SOFTWARE - PRACTICE AND EXPERIENCE, VOL. 120517 530 (1980

A Pattern Matching System

TAN SOMNMERVILLE
Department of Computer Science, University of Strathelvde, Glasgowe G HIXH, Scotland

SUMMARY

This paper describes a pattern matching system which has been implemented as a set of
library procedures. The system provides a concise and consistent method of pattern
definition and facilities for defining context sensitive pattern matching, defining repetitive
patterns and defining alternatives. The operations available to the user allow him to identify
if a substring matches a pattern, to extract that substring, to replace that substring and to
associate a name with that substring. The system has applications in information retrieval,
text manipulation and language processing.

WEY woRDS Pattern matching Context sensitive S-algol

INTRODUCTION

Pattern matching systems have been used in some form or another in context editors,
translators, text analysis programs and artificial intelligence research. A pattern
matching system consists of a program or set of programs providing facilities for
defining patterns which syntactically specify the members of a set of strings. The
system also provides associated operations which allow strings to be selected and
manipulated if they match the specified pattern that is if they satisfy the syntactic
specification.

The notion of pattern matching is not new. As early as 1961, the language IPL-V!
included some pattern matching facilities and a number of other languages developed
since then have refined the concept. The most widely used pattern matching language
(s SNOBOL4? which has extensive pattern matching facilities, the power of which has
prompted a good deal of research into pattern matching at both a practical and a
theoretical level.? ® The most recent language developments include SI1.37 which
expanded the pattern matching facilities of SNOBOL4 and provided good control
structures, and ICON?® which adopts a new approach to pattern matching. [COXN
does not have explicit patterns but has extended string processing capabtlities which
allow pattern matching operations to be easily implemented.

Apart from programming languages specifically designed for pattern matching
operations, some pattern matching facilities have been provided in languages designed
for artificial intelligence research” and pattern matchers which use regular expressions
to define patterns have been implemented by Aho and others'® and Richards''.

I'he systemn which we have implemented has advantages over some other systems
inasmuch as it allows context sensitive pattern matching and permits patterns to be
treated as data objects. This has the advantage that patterns may be input, output,
passed as parameters to procedures and returned as function values. The system also

0038—0644/82/060517- 14501 .40 Received 12 September 1980
© 1982 by John Wiley & Sons, Ltd. Revised 12 October 1981

L

<

oAby

518 TAN SOMMERVILLE

provides a concise and consistent method of pattern definition and the tmplementation
technique chosen involves no overhead whatsoever for the language user who does not
necd pattern matching.

‘The pattern matching svstem is implemented as a set of library procedures which
are accessible from a programming language called S-algol'?, The system was
implemented in this way because we needed pattern matching capabilities integrated
with our extsting software use of a special pattern matching language was
impossible,

A major design decision in any pattern matching systern concerns the method of
defining patterns. SNOBOL. uses special built in pattern names and operations which
construct patterns and a possible approach is to provide operations like these as library
procedures. However, such an implementation makes it difficult to return patterns as
procedure results and to provide facilities for the input and output of patterns. It can
also become very verbose and introduce many new keyvwords for the user to learn.
This we wished to avoid.

Accordingly, we decided that patterns would be defined as strings with some
characters having a special meaning in certain contexts. For example, the pattern:

Fohnt3Smith

matches the character string Yohn, followed by any three characters, followed bv
Smith. The pattern:

(710)° firstten

matches the characters in a string up to the 10th character and associates the name
firstten’ with this substring.

The user of our system defines a pattern as a string and passes that string to a
pattern building procedure which returns a pointer to a data structure representing
that pattern. The user need not know the form of this structure—the pointer is
effectively the ‘value’ of the pattern. The procedures which perform pattern matching
operations all accept this pattern ‘value’ as a parameter.

