ are not constrained to -assign

valles to every

#il;ii.t "t*'itg or modifving.an object' It is

left to the agents *n'"i p'ott* il." "!J::t-to attempt

to make the best "o'" of information encapsulated by

l.n
''Jie-c;^iiin."mtitn-f

information for a particular

;;'rkli;;il"J, trt. ii-is *ru senerate a request for

further data.'-il;;;ii;t
agent holds responsibilitv f91, the appro-

ori# ffi;tt&-;i
"oui""*'""uted/mod^irred bv the

obiect browser, e'g' "";iiilg ?1 obi.::t of class Ada-

,oLrce-codemay be p"ti"t-1d ul dJlt* oul a compile

form, or by pressing ltt" "otpift
"U*tton.:l

the Ada-

source-code oti""t'''Tott
-iiself'

In either case' the

mailer would use its [""*fJgt of object classes and

i# . e;"**l' " 111.if,.#,:B i}J,:[:,:TT"TSXX< Ada---source-coac
priate (Ada) comPiler aeent'

The object u'o*"' u"gtnt (see Figure 6) is composed

of a number or "otpotiJni'-una to-6ptrates closely with

themaileragent'aSco.uttpsnagents.€ngagedincolla-;::rul"lil**l,.*[;;,'*',:l}!:lf #ffi ,r".
il?"ffi 3;'Xt'"'?"i;;; t;' ;; insE ri' ;;; interrace

Vol I No 4 SePtember 1988

Figrr" 6. Object browser - environment relafionship

Figure 7. Viewing an instsnce of the class meeting-announcement

Browsing example
Browsing the object store may be done on two levels:
a definition level, and an instance level. These corres-
-.nd to looking at what object classes exist, and to

"ving instances of a particular class, respectively.
At the instance level users can view individual objects

as completed forms, and create new instances by filling
in a blank form (Figure 7 illustrates a browsing example).
The hgure shows the top level ISM control panel, a
view-instance form which facilitates instance level
browsing, aird two me e t ing -announc emenl forms.

The top level ISM control panel is represented by
the narrow window labelled ISM user interface, and con-
tains the three buttons labelled Browse, Define and Quit:

r The browse button permits objects within the object
store to be manipulated, and objects, representing
new instances of existing object class deflrnitions, to
be created. Browsing in this context encompasses not
only the creation and modification of persistent
objects such as hles of source code and documents,
but also the initiation of actions within the system.
Initiation of system actions, may take the form of
the creation of objects whose sole purpose is to issue
instructions to an ISM agent. The creation or modifi-
cation of a persistent object will also cause the

246

initiation of system actions, however, as this type of
operation represents a change to the project state.

r The define button permits the definition of new object
classes.

o The quit button terminates the user's dialogue with
the system.

In the scenario represented by Figure 7, the user has
pressed the browse button, resulting in the creation of
an instance of the view-instances class.

The instance of view-instances is represented by the
large form at the top left of Figure 7, labelled Object
: view instances-0, where view-instances-0 is an auto-
matically generated unique identifrer for the instance
of view-instances.

The form consists of a window containing two sub-
windows:

I A control panel containing buttons representing the
messages defined for the class viewjnstances. These
are the methods close. delete and send which are
generic to all objects and have the following
functionality:

, o The close method removes the form from the
display.

o The delete method removes the form representmg
the object from the display and deletes the objat

Knowledge-Based SYsterns

a

2 The
sup€
the ,

An ico
This n
unstru

Attr
unique
set att
o f a t r
type a
travers
on the
the val
from a
facilitit

Viewin
In the
attribu
of the r

A c o
values
inferrer

r The
valu
imm

o A n
attri
class

o A f r
been
meet
ledgr

In the
meetinp
instancr
instanct
responc
object r
The ob
form re

The
are rep
announ(
announ(
of the fi

The t
form ill
and bap
delete a
operatic
value, n

Wheti
acceptec
associatr
(e.g. th
project's

Vol I Nr

2 The fields instances, object_class, subclasses and
superclasses corresponding to attributes defined for
the class view_instances.

fr93- qhe knowledge base, releasing the space
which is occupied.

r The send method removes the form from the
display and dispatches the object to the mailer
for appropriate processing by other agents.

r The methods createjnstance and view_
instance described below.

tected attribute values. Such a case would spawn a warn_
ing message gbject, displayed (again, usinjour dynamic
Iorms metaphor) as a form. For other classes of object
ft Tuy be appropriate to allow objects to be modified.

