- . 2 ‘
\./\ \Lm-u;‘»\;z PN -.Xz - sz t.ﬂvya_-ﬁ /Lj‘)‘f L an 5)

1 {6) Sept. 1985
13336

Co-operation and communication
within an active IPSE

Thomas Rodden, Peter Sawyer and Ian Sommerville

Most currently available Integrated Project Support
Environments achieve integration of project components
through the use of a cohesive set of tools layered on top
of a database management system. In addition to the inte-
gration of tools and data, future IPSEs will be required
to support integration of the various activities within a
project. The ISM project is developing an architecture
for a prototype IPSE which supports activity integration.
The IPSE is implemented as a federation of intelligent,
co-operating agents which communicate with each other
and with IPSE users by message passing. This paper is
particularly concerned with the mechanisms employed to
permit inter-agent and agent-user communications, both
to initiate actions within the IPSE and to enable the direct
manipulation of the IPSE object store.

Keywords: knowledge base, user interaction, software
tools, programming environment, IPSE

In common with any engineering task, effective software
engineering requires the use of appropriate tools. In
recognition of this fact, much effort has been invested
in producing software tools such as compilers, symbolic
debuggers, program analysers, etc. The concept of pro-
gramming environments arose from the idea of collecting
such tools together into kits where users could apply
them at appropriate stages during the course of software
development.

Unix! is perhaps the best known example of such
a programming environment. The Unix system provides
a variety of different tools, but more importantly pro-
vides tool interconnection mechanisms (i.e. character
files, I/O redirection, pipes, shell programming) which
allows tools to be used in concert. Outputs from one
tool can serve as inputs to others, thus powerful tools
and tool sequences can be built by putting relatively
simple tools together.

In programming environments like Unix the software
developer must take full responsibility for the application
of the correct tools to the appropriate components of

Department of Computing, University of Lancaster, Bailrigg,

Lancaster LA1 4YR, UK

the design exercise. The environment itself encapsulates
little information regarding interdependence of tools and
components beyond that which can be expressed in
Makefiles and shell scripts. Furthermore, the basic Unix
toolset is principally intended for programming support.
It does not provide a great deal of support for other
software process activities.

A project support environment differs from a pro-
gramming environment by providing support across a
broad spectrum of project activities, from initial specifi-
cation through to product maintenance. Only if that
support is provided in such a way that the environment
views the various tools, not in isolation, but as a set
of interdependent activities forming part of a project
process, it can be said to be an Integrated Project Support
Environment (IPSE).

ASPECT? and ECLIPSE? are two examples of recent
IPSE designs which address the problem of supporting
the whole software development process with an inte-
grated set of software tools. Both environments are
typical of current IPSE designs: a tool set is layered
around a project database, access to which is governed
by an object management system. The object manage-
ment system provides mechanisms for maintaining con-
sistency among project components to a degree which
was not possible in older, file-store based environments.
A user interface based on bit-mapped workstations and
direct manipulation is provided on both of these systems.

The current generation of IPSE systems, typified by
ECLIPSE, may be termed ‘passive’ IPSEs, which exhibit
two levels of integration:

1 Data integration via a database management system.
2 User interface integration via a consistent metaphor
and standards.

They do not support activity integration. The activities
involved in the software process are initiated entirely
by user actions. In an active IPSE, as well as data and
interface integration, activity integration is also
supported. Information regarding interdependencies of
tools and components may be used to initiate actions
automatically when some conditions are met. These
conditions may not necessarily be as a (direct) result

" of external stimuli.

Because of the relatively unstructured nature of the
software process and the non-deterministic patterns of

0950-7051/88/040240-09 $03.00 © 1988 Butterworth & Co (Publishers) Ltd

240

Knowledge-Based Systems

activity activation, we have used techniques which have
previously been applied in artificial intelligence (AI) and
knowledge-based systems to the development of an
active IPSE.

The IPSE contains a knowledge base, part of which
includes a project model. This model encapsulates the
knowledge (a project’s, aims, products, resources, time-
scales, etc.) which was identified* as being necessary
for tackling the problem of complexity in large software
engineering projects. This information is embodied
within the IPSE as objects. By manipulating these know-
ledge sources the IPSE is able to reason about an evolv-
ing project, integrate the various transformations which
need to be applied to it’s components, and thus automate
many software process tasks. The ability to reason about
a project and generate transformations automatically
embodies the IPSE with the attribute of being active.

ISM: AN ACTIVE IPSE ARCHITECTURE

The work described here has been carried out in the
context of a collaborative project called ISM?. The ISM
project is a research programme started in October 1986
which is investigating the structure and applications of

knowledge-based IPSE. Its main objective is to identify
a suitable architecture and develop a prototype for such
a system.

