a5k Enfusmg fv Hicmp e
g 7 ‘D‘}’WT- Pater Derigrunes * bomdm, 1934

Chapter 1

Why software enginesring?.

1. Sommerville

1 INTRODUCTION

Likxe many other terms associated with information
technology, the term 'software engineering' has been subject
to a noumber of different interpretations. In some cases it
“is applied to the construction of systems which require
kpowledge of both computer hardware and software. In other
{instances, it is simply another name for computer
pregraz=izg, and i yet others it is applied exclusively to
the produstiion ol very iarge sofiware svstems.

Losewuer, if e taxe. at dictironsry. ‘defint
v ineerlsg 2t =S a e 0] the term

engineerizsg' we get 2 définition as follows:

The profession of applying scientific principles to the
design, comstruction, and maintenance of computer
software systezs.

This definition emphasises that software engineering is not
Just computer programming - the implementation of software
systems - but includes all aspects of software production

from 1injtial conception through to maintenance after

delivery of the completed software system.

The problems of developing software sSystems are akin
to the problems which arise in other engineering disciplines
= costs and complexity must be controlled and people must be
managed and motivated. Software engineering embraces such
non-technical considerations as documentation, user
psychology, and software project management as well as the
technical aspects of software design and production.

Software engineering is becoming of increasing
importance as programmable microelectronic systems are used
in more and more applications. Before such systems, the
electronic systems engineer may have used computers to help
bim in his work but had no real need to develop well-
engineered software systems. He may have been an amateur
programmer writing 'cheap and nasty'’ programs but it was not
cost effective for him to spend a lot of time developing
professional quality software systems.,

Now, software and hardware are SO closely interlinked
- that it is essential that the electronic engineer has an
understanding of the principles of software engineering and

(9936

DR

b) Vi

i

o i

e

2 Why software engineering

ut appreciation of the true costs associated with software
development. In the remainder of these notes, the stages of
development of a software system, their associated costs,
nd the characteristics of well-engineered sQifwa;e_ are
described. S e e

2. THE SOFTWARE LIFE CYCLE

In the development and use of a software system, a number of
distinet, interacting phases can be identified. These can
be compared with the phases passed through by an insect or
an animal as it is born, reaches maturity and ultimately
dies. Hence, the term 'software life cycle' has been coined
to describe these phases of a software system.

The stages of the software life cycle are:

(e Specification
Before any software is actually produced, the: func-
tions of the software must Dbe established and the
Ooperational constraiats on that software defined.

25 Design
The software specification must be analysed and a
software design established. A software design is a
machine independent statement of how individual pro-
grams units must interact to implement the software
specification.

(3) Implementation Syl
The software design is realised in a computer program-
ming language which can be executed by the target com-
puter destined to run the software system.

(4) Validation

This phase of the software life cycle is intended to
validate that the implemented software meets the needs
of the user, Sometimes, this stage is called 'testing
and debugging' but this implies that it is concerned
solely with validating the implementation phase of the
life cyele. In fact, during this validation phase, it
is common to detect €rrors and oversights in all
preceding life cycle stages.

(5) Operation and Maintenance
The software system is put into use. Asi it is used,
€rrors which have been missed by the validation phases
are often detected and must be corrected. Further-
more, as the software System becomes an essential
feature of the user's environment, the user's percep-—
tion of what the software ought to do for him will
change and the software must be modified to meet these

changing user needs. Lehman (2) has called this pro-

cess 'software evolution'.

