INFORMATION PROCESSING 83, R.E.A. Mason (ed.)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1983

193

SOFTWARE ENGINEERING — AN EDUCATIONAL CHALLENGE

Tan SOMMERVILLE

Department of Computer Science, University of Strathclyde

Glasgow, UK

This paper discusses the need for education
relationship between software engineering

problems of including courses in software

software engineering and examines the

and computer science education. It looks at the
engineering in a traditional computer science

undergraduate curriculum. The main part of the paper describes how these problems have been
tackled in the computer science department at the University of Strathclyde where courses in
practical software engineering are a compulsory part of the curriculum. The paper concludes

that it is impractical to teach students

software engineers but that courses in

software engineering are useful so that students are introduced to the problems which they
might encounter in building large software systems.

1. INTRODUCTION

The term ’‘software engineering’ was first
brought to prominence around the end of the
1960s when it was realised that the
development of large software systems was a
problem which was more akin to engineering
problems than to problems in mathematics or
natural science. Since then, there has been a
great deal of discussion about the problems of
implementing large computer systems and a
number of important techniques of large scale
software development have been developed.
These include formal or semi-formal languages
for specifying software requirements, {1} {2},
software design representations, {3} {4}, and
structured programming, {5} {6}.

In spite of these advances, the task of
building large software systems remains
immensely difficult and it is still common for
large systems to be delivered late, to cost
more than was originally estimated, to be
unreliable, and to be inadequately documented.
We do not yet completely understand many
aspects of implementing these large software
systems but some of the failures of today’s
software projects are due to the fact that
existing techniques are not used in developing
these systems. Those responsible for the
implementation of these systems are
inadequately trained in software engineering.
Indeed, the Alvey committee in the UK, {7},
set up to review developments in information
technology, recently identified software
engineering to be an area of particular
importance to the future prosperity of the
nation and suggested that expenditure in
software engineering education should be
significantly increased.

Much of this training 1is best given after
students have some practical experience in
developing large software systems but we
believe that there is also a need for software
engineering education as part of wuniversity
courses in computer science. These courses
should demonstrate to students that software
development cannot simply be equated with
computer programming but that it embraces the

entire software 1life cycle from the initial
conception of the software to the maintenance
and enhancement of a delivered software system.
Furthermore, they should show that software
production 1is subject to economic constraints
in the same way as any other business or
governmental activity.

In fact, software engineering education has
been the subject of some discussion by authors
such as Freeman, {8}, Fairley, {9}, and
Mills, {10}. Although the views of different
authors differ in detail, the consensus seems
to be that software engineering education
should be based on a firm theoretical
foundation but should also include practical
topics such as management science, problem
solving, and communication skills.

In the remainder of this paper, the problems of
integrating undergraduate courses in software
engineering with computer science courses are
discussed and this is followed by a description
of the structure of the final year course in
software engineering given to computer science
undergraduates at the University of
Strathclyde. This course is practically
oriented and particular attention is paid to
coursework completed by groups of students. The
success of this course 1is assessed and the
final part of the paper discusses, gercrally,
what can be achieved by software engineering
courses at an undergraduate level.

2. SOFTWARE ENGINEERING AND COMPUTER SCIENCE

Computer science and software engineering have
an uneasy relationship with each other.
Although they accept that a knowledge of some
aspects of computer science is essential, many
working software engineers are very dubious of
the wvalue of computer science courses as the
topics covered there often seem to be divorced
from the “real world’ of software development.
Many teachers of computer science are wary of
software engineering because it lacks a
coherent core of theoretical principles and
prefer to teach apparently obscure topics such
as lambda calculus, say, because its academic
rigour 1is clearly discernable. This attitude

194 1. Sommerville

comes out clearly in the ACM’s Curriculum 78
proposals, {11}, where there is no explicit
mention of software engineering as a distinct
subject area.