The project has concentrated on identifying a set of
generic facilities integral to the design of an automated
IPSE. In addition, it has focused on project management
activities, including planning, configuration manage-
ment and activity co-ordination. Applications of these
facilities are being built to further explore specific areas
in order to realize a prototype ISM, and an initial system
was due for completion in August 1988. This paper
describes the overall architecture which is being
developed for ISM, and the facilities provided to support
activity co-ordination, co-operative working and user
interaction.

In the course of the prototype active IPSE design,
techniques were utilized drawn from areas of Al where
the technology is both appropriate and sufficiently
mature. In most current environments, tools are layered
around the IPSE kernel, where users interact with them.
By contrast, our model of an active IPSE has neither
tools nor a kernel in the accepted sense, but consists
of a federation of co-operating agents (see Figure 1)
which embody sufficient contextual knowledge to be
invoked on an opportunistic basis.

An agent encapsulates both local data and the opera-
tions which may be performed by the agent. The external
interface to an agent is formed by the set of its available
operations. Operations on data held by an agent is
normally performed by sending a message to the agent
requesting some action. Controlled access of data allows
sharing of information required by a diversity of agents.
There is a finite set of messages which may be accepted
by any agent where each valid message is processed by
the agent’s corresponding operation. Agents may be
automated or human.

The integral part played by human agents does not
compromise the environment’s claim to being active.
If all IPSE agents, both software and human, aré pro-
perly integrated, then they will all appear to the IPSE

to have a consistent external interface. This enables the

automatic scheduling of all agents to perform specific,

Vol 1 No 4 September 1988

rocedural
interface

(Agent A

. Procedural
_interface

Figure 1. Logical view of active agent topology

project-related tasks, as black-box processes.

A powerful attribute of the IPSE, which is enabled
by its integrated architecture, is the ability to delegate.
Unlike most current environments, whose tools operate
largely in isolation, many complex tasks can be per-
formed automatically by agents co-operating. Thus, a
complex operation may be disassembled into subtasks,
each of which is delegated to the agent with the appro-
priate ability to perform the subtask, e.g. the design
of an important program module may be running late.
A consequence of this could be that the slippage will
have to be absorbed by temporarily reallocating other
members of the design team to work on the module.
Finding an acceptable solution to this problem which
minimizes the resulting knock-on effects will involve the
co-operation of the project management agent, a plan-
ning agent, a scheduling agent, and one or more human

agents.

The above example illustrates the requirement that
agents must be asynchronous processes capable of run-
ning concurrently. The project management agent would
1ot be able to cause the rescheduling of the project until
the planning agent had established a preferred reallo-
cation of resources (the execution time of a rescheduling
process may be in the order of days if human agents’
are involved), yet it may be required to respond to other
events during the intervening period.

In principle, any agent may call upon any other agent
to perform a task by sending it a message. This implies
that agents must embody information about the services
offered by potential collaborators so that messages are
not sent to agents which do not have appropriate
behaviours with which to react. The approach which
has been taken is to devolve this knowledge to an
intelligent mailer agent.

An agent requiring a service from the IPSE sends
a message via the mailer agent, which routes the message
to the appropriate agent to respond to the request. In
addition, the mailer agent allows users (human agents)
to initiate actions within the IPSE in the same manner
as any other agent, while also allowing other agents
to request services of a user as they would of any agent.
The mailer agent provides the user with a range of
facilities to construct a personalized interface to the
system, which buffers him from the abundance of
messages common to actor-based systems®?. Thus, as
well as co-ordinating communications between active
agents, the mailer agent can act as an electronic mail
system.

241

Methods

Operations applicable
to an object

Attributes
Loca! data

defining object
state

Figure 2. Conceptual view of an object

In addition to being able to initiate actions within
the IPSE by sending messages to agents via the mailer,
a specialized user interface based on direct manipu-
lation® permits users to access the contents of the know-
ledge base. Consistency of data within the knowledge
base is enforced by the object browser agent. The object
browser co-operates with the mailer to translate user
reovests into the message format appropriate to the
ag s responsible for the individual items of data being
accessed. The principle of protecting data from
unauthorized access is therefore enforced consistently
for all agents, human and otherwise.

KNOWLEDGE REPRESENTATION

Agents are responsible for performing transformations
of entities within the IPSE knowledge-base. The contents
of the knowledge base are distributed among the set
of agents. Knowledge is held within this partitioned
knowledge base as objects. Object oriented programming
techniques®1° were selected as an appropriate knowledge
representation mechanism using the same rationale
employed in the selection of agents to embody the active
elements of the IPSE.

Object oriented programming

Object oriented programming enforces the principles of
information hiding, encapsulation of data and pro-
cec s, and provides a conceptually elegant means of
packaging information. Using an object orientation
methodology programs are structured as a collection
of independant objects communicating via message pass-
ing. Objects encapsulate both attributes, data private
to the object and methods, the operations which may
be applied to the data.