In the remainder of this paper we present a ‘top-down’ description of our pattern
matching system. Firstly, the operations available to the system user are described and
this 1s followed by a number of examples illustrating the power of the system. These
examples consist of short S-algol programs and illustrate pattern definitions and calls
to interface procedures. "This is followed by a full description of the pattern definition
mechanism. This describes the basic pattern elements and how these elements can be
combined to form more complex patterns. We also describe a novel feature of our
system which constrains pattern matching to certain contexts and then go on to
describe system extensions which allow repetitive patterns to be specified, which allow
names to be associated with parts of the pattern and which allow a pattern delimiter
rather than an explicit pattern to be declared. The final section summarizes the most
important aspects of the pattern matching system and makes a brief
assessment of the work we have done.

THE USER INTERFACE

Clearly, the user interface to a pattern matching system is made up of two parts:
{1) The pattern marching operations.
{2) The pattern definition mechanism.

A PATTERN MATCHING SYSTEM 519

Every pattern match involves applving a subject to an object. In our system, both the
subtect and the object are of tyvpe string but the subject string is interpreted by the
pattern matching system as defining a pattern and the system attempts to find an
occurrence of this pattern in the object string. Associated with the object string 1s an
integer pointer called a enrsor whose value indexes some character in the object string,
The cursor has a minimum value of 1 and a maximum value of rpos where rpos is
defined as length(object) + 1. When the cursor has the value rpos, 1t 18 said to index the
special unprintable character ‘end of string’.

In this section we describe the operations available to the user of the pattern
matching system. Following sections provide examples showing how the system may
be used and a description of the pattern definition mechanism.

The most important operations which must be provided in anv system are:

(1) Stmple pattern matching.

(2} Replacement of a matched substring with some other string.

(3} Identification of the position in the object and the length of a matched

substring.

(4) A means of accessing the substrings associated with user defined names.

Our pattern matching systern provides these operations and some extensions to them
by means of a set of library procedures. Because we dislike systems which depend on
side effects, most of our library procedures return a structure rather than a single
value. In all cases, the first element of that structure indicates the result of the pattern
match but the remaining elements depend on the particular operation implemented.

In the notation below, the function name 1s specified followed by a description of its
parameters. ‘The arrow — means ‘returns’, and this 1s followed by a description of the
structure returned by each function. As S-algol pointers mayv be associated with any
structure, no structure hame is necessarv to define pointers.

The procedures available to the user are:

build . pattern(string s) — pointer

"I'his procedure must be called to convert the string representation of the pattern to an
internal representation. It parses the string and builds a linked list representing the
pattern. 'I'he system returns a pointer to this representation but the user need never
concern himself with its detailed structure.

match.paitern(pointer subject;string object) — bool

This procedure simply indicates whether a substring matching the subject exists in
the object, Notice that the subject should be the pointer returned by the build.pattern
function and the object should be a simple string—not a pattern. The object string and
the subject pattern are compared. If the subject matches the object, match.pattern
returns ‘true’, otherwise ‘false’.

match.pattern.and.assign(pomnter subject;stving object) — bool pointer

As described later, the user may associate names with parts of a defined pattern using
an assignment specifier. If a match succeeds, these names are associated with those
substrings in the object string which match the parts of the pattern. This procedure
not only determines the result of the pattern match, it also associates the appropriate
substrings with the names defined by the user. The result of the match is returned

520 [AN SOMMERVILLE

along with a pointer to a structure holding the names and matching substrings. The
user need not concern himself with the details of this structure.

lookup(pointer namestructure;, string name) — string

This procedure s used to find out what substring is associated with a user defined
name. It takes the pointer to the data structure holding the name information returned
by match. pattern.and.assign and the name defined in the pattern specification. It
returns the substring (if anyv) associated with that name.

lookup.position(pointer namesivucture,string name) — integer integer

This procedure has parameters as above but instead of returning the string associated
with the given name, lovkup.position returns the position of that string in the object
and its length,

replace(pointer subject;string object,replacementy — bool string

The intention of this procedure is to create a new string consisting of the original
object but with that part of the object matching the pattern replaced by another, user
specified, string. It performs a pattern match operation and returns its result. If the
match is successful, it also returns a string where the object substring matching the
subject is replaced by the specified replacement string. If the match fails, the string
returned 1s the original object.

extract(pointer subject;string object) —bool string

T'his procedure extracts the substring in the object string which matches a specified
pattern. It performs a pattern match and returns its result. If the match succeeds it
also returns the object substring which matches the subject.

pattern.position(pointer subject,string object) — bool,integer integer

This procedure is like extract above except that rather than return the matching
substring, patiern.position returns its position in the object and its length.