As set out above, the software life cycle seems to be a

4*5tra;ghtforvard linear progression from phase to phase. 1In

i

fact atiises
Phase interac-
Usually, work
redone as prob:
“the design 1
discovered reqgit
parts of the
implementors,
Programming lap
and possibly e
after the impl
throughout the
software proble
the life cycle
Because ¢
stages, it is 4-
individual pha sy
as Boehm (1), h:
life cycle i
Simplification
between the c
producing the s¢
software mainte
modifying the sc
changing require
software develop
Specificazt
for about 20% o:
the remainder ta:
sSystem costs 381 ¢
ofithat developms
cost about 3400 ¢
gone into operat
$5 000 000.
Typically,
times development
such as complex
art hardware ang
the system maint:e
the development
estimated that fo
cost was $30 per
$4000 per instruc

¥hilst it is all

engineering, the
software engineer
¥ell-engineeregd as
There are 3 numbe
software = Sps

e
f

5y

b 8

T
7

n—-
n—

e}
is
1g
2d
e
it
L1

Why software engineering 3,

fact, it is a cyclic rather than a linear process where each
phase interacts with preceeding and succeeding phases.
Usually, work done in early stages of the life cycle must be
redone as problems arise in the later life cycle stages. As
the design progresses, specification errors will be
discovered requiring the specification to be changed. Some
parts of the design may place constraints on the
implementors, others may be unimplementable in the
programming language used for the project. Thus, the design
and possibly even the specification may have to be changed
after the implementation phase has begun. Changes occur
throughout the software development process and many
software problems have come about because the complexity of
the life cycle model has not been recognised.

Because of the interacting nature of the life cycle
stages, it is difficult to establish an accurate costing for
individual phases of the life cycle. Most estimators, such
as Boehm (1), have made the simplification that the software
life cycle is a linpear process. Taking this
simplification into account, there is a gross imbalance
between the costs of software development, that is,
producing the software in the first place, and the costs of
5 software maintenance. Maintenance costs, the costs of
i modifying the software to correct errors and to adapt it to
changing requirements are orders of magnitude greater than
_Software development costs.

Specification, design, and implementation each account
for about 20% of the total-software development costs with
the remainder taken up by validation costs. Therefore, if a
system costs $1 000 000 to develop, the most expensive stage
of that development will be software validation which might
cost about $400 000. Maintaining that software after it has
gone into operation, however, is likely to cest at least

$5 000 000.

; Typically, software maintenance costs are about 5
times development costs. However, for some types of system
such as complex real-time systems reliant on state-of-the
art hardware and subject to tight efficiency ‘constraints,
the system maintenance costs may be several hundred times
the development costs. An example of this, cited in (1),
estimated that for one USAF avioniecs system, the development
cost was $30 per instruction and the maintenance cost was
$4000 per instruction.

3. THE CHARACTERISTICS OF WELL-ENGINEERED SOFTWARE

Tailst it is all very well to talk in glib terms of software
engineering, the software life cyele, etc. ' the working
80ftware engineer is faced with the problem of recognising
vell-engineered as distinct from poorly-engineered software.
There are a anumber of criteria which can be used to assess
softvare = space and time efficieney, speed of
implementation, readability, etc. not all of which should be
given equal importance in deciding if the software is well-

stribution of costs over the:

4

\Why software engineering

software life cycle and the professional responsibility of
the englneer, well-engineered software should exhibit. thre
dozinant characteristics: = iR

¥

(1) 1t should provide the facilities and operate within
the constraints set out in the software specification.

(2) It should be reliable.
3.) It should be readily modifiable.

The first of these characteristics 1is, of course, 2a Very
general characteristic and places a great responsibility on
the individuals responsible for drawing up the software
specification. It is very common indeed for software
systems to fail to meet the intentions of customers because
of inadequate and ambiguous specifications afdy - 15 s
rcuable whether such software should be considered well-
acineered ot not. Qur present notations IforT specifying
oftware functions and constraints are grossly inadequate
and until new notations are developed, it will remain very
difficult to measure how well a software system meets its
specifications.

As software systems become more diverse and are used
in more and moOre application areas, it is becoming clear
that reliability is the most important dynamic
characteristic of a software system. This is partly due to
the fact that software systems are 1ow used as control
systems in many larger systems whose fzilure could endanger
1ife and partly due to cost considerations -~ unreliable
software is very expensive indeed.