Conceptually, objects are of the form shown in Figure
2. An object is a named instance of a class where a
class can be thought of as a template definition of an
object type. There may be multiple instances of any
class, each of which represents a different project artifact
of the same type, e.g. there may be an object class
project__meeting__minutes, an instance of which is
created after every project meeting.

A taxonomy of related object classes may be repre-
sented by an inheritance tree. An object class will inherit
all attributes and methods defined for all its super
classes. Thus, as a naive example, a program which
models project resources may make use of the class
project__member, for which the following attributes and
methods are defined:

242

Attributes: Name; Grade; Location;
Methods: Assign.

A subclass, programmer, would inherit the attributes and
methods defined for project__member, but may embody
the additional definitions:

Attributes: Programming__skills;
assignment; Mail__address;
Methods: Send__on__training__course.

Current__

An instance of a class will have a state, defined by the
values of its attributes. Consider the following instance
of the class programmer:

Attributes:
Name: .M.A. Hacker
Grade: Coder first class
Location: Room 21, MegaCorp House
Programming__skills: C, Ada, Unix, VMS
Current__assignment: EFA flight simulator
Mail__address: hacker@uk.co.megacorp.newsun

Within the IPSE knowledge base, attributes may have
class default values, are typed, and may have constraints
associated with them. Attribute constraints may serve
not only to restrict possible attribute values as an exten-
sion to the typing scheme, but may also embody relation-
ships between attributes and be capable of generating
messages to other objects. Constraints applied to object
attributes may be used as a powerful mechanism for
inferring new attribute values from accumulated data,
and for propagating knowledge across the system. In
this respect, the object attribute constraint mechanism
is similar to the idea of procedural attachment to frame
slots!1,

INTER-AGENT COMMUNICATION
User interaction style

A major area of research in recent years has been the
design of user interfaces to computer systems. Tradi-
tionally, the most common style of interaction with a
complex computer system has been via a command line
interpreter such as that provided by the Unix c-shell.
Command interpreters provide great power and flexi-
bility and continue to enjoy popularity, particularly
among those who have invested much time in gaining
experience with their use. However, studies suggest that
the complex command syntax endemic to this style of
interaction can lead to considerable disorientation and
confusion on the part of infrequent or inexpert users!2,

Modern computer workstations equipped with high
resolution bit-mapped screens and pointing devices have
now enabled alternative interaction styles to challenge
the long standing supremacy of command line inter-
preters.

Interaction with ECLIPSE is performed via a user
interface which uses a control panel metaphor'3. The
control panel metaphor is an example of the direct
manipulation style of interaction in which data items
are displayed continuously for the period of interest.
Instead .of having to know a complex command syntax,
users perform physical actions like pressing a button,
or selecting a menu item with a pointing device. When
some operation has been carried out on an item, the
effect is immediately visible to the user. The design of
direct manipulation user interfaces are motivated by the

Knowledge-Based Systems

Figu

goal
arou
task-

Us
mani
fillin
1S us
mani

Mail

Ther
invoc
know
co-or
of in
a co-(
role ¢
this c
The
percei
imple:
co-op
a con
passin
of var
of el
comm
By :
interac
are use
and tc
action
priate
is the
Thus,
gram }
then st
pleted
agent (
paradig
interfac
the m
directly
action 1

Vol 1

“fCompile Form

A Lmguage: C

I Project: EFA_Pighter Aircraft
‘§ Source : Nume.c

| Dowt: Name

| Ezrors_to:

| Commit_code:

Compile Tray
Compiler Report
Tra

Langusge: C
Project: EFA_Fighter Aircraft
Source : Nzme.c

Dest: Nzme

Errors:None

i Error Pile:

Mailer Agent

Report Form

Figure 3. Interaction via the mailer agent

goal of requiring users to carry less contextual knowledge
around with them, freeing them to concentrate on the
task-domain semantics.

Users interact with the active IPSE using a direct
manipulation style of user interface based on form-
filling. The following sections describe how this principle
is used to initiate actions within the IPSE, and to
manipulate objects within the knowledge base.

Mailer agent

The mailer agent controls all agent interaction and agent
invocation within the IPSE framework. The sharing of
knowledge is fundamental to any system which promotes
co-operative working!#. In addition, the co-ordination
of interacting agents is a major consideration within
a co-operative system such as the Active IPSE. A major
role of the mailer agent is to aid in the realization of
this co-operation.

The mailer agent’s primary concern is how agents
perceive their interaction with an active IPSE. Our
implementation of an active IPSE is as a federation of
co-operating intelligent agents with the ability to share
a common information space, while utilizing message
passing to collaborate on the disassembly and solution
of various tasks. This architecture is similar to how users
of electronic message systems perceive the mail
community to which they belong!®.