A full description of the interface procedures and the structures returned by these
procedures is available in the system reference manual !?

EXAMPLES

In this section we present a number of example programs illustrating the power of the
pattern matching system. T'he mechanism of these examples is explained by included
comments, where any characters following ! should be read as comment,

Example 1—blank replacement

V' This program reads vecords from seme input stream, replaces all
L sequences of one or more blanks in a record with a single blank

V' and writes the resulting record to some output stream

' The pattern blanks 1s defined as any string of one or

' more blanks.

A PATTERN MATCHING SYSTEM 521

! let introduces a name whose type is determined
V' by the type of the right side of the assignment
let blanks = build.pattern{"'(}+'")
! process input stream till end of file
while ~¢of do
{
! get a line of input
let rec : = readrecord
repeat

! match pattern and replace strings
! of blanks
res: = replace(blanks,rec,'' ')
! conttnue matching on same line until no
! more streams of blanks found
while res(result) do
rec: = res(newstr)
! write out transformed line
putrecord(rec)

p——

Example 2—selecting strings of a given length

V' This procedure reads records from an input stream, selects those

V' of length L and which also have a number at the beginning of the
V' yecord.

V' The length of the string L is passed as an integer and

U converted to a string by the procedure int.to.string.

U This length is then included in the pattern definition by

! catemating it with the rest of the string defining

V' the pattern. The catenation operator is + +.

! the character ¥ is used to define paiterns of a given length

V' so #n matches strings of n or more characters

I " matiches the null string at the beginning of the string

' and § the null string at the end so "¥n§! matches

' strings of exactly n characters. Enclosing the pattern

V' in exclamation marks ensures that the implicit pattern

' pointer is not moved by the match.

Y the pattern [0 — 9]+ matches one or move digits so the

V' entive pattern matches strings of length n which start with
' one or more digits

procedure get.records(int L)

begin
U make up pattern TELEN0—9]) + by converting L to string
let P =
build pattern("" ¥ + +int.to.string(L)+ + "$1(TO-9D+ ")

322 IAN SOMMERVILLE

while ~ e¢of do
(

1
fet ree 1 = readrecord
if match. pattern{P, rec) do
putrecord(rec)

end

Example 3—finding keywords

' This program scans records looking for the keyword ' computer”
V' in column 25. It outputs those records in which computer
V' is not followed by program or system or application

' the pattern ?25 means tab 25 it moves an implicit pointer
' to column 25 in the record

The pattern " (program|system|application)! is what is
terimed a negative qualifier. It only succeeds if the specified
pattern fails to match. In this case, it succeeds if computer
starting in col 25, 1s not followed by ‘system’,

‘program’, or ‘application’

let kevuword =
build patiern(''?25computer! ~ (program|systemiapplication)!"")
while eof do

d

let vec : = readrecord
if maich . pattern(kevword rec) do
putrecord(rec)

Example 4—extract and identify tokens
! This is a simple recognizer which given some string ignoves
' blanks at the beginning of the string and returns the first token
V' in the string. Tokens may be real numbers or integers, bracket
!' characters or arithmetic operators
procedure scanner (string instr — string)
begin !/ tnteger s any string of ome or more digits
let integer = "([0—9])+"
real is integer.integer
let real = integer + +''." + +integer

! define characters. As (and) are special characters
! in the patiern matcher, they are preceded by the
! escape character \.

let char = "'(+[—=*/\)NO"

! token 1s a concatenation of real, integer and char.