Part of the problem arises because there is no
generally agreed definition of either software
engineering or computer science. In some
institutions, computer science is treated as a
very theoretical subject, in some its bias 1is
towards computer hardware and in yet others
the computer science course concentrates on
the development of systems software. Software
engineering, similarly, has a diversity of
interpretations. In some cases, it is
concerned with the hardware/software
interface, in others it is the theory (such as
there 1is) of software development, and
sometimes software engineering 1is concerned
with the practical problems of developing
large software systems.

We favour the latter interpretation of
software engineering and, as such, there are
three problems which the developer of courses
in this subject must tackle. These are:

(1) Computer science students in the early
years of their course do not have the maturity
or experience to realise that large software
systems are not simply scaled~up versions of
the small, fairly trivial programs which they
write as educational exercises. It is only
towards the end of their course, after they
have experience in writing non-trivial
programs and after wusing practical software
systems, that they wunderstand that software
development is not simply the same as computer
programming.

(i1) Many present-day computer science
faculty members have a background in
mathematics or natural science and do not
appreciate the need for an engineering type of
course. Opposition is particularly apparent
when the introduction of software engineering
courses means the reduction in courses in some
other more conventionally accepted computer
sclence topic.

(iii) Because developing large software
systems takes a long time, it 1is quite
impossible to simulate the process

realistically in the time available to
undergraduate students. This fact alone has
meant that many courses have concentrated on
particular aspects of software development
without considering the topic as a whole.

Apart from these inherent problems, the
introduction of courses in software
engineering has been hindered by the 1lack of
good undergraduate textbooks. Whilst there is
a wealth of information on the subject, this
tends to be gathered together in journals or
as collections of papers. These papers are of
great value but they do not present an
integrated, coherent, and consistent view of
software engineering.

Given that the need for courses in software
engineering is accepted, the problem then
remains of integrating these courses with the
remainder of the computer science curriculum.

The immaturity of students necessarily
restricts these courses to the latter years of
a computer science course although we believe
that emphasis should be placed from the start
on the production of reliable and maintainable
programs. Furthermore, we do not believe that
software engineering courses should themselves
have a significant theoretical element but that
the theory should be covered elsewhere in the
computer science course. The job of the
teacher of software engineering should be to
show how theory can be applied and is actually
a useful tool for the software engineer.

The approach which we have adopted 1is to
provide a general introductory course in
software engineering in the penultimate year of
our course and to follow this with a more
advanced course in their final year. These
courses are compulsory as is a complementary
final-year course in computer science theory.
Ideally, there is probably a case for including
an additional course covering management
science and communication skills but finding
time for such a course is often very difficult
indeed. To some extent these topics are covered
in systems analysis courses but this does not
completely meet our needs. Not only is the
orientation towards general business management
rather than software management but some of our
students do not take such courses as they are
specialising in a more hardware oriented
course.

3. SOFTWARE ENGINEERING AT STRATHCLYDE

As described above, computer science students
at Strathclyde University must take two courses
in software engineering - an introductory
course followed by a more advanced course in
their final year. The introductory course is
intended to show that the development of a
large software system has a number of distinct
stages and it briefly discusses each aspect of
the software life cycle. It also brings out
the idea that reliability and maintainability
are the most important characteristics of
well-engineered software. The practical work
associated with this course is oriented towards
producing readable and reliable programs.

Our final year course tends to concentrate on
the non-programming aspects of software
development namely, requirements specification,
software design, documentation, software
economics, and software management. By this
stage, most students have an adequate
understanding of programming and are usually
fairly disciplined in their programming style
so we consider it wunnecessary to discuss
programming techniques here.

The course is based around a comprehensive set
of lecture notes (now a textbook , {12}) whose
unifying theme is the software life cycle.
These lecture notes cover the following topics:
(i) Requirements specification

(ii) Software design

(1ii) Programming

(iv) Validation

Software Engineering — An Educational Challenge 195

(v) Maintenance and documentation
(vi) User interface design
(vii) Software management

The programming part of the notes is included
for completeness but most of that material has
been covered in the elementary software
engineering course taken in the previous year.
The topics are covered in the order above with
emphasis placed on requirements specification,
software design, documentation, and software
management. Each of these toplcs is allocated
about one fifth of the total time devoted to
the course.