By adopting this model agents may have a consistent
interaction interface where exactly the same methods
are used to send mail to system users, to file mail received
and to initiate system actions. An agent initiates any
action within the IPSE by passing an object to the appro-
priate agent, the conceptual view utilized by the mailer
is the filling in and ‘sending’ of forms to other agent.
Thus, for an agent to initiate the compilation of a pro-
gram he fills in a Compile form (object). This form is
then submitted to the mailer agent which mails the com-
pleted Compile form to the appropriate compilation
agent (see Figure 3). By extending the message passing
paradigm used within the IPSE to encompass the agent
interface, the technologies and techniques applied within

the message handling systems community become
directly applicable to the realization of a cohesive inter-

action metaphor for the active IPSE.

Vol 1 No 4 September 1983

_ Approriate
e Compiler

However, while considerable research has been
directed toward the development of efficient and reliable
techniques for the transfer of messages, until recently
comparatively little effort has been expended on inter-
action with message handling systems”1°. Message
handling systems currently tackle many of the problems
generated by communication within collaborative
environments by providing an efficient and reliable
communication medium. However, due to the historical
emphasis on the transfer of messages, and the subsequent
lack of dev.lopment of user interface techniques, the
presentation of information to the user tends to be
rudimentary and completely unstructured, generating an
effect which has been termed Information Overload'”.

When information overload occurs the flow of infor-
mation is so rapid it makes it difficult for the user to
discover information relevant to him. To be effective,
systems must give message recipients the ability to discri-
minate between those messages they wish to read and
those of little relevance to them's. Malone!” conducted
several studies of how various kinds of information are
shared in organizations. The most interesting of the
approaches he describes are cognitive filtering, where
the decisions are based on the topic of the message,
and social filtering, where decisions are based on who
supplied the information. Additional studies'® have
shown that the majority of messages within electronic
message systems are organizational, and a significant
amount of these are routine in nature. We believe this
will also be the case within an active IPSE.

Mailtray structuring

The structuring technique used is based upon the notion
of Mailtrays, which forms flows into and out of as
necessary!®. Each mailtray has a title, a number of
attributes, and an action list which describes how forms
should be processed. Additionally, each mailtray has
an associated guard list controlling the nature of the
forms held in the mailtray (see Figure 4).

Mailtrays are active elements which accept or reject
forms depending on their guard list. A tray’s guard list
is composed by its agent and describes the criteria for
adding forms to the tray. The agent is free to create
an interface reflecting its particular classification of
forms, which may be fine tuned as required. Addition-

243

Attributes

] No_Forms:6
1 Last Form:Compiler
] Baich _count:
] Emors:

1 Guart
Compile Guard
4 EFA Guard

Figure 4. Mailtray components

ally, since mailtrays are dynamic in nature, an agent
can amend this interface as requirements change.

Consider a member of a project team (a human agent)
developing a component which interacts with various
components developed by other team members. He may
wish to arrange the various forms used so that all forms
concerning program €rrors are grouped. He may also
wish to collate all communication with any of the
compiler agents used.

To do so he would define a number of trays in order
that relevant forms are structured so that forms requiring
immediate attention are dealt with directly, and routine
for are processed in as automated a manner as
possible. Trays are defined by their creating agent using
guards, which define what is placed in a tray, and an
associated action list, which describes what should be
done with the forms placed in a particular tray.

The decision whether or not a form is placed in a
mailtray is controlled by the tray’s Guardlist. The
guardlist is a list of predicates which can be applied
to the attributes of a form. If all the tests on a form’s
attributes succeed, the form passes that guard and is
added to a tray’s contents. Any number of guards may
be associated with a mailtray, and a form is accepted
if any of these guards is true.

The guard list for the tray defined to collate all forms
regarding debugging might simply be:

Guard all class debug

This would allow all forms belonging to the class debug
to enter the tray. However, if the user wished to collect
compilation forms from a particular project, say spread-
sheet, then he could alter the attribute list to allow only
fc 5 regarding spreadsheet to be added to the tray

by replacing the guard above by one of the form:
Guard all class debug

project = ‘Spreadsheet’

|5
For a form to successfully negotiate this guard it must
be of class debug and have an attribute called project
with a value ‘Spreadsheet’.