A PATTERN MATCHING SYSTEM 523

the first pattern in foken (V¥ skips over leading

blanks, the next pattern recognises the token and

the operator ., assigns the recognised pattern to

nextsym.

let tok = "(Y*(''+ +integer + +"'|" + +real+ + """+ +char
+ 4 "y nextsym'’

let token = build pattern (tok)

match pattern and assign matching substring to
‘nextsvm’ if pattern matches successfully.
let next = match.pattern.and.assign{token instr)
if successful match, get the string matched by
nextsym and veturn if as the result of the
Sfunction scanner. Otherwise return the null string
if next(matched) then

lookup(next(matchlist) nextsym)
else'""
end

BASIC PATTERN ELEMEXNTS

Patterns are built out of basic pattern elements which individually match substrings in
the object pattern. '['here are six basic pattern clements:

(1)

(2)

(3)

)

Simple strings— these are simply string of characters such as fred, a;b;c;, John
Smith. Blanks are considered part of stmple strings. Simple strings are
delimited either by the special ‘end of string’ character defined above or by one
of the special characters below. Any of the special characters may be escaped
using the character ', in which case the special character ts simply considered to
be part of the string.

pos—this element is written (x> where {n) is some positive or negative integer.
If ¢n> is omitted 1 is assumed by the pattern matching system. If {n) is
negative, {rpos-n) is the value assumed by the system. pos matches the null
string at the cursor position specitied by (#). If the cursor is positioned
elsewhere in the object, Pos will fail to match. T'herefore“will only match if the
cursor 1s positioned at the beginning of the object, 10 will match if the cursor is
positioned at the tenth character in the object."— 10 will match if the cursor 1s
positioned 10 characters from the end of the object string and"— 0 will match if
the cursor is positioned at rpos at the (virtual) ‘end of string’ character. The
special character $ may be used to indicate this position rather than"—0.
LEN-"This element 1s written ${#» > where {») is some positive integer. It matches
any string of characters of length {n). Therefore #1 will match any single
character, #7 will match any 7 characters. LEN can only fail if there are fewer
than the specified number of characters between the current cursor position and
rpos.

TAB—this element is written ?{#> where {(n) is any positive or negative integer.
It matches any string from the existing cursor position to the specified posttion
if the existing cursor value is less than {a>. If (n) is negative, *(rpos-n) is taken
to be the specified tab. Therefore ?10 matches from the current cursor position
to the 10th character, ? — 16 matches from the current cursor position to the

324 TAN SOMMERVILLE

l6th character from the end of the object string. If the cursor value is greater
than {#) when ? is encountered the match fails.

(5) any this element is written [{string>] and matches any single character
specified in (string). 'herefore [abede] will match a or b or ¢ or d or e. Ranges
may also be specified—[a z] will match any lower case letter.

{6) NoTany this element is written | < string > | and is the converse of anY. It will
match any single character not specified in the string. Again ranges such as
{A-K} may be specified.

Any basic pattern may be enclosed in round brackets without changing its meaning —
for example %8 is equivalent to (¥8). Bracketing is essential when pattern
specifiers{described below) are used.

The basic elements may be combined to form more complex patterns, may be

qualified with another pattern, or may be enhanced using specifiers. We shall discuss
each of these in turn.

PATTERN COMBINATION

The basic pattern elements discussed above are the building blocks out of which more
complex patterns may be constructed. Patterns may be combined using catenation and
alternation.

Catenation of patterns is specified simply by juxtaposition:

" fred

means the pattern pos followed by the simple string ‘fred’. In this case, Tred will match
objects whose first four characters are “fred’.

" fred$

meansTollowed by ‘fred’ followed by"— (). "This pattern will match objects consisting of
‘fred’ and no other characters.

fredt6{a—z}

will match ‘fred’ followed by any 6 characters followed by any single character which
1s not a lower case letter.

Pattern alternatives may be specified by separating alternatives using a vertical bar |
and enclosing all alternative patterns in round brackets. For example:

(john|jimjjack)
will match johAn or jim or jack.

(fredt6ljimi7|william$4)
will match ‘fred” followed by any 6 characters or im’ followed by any 7 characters or
‘willtam’ followed by any 4 characters.