The students are expected to work at their own
pace through the course material. To assist
them, about 100 tutorial problems have been
provided ranging from very simple tasks to
fairly complex design exercises. A
representative selection of these tutorial
problems 1is 1included in Appendix TI. The
material in the notes 1s not reiterated in
lectures - there are no formal lectures
associated with the course - but tutorial
periods are available where the student may
seek advice and guidance on the topics covered
in the course notes.

All of the formal «class contact associated
with this course is devoted to discussion of
practical work, the development of
communication skills (both oral and written)
and general discussion of topics in software
engineering. In this respect, the course
differs from most classes offered at UK
universities where a major part of the time is
spent in formal presentation of the coursework
in lectures.,

Our experience with this method of
presentation is that students prefer it
because they have good, comprehensive notes
which can be read in advance and they can
spend class periods 1in wunderstanding rather
than assimilating material. Teachers prefer
it because it is much more
stimulating (although harder work) than
standing up and talking for an hour to an
often unreceptive audience.

3.1 Practical work

As our approach to software engineering 1is a
practical one, our software engineering course
places great emphasis on project work. This
project work has a number of objectives. Its
primary objective is to show students some of
the problems involved in developing large
software systems particularly those which
arise 1in specifying and costing the system.
Its secondary objectives are to develop
students communication skills, to reinforce
material in the course notes, and to show them
what it is like to work as a member of a group
rather than as an individual programmer.

We believe this practical work has two fairly
original features:

(i) Problems of software maintenance are
demonstrated by requiring that students should

modify a program which they have written in a
previous year of the computer science course.

(1i) The instructor acts as a “typical”’
software customer and makes conflicting and
self-contradictory demands on the students. It
is up to the students to recognise and
reconcile these contradictions.

As we have already suggested, however,
designing suitable practical exercises is very
difficult indeed because of the 1limited time
which the students can devote to the
coursework. In essence, there are two
alternative possibilities:

(i) The project chosen can be relatively
small and well-defined so that a group of
students can complete the specification,
design, and implementation in the time
allocated for the course.

(ii) The project can be larger and more
comprehensive with only parts of the system
completed by the students.

Neither of these alternatives is entirely
satisfactory. If a small well-defined system
is chosen, the tasks of specification and
high-level design are trivial and appear to be
unimportant. However, in real software systems
it 1is these aspects of the development process
which are often the most difficult and costly
and we wish to demonstrate this to students.
Our approach is to use a larger, more realistic
example but this has the disadvantage that the
students cannot complete the whole process of
development because of time limitations. In
fact, we expect them to concentrate on the
specification, design and costing of the
project.

However, before students start on this project
we set them a small plece of practical work at
the very beginning of the course. We ask them
to modify a program which they worked on in the
previous year. The idea underlying this work is
to demonstrate the problems of program
maintenance -~ for most students it is the first
time that they have ever had to change an
existing program which they had not seen for
some time. Their reactions have indicated that
this is a very wuseful exercise demonstrating
the value of disciplined programming and
sensible program commenting. It emphasises that
maintenance can be a time consuming and
difficult activity.

The main project work centres round an example
of a fairly large but comprehensible system.
Examples which have been wused include an
electronic mail/teleconferencing system and a
real-time patient monitoring system such as
might be wused in a hospital intensive care
unit, An example of a typical specification is
given in Appendix IT.

The initial information given to the students
is intentionally vague as it is intended that
each project group must question the instructor
to ascertain the detailed requirements of the
system. The instructor attempts to act like a
typical wuser during this questioning phase
deliberately suggesting impossible objectives

196 1. Sommerville

and contradictory requirements. The students
must identify these in their report as well as
providing a full specification of what the
system is actually required to do.