When a form is placed in a mailtray the Action List
for that tray is interpreted. Action lists consist of a list
of commands to be executed. Each command is of the
form:

Action Head — [Action Body];

The action head consists of the action name followed
by the class of forms to which the action applies. If
the form is of the class appearing in the action head
then the succeeding action body is executed. Each action
body is written in a notation consisting of if then and

244

TSM Mailtrays V1i.1a (J
=
Ten‘s M Ian’s Mail GUARDS
Fros Ian =

Reports m
From: Ian and not (pete)
To:

Date:
Type:
Received:

ar Prolon

Figure 5. Mailtray interface

assignment statements in conjunction with form
handling primitives (mail, save, forward, etc.), e.g. a
user may wish to process forms of class code test only
when he has ten forms of this type. His action list for
the appropriate tray would contain the action batch:

batch : code__test — [
no__forms = no__forms + 1;
Save test__forms
if no forms = 10
then
[
Flag;
no__forms = 0;
]
I
No forms is a user-defined attribute associated with the
tray to which this action belongs. Flag is a form handling
primitive which informs the mailtray owner that the tray
requires attention.

Inevitably, the user definition of guards and actions
in order to program a message interface incurs a learning
overhead. To minimize the effects of this learning over-
head an amenable user interface is adopted (see Figure
5). The mailtray systems’ user interface utilizes an icon-
based representation to allow the easy examination and
manipulation of mailtrays. The interface is implemented
on a high resolution bit-mapped screen (Sun-3) and uses
the direct manipulation of icons via a mouse in addition
to keyboard input. A user wishing to interact with our
active IPSE would select the appropriate form using
the mouse, complete the form as required, and submit
the form to the system by sending the form via the appro-
priate tray. Similarly, all responses from the system
placed in the appropriate trays by reference to each trays
guard definitions.

OBJECT BROWSER AGENT

The IPSE object browser allows users to interact with
the system by directly manipulating objects within the
knowledge base. The system uses a dynamic forms
metaphor based on a mapping of objects within the
knowledge base to standard format windows (forms)
on a workstation screen. It is designed to facilitate a
declarative rather than a command-driven style of inter-
action. To initiate some action, a user supplies informa-
tion, and the IPSE (specifically the mailer agent) decides
what to do with it.

Form-based user interfaces are not a new idea?’, and
have ‘been used in data processing systems for many
years. Recent research has been devoted to using them
as front-ends to systems running on machines equip

Knowledge-Based Systems

with hig
devices.
in which
types of
comman
oriented
attribute
forth ref
device tc
while the
a value t
adjacent
In the
sented a
value to
field is fi
ponding
Dynar
Lens Sy:
is obser
as a fra
fields wi
the pars:
Dynai
objects 1
in a for
Any obj
as a dy
of const:
assistanc
assigns 1
inferenc
within a
be prop
spreadst
Dyna:
classes,
The mec
sity of ¢
of sourc
user cor
electron
Users
attribute
left to t
to make
an obje
task is
further «
The n
priate
object b
source__
form, o
source__
mailer
their p!
< Ada__
priate (/
The ¢
of a nun
the mail
borative
Manage:
the brov

Vol 1 N

-~ -

1€
18
ay

ns
ng
er-
ire

nd
ted
ses
ion
our
ing
mit
o-
tem
-ays

with
. the
orms
(the
rms)
ite a
nter-
rma-
cides

, and
many
them

ipped

/stems

i el

with high-definition bit-mapped displays and pointing
devices. Cousin-Spice?! is an example of such a system
in which information in a form is structured into two
types of field. These embody information representing

commands, and that representing parameters. In object-

oriented terms, these are analogous to methods and
attributes respectively. The former type of field (hence-
forth referred to as a button) is selected by the pointing
device to execute the command (pressing the button),
while the latter (henceforth referred to as a field) requires
a value to be associated with it by typing into a space
adjacent to the field’s label.

In the IPSE object browser, object attributes are repre-
sented as fields, and methods as buttons. To assign a
value to an object’s attribute, the corresponding form
field is filled in. To invoke an object’s method the corres-
ponding button is pressed.

Dynamic forms are similar to what, in the Information

Lens System??, are called semi-structured messages. It
is observed that the structure imposed by the forms,
as a framework, can encapsulate much information in
fields which would otherwise have to be extracted by
the parsing of free text.
- Dynamic forms are the physical representation of
objects within the knowledge base. Thus, a user filling
in a form is actually creating or modifying an object.
Any object visible to the knowledge base can be viewed
as a dynamic form. Moreover, the powerful concept
of constraining attribute relationships enables automatic
assistance to be provided to the user. Thus, as a user
assigns values to form fields, the system is able to make
inferences about the values of associated attributes, both
within and across object boundaries. Inferred values may
be propagated across attributes as if the form were a
spreadsheet.

Dynamic forms are used to create instances of object
classes, view existing instances and define new classes.
The mechanism is flexible enough to encompass a diver-
sity of object classes, from passive objects, such as files
of source code, to classes designed specifically to provide
user control of the system, such as forms for sending
electronic mail to other users.

Users are not constrained to assign values to every
attribute when creating or modifying an object. It is
left to the agents which process the object to attempt
to make the best sense of information encapsulated by
an object. If insufficient information for a particular
task is supplied, the IPSE will generate a request for
further data.