The immense costs of unreliable software can be
illustrated by examples of situations where software system
failure result in very high costs to the software customer.

Say a software system controls the drilling of . an
off-shore oil well. The cost of running an 0oil rig rums
into thousands of dollars per hour and a software fad lure
causing drilling to be suspended can result in costs which
far exceed the original software costs. :

Apother type of situation where the costs of software
failure may exceed the software development costs could
arise in a situation where ROM based software controls the
braking system in a car. Errors in the software, discovered
after the car has gone into production, would result in all
cars sold being recalled and the ROMs replaced. Soe. far,
this situation has not arisen but as ROM-based software 1s
used ir more and moTre products, it is likely that such a
situation will eventually come about.

The third characteristic of well-engineered software =
that it should be readily modifiable - arises directly from
a consideration of life cycle costs. Because software
maintenance, that is,- the modification of existing softiware,
{g far and away the most expensive aspect of the software
1ife cycle, the software development stage should be geared

% togards producing 2 readily maintained software system.

This . means that ~ readability

should Ytake place over

writeability: — prof
written, documenta
complete, and progr
be used so that
interacting system
closely interlinked
Notice that =
explicit feature of
This does not mean
cases efficiency iz
the size “efi the '«
importance. Howewe
hardware becomes
complex and powerim
likely to become 1=
software systems.
In those cas
precedence ‘over oI
ought to be clearlsy
The efficiency sp=¢
to the microproces
system into as fav
construct a contro!
is his respoasit
specifications are
off between efficie
made clear to the s
To conclude
professional softw:
the real costs of s
problems, and omn
the software enginsc
- of and be able to
=i- which allow him: to
o develops and maintz
po The answer iIc
% is straightforward.
production of rTeli
cannot afford ! to .-z
subject area which
our intellectual =2z

REFERENCES

= 1. Boehm, - BiW..
‘Practical Strate
- Systems'. ed. Horos

2. Lehman, M.M.
of Software Evolui:

Why software engineering

writeability - programs are read more often than they are
written, documentation should be clear, concise, and:
complete, and program and data structuring techniques should
be used so that the software is built as a loosely
interacting system of independent components rather than a
closely interlinked monolithic system. i
Notice that a software characteristic which is not an
explicit feature of well-engineered software is efficiency.
This does not mean that efficiency is unimportant - in some
cases efficiency in terms of operational execution speed or
x:;2 the size of the object software system is of paramount
= importance. However, this is not universally true and, as
hardware becomes cheaper and single chips become more
complex and powerful, software efficiency considerations are
likely to become less and less important in the majority of
software systems.

In those cases where software efficiency must take
precedence over considerations such as modifiability, .this
ought to be clearly stated in the software specifications.
The efficiency specifications are of particular importance
to the microprocessor software engineer who must fit his
system 1into as few chips as possible or who may have to
construct a control system with a given response time. i
is his responsibility to ensure that the software
specifications are clear on this point and that the trade-
 off between efficiency and other software characteristics is

made clear to the software customer.

- To conclude, the production of well-engineered,
professional software must be based on an appreciation of
the real costs of software systems, an understanding of user
problems, and on the individual professional integrity of
= the software engineer. The software engineer must be aware
of and be able to apply developments in software technology
vhich allow him to improve the quality of the systems he
develops and maintains.

: The answer to the question 'why software engineering?'
is straightforward. Future economic progress depends on the
‘production of reliable, maintainable software systems. We
cannot afford to adopt any less professional approach to a
‘Bubject area which will consume an increasing proportion of
our intellectual and economic resources.

PR

oy rns

B.W.. 1995. The 'High Cost of Seftware.. In
‘Practical trategies for Developing Large Software
Systems'. ed. Horowitz, E, Reading, Mass. : Addison Wesley.

2 Lebman, M.M. 1980. Programs, Life Cycles and the Laws
8{ Software Evolution. Proc. IEEE. 68(9), 1060-1076