The work is carried out in project groups of
three or four students and each group must
submit three reports:

(i) The detailed requirements of the system
must be defined using a semi-formal
requirements definition language.

(ii) The high-level design of the system must
be specified. This document sets out the
distinct parts of the system and their
interrelationships but does not describe
detailed algorithms which might be used. The
design notation wused is similar to that
described by Constantine and Yourdon, {4}.

(iii) Finally, each group must complete a
report setting out the system costs, and the
time which would be required to complete the
system. As part of this report, they must
prepare a PERT chart showing the dependencies
of the different parts of the system and the
time required to complete each part.

As one of the objectives of the course 1is to
develop students’ communication skills,
particular emphasis is placed on the quality
of the technical description in all of these
reports. The instructor takes care to provide
detailed comments on technical writing style
and report layout. We have noticed that there
is a marked improvement in the quality of
technical writing as students assimilate these
comments in initial reports and bear them in
mind when preparing later reports, In order
to develop oral communication skills, all
students are required at some time in the
course to make a presentation in front of the
class describing some of the work which they
have done.

There are, of course, a number of
disadvantages associated with this approach to
practical work:

(1) It requires a great deal of work on the
part of the instructor to mark and to comment
in detail on project reports. This marking
must be completed quickly so that the
comments are useful for the student in
subsequent reports.

(ii) There can be problems with the
assessment of group projects where one member
of a group does not play a full part in the
work. Other members feel resentful if that
individual is assessed on the same level as
they are. Although this is obviously a
potential problem, our experience is that it
is relatively rare.

(iii) This type of project organisation 1is
probably only wviable with a relatively small
class size. For large classes, it is
unrealistic to expect all students to make
presentations about their work simply because
of the time required for such talks.

In spite of these disadvantages, we believe

that the approach which we have adopted to
software engineering practical work meets our
primary objective namely to demonstrate the
difficulties of software specification, design,
and costing. It also meets our secondary
objectives of reinforcing the course material ,
developing communication skills, and showing
students some of the difficulties of group
working. This supposition is based on comments
by students about the course, their performance
in the practical work where a marked
improvement is shown from the first project to
the last, and their performance in formal
examinations where a fairly high class average
mark has been attained.

As far as the students are concerned, informal
surveys have shown that they find the project
work challenging and an interesting change from
programming. Their performance in the practical
work is significantly better than in
examinations and, as practical work makes up
1/3 of the overall course assessment, they
improve their final mark by their practical
performance. They also find that potential
employers are very interested in this work and
it seems to enhance their chances of finding a
job on leaving the university.

4. CONCLUSIONS

We believe that undergraduate courses in
computer science ought to include an element of
software engineering education but that this is
only worthwhile if it is included in the later
years of their course. Unlike Jensen et
al., {13}, we do not believe that there is much
point in full-scale courses in software
engineering because students do not have the
maturity or experience to appreciate software
engineering problems until they have
considerable programming experience.

However, the instructor of software engineering
courses must Dbe careful not to delude himself
that he is teaching students to be software
engineers. We believe that this 1is an
impossible objective and that practical
experience 1in large scale software development
is necessary before an individual can be
considered to be a software engineer. The aim
of university courses in this topic must be to
prepare students for this practical experience
by showing the problems which they might
encounter in the development of large systems.

APPENDIX I - Tutorial Examples
The tutorial examples below are representative
of the examples given to students to help them

read and understand the course material.

(i) Discuss the value of simulation and
prototyping in requirements validation.

(ii) Derive data flow diagrams and structure
charts for the Unix editor.

(iii) Compare and contrast two different
techniques of design validation.

(iv) Under what circumstances is a static
program analyser most useful?

Software Engineering — An Educational Challenge 197

(v) Why is there no such thing as a self-
documenting program?

(vi) Suggest how the working environment in
the computer science department could be
improved so that student programmer
productivity is increased.

(vii) Describe the wuse of bar charts and
activity charts for project scheduling.