The mailer agent holds responsibility for the appro-
priate processing of objects created/modified by the
object browser, €.8. compiling an object of class Ada__
source__code may be performed by filling out a compile
form, or by pressing the compile button on the Ada__
source__code object’s form itself. In either case, the
mailer would use its knowledge of object classes and
their processing requirements to route the compile

< Ada__source__code instance >) message to the appro-
priate (Ada) compiler agent.

The object browser agent (see Figure 6) is composed
of a number of components and co-operates closely with
the mailer agent, as do all IPSE agents engaged in colla-
borative problem-solving. The object library component
manages co-operation with the mailer agent, and is hénce
the browser’s interface to the IPSE. The user interface

Vol 1 No 4 September 1988

Object User

Library} {Interface

Object .
Browser

Agent

Knowledge %

Base

Figure 6. Object browser — environment relationship

component of the object browser is itself defined as a
set of objects residing within that portion of the know-
ledge base for which the object browser is responsible.
These objects may be manipulated in the same manner
as any other object. Thus, the user’s interface to the
object browser is reconfigurable and tailorable to
individual user’s requirements.

The powerful inter-attribute (and inter-object)
inferencing mechanism, the IPSE’s ability to interpret
incomplete data, and the tailorable nature of the user
interface, provide the basis of the Dynamic Forms inter-
action metaphor. Dynamic forms are not a unidirec-
tional mechanism for allowing users to provide input
to the system. Users and IPSE interact via dynamic
forms, with the system dynamically interpreting user
supplied attribute values and providing run-time assis-
tance by spawning background processes, infering new
attribute values, etc.

Object browser functionality
The principal requirements of the object browser are
that users must be able to inspect the contents of the
knowledge base, and manipulate objects within it, i.e.
the user needs to be able to find out what is in the
object store, look at individual objects, create new
objects, modify existing objects (but only if permitted
to do so) and define new object classes.

Two components implement the object browser agent:

1 The user interface: is responsible for physically
presenting objects on the screen, handling user input,
mouse clicks, etc. It performs the mapping of objects
into forms.

2 An object library: is essentially a server to the user
interface which forms the object browser’s interface
to the mailer agent, and hence to the rest of the
IPSE. Requests from the user for information about
some object or group of objects is relayed by the
user interface to the object library. The object library
initiates searches of the knowledge base, collects
information about the required object(s) and returns
the object data to the user. :

The mailer agent collaborates with the object library
to co-ordinate searching of the knowledge base, and

for the delivery of objects to appropriate agents on com-
pletion of their manipulation by the users. '

245

ISM user interface

(pefine) (_Quit)

(create_instance J(_view_instance)

(Brouse)

instances

object_class : meeting_announcement

meeting_announcement : jun_23 tech mtg

subclasses

meeting_announcement: jul 24 proj mtg

superclasses 5 g'

unique

unique

i
unique

location Lancaster

quarterly

neeting_type

subject integration

~wview all -

delete all
add value

Figure 7. Viewing an instance of the class meeting__announcement

Browsing example

Browsing the object store may be done on two levels:

a definition level, and an instance level. These corres-

~~nd to looking at what object classes exist, and to
wing instances of a particular class, respectively.

At the instance level users can view individual objects
as completed forms, and create new instances by filling
in a blank form (Figure 7 illustrates a browsing example).
The figure shows the top level ISM control panel, a
view__instance form which facilitates instance level
browsing, and two meeting__announcement forms.

The top level ISM control panel is represented by
the narrow window labelled ISM user interface, and con-
tains the three buttons labelled Browse, Define and Quit:

e The browse button permits objects within the object
store to be manipulated, and objects, representing
new instances of existing object class definitions, to
be created. Browsing in this context encompasses not
only the creation and modification of persistent
objects such as files of source code and documents,
but also the initiation of actions within the system.
Initiation of system actions, may take the form of
the creation of objects whose sole purpose is to issue
instructions to an ISM agent. The creation or modifi-
cation of a persistent object will also cause the

246

initiation of system actions, however, as this type of
operation represents a change to the project state.

e The define button permits the definition of new object
classes.

e The quit button terminates the user’s dialogue with
the system.

In the scenario represented by Figure 7, the user has
pressed the browse button, resulting in the creation of
an instance of the view__instances class.

The instance of view__instances is represented by the
large form at the top left of Figure 7, labelled Object
: view instances__0, where view__instances__(0 is an auto-
matically generated unique identifier for the instance
of view__instances.

The form consists of a window containing two sub-
windows:

1 A control panel containing buttons representing the
messages defined for the class view__instances. These
are the methods close, delete and send which are
generic to all objects and have the following
functionality:

e The close method removes the form from the
display.