Figure 7 illustrates the use of the view_instances
object class for viewing existing objects. The view_
instances form may also be used to create new instances
of a class.

The createjnstance method causes a blank form
representing the class meeting_announcement to be dis_
played. An additional field, instance_name, is displayed
to which the user may assign a unique object identifier.
Failure to do so will result in ISM automatically generat-
ing a unique object identifier.
__On completion of the form the send button is pressed.
The object library creates the object (mapping tire form
contents onto the class definition), which is then
dispatched to the mailer agent for processing.

CONCLUSION

The design of the next generation of IpSEs will differ
greatly to_th1t of previous generations. The evolutionary
design which has led to the development of ",rrrerrt
IPSEs from programming environments is not capable
of accommodating the emerging technologies which sim_
plify automation of the whole softwa.e piocess.
. The prototype IPSE described in this paper explores

the potential for e-xploiting knowledge Uasea progru-_
ming techniques for the attainmeniof a high A-egree
of_integration within the IpSE. It is postulaiia ttit a
federation of intelligent, co-operating agents form an
appropriate architecture for the lpSEs of tlle near future.
The IPSE has been designed using an open systems
philosophy, such that new intelligint agints can be
added incrementally as teclnology enabGs their pro_
duction. Thus, tasks which may

-
currently requiie a

human, to perform them may be devolved io computer
agents in the future.

The key to achieving a sufficiently high degree of inte_
gration and co-operation within the IFSE iI the use of
a conslstent communication mechanism among agents
and users. An intelligent mailer agent has been Iesftned
to enable the kind of group communications which irust
take place in such an environment. A tailorable user
interface to the communication facilities permits users
to interact with the system in such a way th'at its internal
details are made transparent.

ACKNOWLEDGEMENTS

Thanks are due to our collaborators in the ISM project,
Software Sciences Ltd and the University of Kdle. Th;
research work is funded by the Alvey Diiectorate, UK.

REFERENCES

I Bourne, SR The Unix System Addison_Wesley, USA
(1e82)

2 Hall, J A, Hitchcock, p and Took, R .An overview
of the ASPECT architecture, in McDermid, J (ed)
Irytegrated Project Support Enyironments IEE

_ software engineers series f (1995)
3 Alderson, A, Bott, M F and Falla, M E .An overview

of the ECLIPSE project' in McDermid, J (ed) Inte_

An icon adjacent to the attribute name indicates its type.
This may be either unique, set, bag or bigtext (usedior
unstructured attributes - source code, mail text, etc.).

Attributes of two types are illustrated in the example:
unique attributes are denoted by a large figure l, ind
set attributes are denoted by a clockwork train (part
of a train set). By default, the hrst value of set or'bae
type attributes is displayed by the form. Users mai
traverse the list of values by clicking a mouse button
on the attribute name. Alternatively, a full listing of
the values may be viewed by selecting the view all oplion
from a menu defined for set and bag attributes. Similar
fi.'tities exist to permit the viewing of bigtext attributes.
Vrcwing an instance
In the example, a user has assigned a value to the class
attribute, indicating that he wishes to inspect instances
of the class meeting_announcement.

A constraint associated \{/ith the class attribute enables
values of the other attributes to be automaticallv
inferred. The following values have been generated:
. T!" attribute superclasses has been assigned a set of

values including mail, which represents the most
immediate superclass.

o A null value has been generated for the subclasses
attribute indicating that the meeting_announcement
class represents a leaf of its inheritance tree.

r A full set of values for the instances attribute have
been generated. These represent instances ofthe class
meeting_announcement resident within the know_
ledge base.

In the example, the user has opted to inspecr two
meeting_announcement objects. pressing the view_
in rce button causes the object currentlffisted by thi
insldnces attribute to be displayed. The object library
responds by searching the object store for the required
object and returning its details to the obiect browser.
The object browser maps these onto the cbrresponding
form representation.

The meeting announcements requested by the user
are represented by the two forms labelled meeting
announcemenf jun_23_tech__rntg and meeting_
announcemenfi jul_Z_proj_rntg at the bottom right
of the figure.

The to attribute belonging to the jul_24_proj___ntg
form illustrates the menu options associateA *ittr sei
1nd bag attributes. The options available are view all,
delete all and add value. These supplement the editing
operations which may be directly applied to a selected
value, namely to delete or modify it.