APPENDIX II - Student Project Specification
The system description set out below 1is that
issued to students taking our final-year

undergraduate course in software engineering.

A Real-Time Patient Monitoring System

When a patient in hospital 1is seriously 1ill
and taken to an intensive care unit, that
patient’s condition must be constantly
monitored to check for deterioration and to
alert staff if such deterioration occurs.
Part of this monitoring can be done by machine
with a display at the patient’s bedside and,
in some cases, this display is also fed to a
central console where it can be watched over
by a nurse.

It is common to monitor a patient’s
heartbeat automatically but other factors such
as blood pressure, temperature and breathing
are more often monitored by frequent manual
checks. There 1is no technical reason,
however, why these cannot be automatically
monitored.

The aim of this project 1is to design a
computerised monitoring system to collect the
output from an array of instruments checking
heart rate, temperature, blood pressure, and
breathing rate, to record this information for
future analysis, to display it in a convenient
form both at the patient’s bedside and at a
central console, and to alert staff if
potentially dangerous changes in the patient’s
condition are detected.

The following conditions apply to the
system:

(i) It should be able to handle the
monitoring of at least 8 patients and to
display information about all of these
patients at the same time.

(ii) Although initially it should be designed
to support the monitoring of the parameters
specified above, it should be capable of
expansion so that further patient parameters
may be added at a later date.

(iii) The system should provide different
levels of warning ranging from ’take immediate
action’ for a cardiac arrest say to ’‘look when
you have time’ when a change in blood
pressure, say, is detected.

(iv) The system should provide facilities to
summarise the collected data about patients
and to display and print these summaries in a
convenient form for study by medical staff or
inclusion in the patient’s medical record.

It is an obvious requirement of such a system
that reliability is of the utmost importance.

The system therefore should include extensive
self-checking facilities and should also be
able to assess the feasibility of the
information which is being presented to medical
staff.

REFERENCES

{1} M.W. Alford, A Requirements Engineering
Methodology for Real Time Processing
Requirements, IEEE Trans. on Software En—
gineering, SE-3, no. 1, 1977, 60-69.

{2} K. Schoman and D.T. Ross, Structured
Analysis for Requirements Definition.
IEEE Trans. on Software Engineering, SE-
3, no. 1, 1977, 6-15.

{3} R.C. Linger, H.D. Mills, and B.I. Witt,
Structured Programming — Theory and Prac-—

tice, Addison Wesley, Reading Mass.,

{4} L.L. Constantine and E. Yourdon Struc-
tured Design, Prentice-Hall, Englewood
Cliffs, New Jersey, 1979.

{5} 0.J. Dahl, E.W. Dijkstra, and C.A.R.
Hoare, Structured Programming, Academic
Press, New York, 1972.

{6} E.W. Dijkstra, A Discipline of Pro-
gramming, Prentice-Hall, Englewood
Cliffs, New Jersey, 1976.

{7} J. Alvey, Programme for Advanced Informa-
tion Technology, HMSO, London, 1983.

{8} P. Freeman and A.I. Wasserman, Software
Engineering Education: Needs and Objec-
tives, Springer Verlag, Berlin, 1976.

{9} R.E. Fairley, Towards Model Curricula in
Software Engineering. Proc. 9th SIGCSE
Technical Symposium on Computer Science
Education, Pittsburgh, Penn., 1978,

{10} H.D. Mills, Software Engineering Educa-
tion. Proc. IEEE, vol. 68, no. 9, 1980,
1158-62.

{11} ACM Committee 1979, Curriculum 78, Comm.
ACM, vol. 22, no. 3, 1979, 147-66.

{12} I. Sommerville, Software Engineering,
Addison Wesley, London, 1982.

{13} R.W. Jensen, C.C. Tonies and W.I. Fletch-
er, A Proposed 4 year Software Engineer-
ing Curriculum, Proc. 9th STGCSE Techni-
cal Symposium on Computer Science Educa-—
tion, Pittsburgh, Penn., 1978.