@ The delete method removes the form representing
the object from the display and deletes the object

Knowledge-Based Systems

2 The

supe
the «

An ico
This n
unstru

Attr
unique
set aftt
of a #
type a
travers
on the
the val
from a
facilitic
Viewin
In the
attribu
of the «

A co
values
inferrec

® The
valu
imm
® An
attri
class
e Afi
been
meei
ledg:

In the
meeting
instanc
instanc
responc
object ¢
The ob
form re
The
are rep
announc
announc
of the fi
The t
form ill
and bag
delete a
operatic
value, n.
Whet!
acceptec
associat:
(e.g. th
project’s

VOI 1 N«

from the knowledge base, releasing the space
which is occupied.

® The send method removes the form from the
display and dispatches the object to the mailer
for appropriate processing by other agents.

e The methods create_ instance and view__
instance described below.

4 2 The fields instances, object__class, subclasses and
superclasses corresponding to attributes defined for
the class view__instances.

§ Anicon adjacent to the attribute name indicates its type.

§ This may be either unique, set, bag or bigtext (used for

£ unstructured attributes — source code, mail text, etc.).

. Attributes of two types are illustrated in the example:
| unique attributes are denoted by a large figure 1, and
| set attributes are denoted by a clockwork train (part

§ of a train set). By default, the first value of set or bag

type attributes is displayed by the form. Users may
? traverse the list of values by clicking a mouse button
. on the attribute name. Alternatively, a full listing of
the values may be viewed by selecting the view all option
| from a menu defined for set and bag attributes. Similar
- frlities exist to permit the viewing of bigtext attributes.

- Vicwing an instance

In the example, a user has assigned a value to the class
. attribute, indicating that he wishes to inspect instances
.~ of the class meeting__announcement.

, A constraint associated with the class attribute enables
- values of the other attributes to be automatically
 inferred. The following values have been generated:

o The attribute superclasses has been assigned a set of
values including mail, which represents the most
immediate superclass.

® A null value has been generated for the subclasses
attribute indicating that the meeting__announcement
class represents a leaf of its inheritance tree.

o A full set of values for the instances attribute have
been generated. These represent instances of the class
meeting__announcement resident within the know-
ledge base.

In the example, the user has opted to inspect two
meeting _announcement objects. Pressing the view__
in 1ce button causes the object currently listed by the
inswances attribute to be displayed. The object library
responds by searching the object store for the required
object and returning its details to the object browser.
The object browser maps these onto the corresponding
form representation.

The meeting announcements requested by the user
are represented by the two forms labelled meeting
announcement: jun__23_ tech__mtg and meeting _
announcement: jul__24__proj__mtg at the bottom right
of the figure.

The to attribute belonging to the jul_24_ proj_ mtg
form illustrates the menu options associated with set
and bag attributes. The options available are view all,
delete all and add value. These supplement the editing
operations which may be directly applied to a selected
value, namely to delete or modify it.

Whether such editing operations on values may be
accepted by the browser is dependent on the constraints
associated with the attribute definitions. Some objects
(e.g. those representing archive components of a
project’s milestones) may be immutable and have pro-

Vol 1 No 4 September 1988

tected attribute values. Such a case would spawn a warn-
ing message object, displayed (again, using our dynamic
forms metaphor) as a form. For other classes of object
it may be appropriate to allow objects to be modified.

Figure 7 illustrates the use of the view__ instances
object class for viewing existing objects. The view__
instances form may also be used to create new instances
of a class.

The create__instance method causes a blank form
representing the class meeting__announcement to be dis-
played. An additional field, instance__name, is displayed
to which the user may assign a unique object identifier.
Failure to do so will result in ISM automatically generat-
ing a unique object identifier.

On completion of the form the send button is pressed.
The object library creates the object (mapping the form
contents onto the class definition), which is then
dispatched to the mailer agent for processing.

CONCLUSION

The design of the next generation of IPSEs will differ
greatly to that of previous generations. The evolutionary
design which has led to the development of current
IPSEs from programming environments is not capable
of accommodating the emerging technologies which sim-
plify automation of the whole software process.

The prototype IPSE described in this paper explores
the potential for exploiting knowledge based program-
ming techniques for the attainment of a high degree
of integration within the IPSE. It is postulated that a
federation of intelligent, co-operating agents form an
appropriate architecture for the IPSEs of the near future.
The IPSE has been designed using an open systems
philosophy, such that new intelligent agents can be
added incrementally as technology enables their pro-
duction. Thus, tasks which may currently require a
human to perform them may be devolved to computer
agents in the future.

The key to achieving a sufficiently high degree of inte-
gration and co-operation within the IPSE is the use of
a consistent communication mechanism among agents
and users. An intelligent mailer agent has been designed
to enable the kind of group communications which must
take place in such an environment. A tailorable user
interface to the communication facilities permits users
to interact with the system in such a way that its internal
details are made transparent.