Whether such editing operations on values may be
accepted by the browser is dependent on the constraints
associated with the attribute definitions. Some objects
(e.g: those representing archive components of a
project's milestones) may be immutable ind have pro-

Vol I No 4 September 1988
247

grated Project Support Environments IEE software
engineering series I (1985)
Winograd, T 'Breaking the complexity barrier
(again)' Proc. ACM SIGPLAN-SIGIR Interface
Meeting on Programming Languages - Information
Retrieval Maryland, USA (1973)
The ISM Project Consortium 'The ISM project:
towards a knowledge-based IPSE' The KBS Group'
Software Sciences Ltd. (1987)

' Hewitt, C 'Viewing control structures as patterns of
passing messages' Artif. Intell. Vol 8 No 3 (,1977)
Malon-e, T W, Grant, X n Turbak, F A, Brobsto S
A and 6ohen,'M D 'Intelligent information sharing
systems' Commun. ACMYoI30 No 5 (1987)

; Schneiderman. B 'The future of interactive systems
and the emergence of direct manipulation' Behaviour
& Info.Technol. Vol I No 3 (1982)

r Renischr T 'Object oriented programming' ACM
SIGPLAN Notices OOPS 80 (1980)

t Wegner, P 'Dimensions of object-based language
desfun' Proc. OOPSLA'87 ACM press, USA (1987)
Minsky, M 'A framework for representing know-
ledge' in Winston, P (ed\ The Psychology of Computer
Vi: 'McGraw-HilI, USA (1975)

I Ha,--.rn" S J, Kraut, R E and Farber, J M 'Interface

design and multivariate analysis of Unix command
us€-ACM Trans. Office Automation Sysl. Vol2 No I
(1e84)

l iteid, P and Welland, R C 'Project development in
view' in Sommerville, I (ed) Software Engineering
Environments Peter Perigrinus, IJK (1986)

I Greif. I and Sarin, S 'Data sharing in group work'

ACM Trans. Office Info. Syst. Vol 5 No 2 (April
1987) pp r87-2rr

15 Hiltz, S R and Turoff, M 'Structuring computer-
mediated communication systems to avoid informa-
tion overload' Commun. ACM Yol28 No 7 (July
l98s)

16 Hutchinson, D, Armitage, R and Muir, S J 'A user
agent for the Unix mail system' Data Processing Vol
28 No l0 (December 1986)

17 Brobst, S A, Malone, T W, Grant, K and Cohen,
D 'Toward intelligent message routing systems' in
Uhlig, R (ed\ Computer Message Systems 85 - Proc.
2nd Int. Symposium on Comput- Message Syst. North-
Holland, The Netherlands (1986)

18 Sumner. M 'A workstation case study' Datamation
(February l5 1986) PPTl-79

19 Rodden, T and Sommerville, I 'Mailtrays: an object
orientated approach to message handling' European
Conf. Info. Technol. for Organizational Syst. Athens,
Greece (May lG20 1988)

20 Smith, C D, Irby, C, Kimball, R, Verplank, W and
Harslem, E 'Designing the star user interface' in
Degan, P and Sandwall, E (eds) Integrated Interactive
Computing Systems, North-Holland, The
Netherlands (1983)

21 Hayes, P J and Szekely, P A 'Graceful interaction
through the COUSIN command interface' Int. J.
Man-Machine Studies Vol 19 (1983)

22 Malone, T W, Grant, K R and Turbak, F A 'The

information lens: an intelligent system for informa'
tion sharing in organisations' Proc. CHI'86 (1986)

248 Knowledge-Based Systems

Expert

Ovum Ltd.,

This report
leading banl
ing artificia
tions. Som
already invc
are watchin
interest. Th'
systems to t
base techn
reasons for 1

o Banking t
people t
informati
importan
houses nr
of their b

o These ir
computer
take adv,
and comtr

o Increasin.
national
tasks ne
support, \
help to fa

o Banking
ing more
improven
service is

Market val

A survey by
the bankinl
found that
active in b
and nearly (
approach. I

Expert
Ovum Ltd, I

Expert syste
as one of
nologies of
growing mu
ware busines
also conclu<
becoming r
national,
suppliers sti
are likely to

The frfth

V o l I N o 4 t