ACKNOWLEDGEMENTS

Thanks are due to our collaborators in the ISM project,
Software Sciences Ltd and the University of Keele. The
research work is funded by the Alvey Directorate, UK.

REFERENCES

1 Bourne, S R The Unix System Addison-Wesley, USA
(1982)

2 Hall, J A, Hitchcock, P and Took, R ‘An overview
of the ASPECT architecture’ in McDermid, J (ed)
Integrated Project Support Environments IEE
software engineers series 1 (1985)

3 Alderson, A, Bott, M F and Falla, M E ‘An overview
of the ECLIPSE project’ in McDermid, J (ed) Inte-

247

-

grated Project Support Environments 1EE software
engineering series 1 (1985)
Winograd, T ‘Breaking the complexity barrier
(again) Proc. ACM SIGPLAN-SIGIR Interface
Meeting on Programming Languages — Information
Retrieval Maryland, USA (1973)
The ISM Project Consortium ‘The ISM project:
towards a knowledge-based IPSE’ The KBS Group,
Software Sciences Ltd. (1987)
. Hewitt, C ‘Viewing control structures as patterns of
passing messages’ Artif. Intell. Vol 8 No 3 1977)
' Malone, T W, Grant, K R Turbak, F A, Brobst, S
A and Cohen, M D ‘Intelligent information sharing
systems’ Commun. ACM Vol 30 No 5 (1987)
. Schneiderman, B ‘The future of interactive systems
and the emergence of direct manipulation’ Behaviour
& Info. Technol. Vol 1 No 3 (1982)
) Rentsch, T ‘Object oriented programming’ ACM
SIGPLAN Notices OOPS 80 (1980)
) Wegner, P ‘Dimensions of object-based language
design’ Proc. OOPSLA’87 ACM press, USA (1987)
Minsky, M ‘A framework for representing know-
ledge’ in Winston, P (ed) The Psychology of Computer
Vic - McGraw-Hill, USA (1975)
) Ha...on, S J, Kraut, R E and Farber, J M ‘Interface
design and multivariate analysis of Unix command
use’ ACM Trans. Office Automation Syst. Vol 2 No 1
(1984)
} Reid, P and Welland, R C ‘Project development in
view’ in Sommerville, I (ed) Software Engineering
Environments Peter Perigrinus, UK (1986)
4 Greif, I and Sarin, S ‘Data sharing in group work’

248

15

16

17

18

19

20

21

22

ACM Trans. Office Info. Syst. Vol 5 No 2 (April
1987) pp 187-211

Hiltz, S R and Turoff, M ‘Structuring computer-
mediated communication systems to avoid informa-
tion overload’ Commun. ACM Vol 28 No 7 (July
1985)

Hutchinson, D, Armitage, R and Muir, S J ‘A user
agent for the Unix mail system’ Data Processing Vol
28 No 10 (December 1986)

Brobst, S A, Malone, T W, Grant, K and Cohen,
D ‘Toward intelligent message routing systems’ in
Uhlig, R (ed) Computer Message Systems 85 — Proc.
2nd Int. Symposium on Comput. Message Syst. North-
Holland, The Netherlands (1986)

Sumner, M ‘A workstation case study’ Datamation
(February 15 1986) pp 71-79

Rodden, T and Sommerville, I ‘Mailtrays: an object
orientated approach to message handling’ European
Conf. Info. Technol. for Organizational Syst. Athens,
Greece (May 16-20 1988)

Smith, C D, Irby, C, Kimball, R, Verplank, W and
Harslem, E ‘Designing the star user interface’ in
Degan, P and Sandwall, E (eds) Integrated Interactive
Computing Systems, North-Holland, The
Netherlands (1983)

Hayes, P J and Szekely, P A ‘Graceful interaction
through the COUSIN command interface’ Int. J.
Man-Machine Studies Vol 19 (1983)

Malone, T W, Grant, K R and Turbak, F A ‘The
information lens: an intelligent system for informa-
tion sharing in organisations’ Proc. CHI'86 (1986)

Knowledge-Based Systems

Expert
Ovum Ltd.,

This report
leading bank
ing artificie
tions. Som
already invo
are watchin
interest. Th
systems to t
base techn
reasons for t

e Banking:
people t
informati
importan
houses nc
of their b

e These 1
computer
take adv
and comy

@ Increasin
national
tasks ne
support, \
help to fa

e Banking
ing more
improven
service is

Market val

A survey by
the banking
found that

active in b
and nearly ¢
approach. F

Expert

Ovum Ltd, !

Expert syste
as one of
nologies of
growing mu
ware busines
also concluc
becoming r
national,
suppliers st:
are likely to
The fifth

Vol 1 No 4!