The order of alternative specification is important. The system assumes that it

should look for alternatives in the order specified so it scans the whole of the object
string looking for the first alternative and only if that fails does it back up and look for

the second alternative and so on. ['herefore if an attempt was made to match the above
pattern with the object:

william browwn and fred wilson

A PATTERN MATCHING SYSTEM 525

the string ‘fred wilso’ would match in spite of the fact that an apparently valid match
‘william bro’ occurs in the object string before it. In this respect there is a difference
between

[a—=] and (alblc|dlelflg|hlilj|kil|mlnlo|plglr|slelule]e]x]v]=)

ANy will mateh the first character in the object string which is a lower case letter. The
sequence of alternatives will match the character in the object string which is nearest
the beginning of the alphabet.

"T'he alternation facility includes a full backtracking capability so that if the first part
of a pattern matches but a subsequent part fails, the system can back up and try
alternatives of the first previously successful part in the hope that they will allow
subsequent success. For example, suppose we have a subject:

{br|b)eakjranch)
and apply this to an object
branch

The system will first match ‘b7’ against the first 2 characters of ‘branch’. It will then
attempt to match ‘eak’” and then ‘ranch’ against the following 4 characters ‘anch’.
Failure will ensue which will cause the system to backtrack and match the second
alternative of the first part of the pattern ‘b’ against ‘branch’. T'his will succeed and the
svstem will then try all the alternatives in the following part of the pattern. Success
will ensue when ‘ranch’ is matched against the object.

Similarly suppose we have a subject:

(alb)c
and an object
bead

The system will first match ‘@’ in the object and then attempt to match ‘¢’ with ‘d".
This will fail so the pattern matcher will backtrack and match ‘4’. with the object
followed by a successful match of ‘¢” and ‘¢,

PATTERN QUALIFICATION

A serious deficiency in many existing pattern matching systems 1s the context
independent nature of the pattern matching. If a subject pattern is applied to a
sequence of objects, each object which contatns a substring matching that pattern is
deemed to contain a successful pattern match. The context of the matching substring
in the object string is not taken into account by the pattern matching system. It is
usually impossible to specify a pattern which will match only in a particular context or
in a situation where a particular context does not exist. If context sensitive matching is
required, it is usual to select all objects which successfully match some pattern and
then apply some further pattern matching operation to them using the appropriate
context as the subject pattern.

Qur pattern matching system provides a construct for specifying context sensitive
patterns by introducing the notion of pattern qualification. Any pattern may be

526 [AN SOMMERVILLE

qualified by ecither a positive or a negative qualifier. Qualifiers are simply pattern
specifications enclosed in exclamation marks !!. A negative qualifier is a qualifier
where the pattern is preceded by the special character . Pattern qualifiers are not
confined to simple patterns. They may include pattern combinations and the full
range of additonal specifiers described below.

It a qualified pattern is to match, the object string must contain a substring
matching the pattern and the qualifier must be satisfied. Satisfving the qualifier means
that the qualifying pattern must also match (or not match if the qualifier is negative)
the object substring immediately succeeding the matched string. After a successful
qualitied pattern match, the cursor points at the beginning of the qualifier substring in
the object. We illustrate the notion of qualification by example below:

Fohn! Smith!
will match the substring ‘Joln” only if it is immediately followed by ‘Smith’.

Fohn' Smith!

1s an example of a pattern qualified by a negative qualifier, "I'his pattern will match the
substring ‘Fohn' only if it is not immediately followed by * Smith’.

[@ =] [a—=]

will match any single lower case letter on its own. It will not match an object substring
where there are two or more lower case letters in sequence.

" IE20!

will match the null string at the beginning of objects whose length is 20 characters or
more.

Sred! (smithljones)!
will match ‘fred’ provided it s followed by ‘smith’ or ‘jones’.
(Jodm|j.)! ™ 2201

will match john or 'j.” provided that 20 fails that is provided the cursor is beyond
character position 20 in the object.

PATTERN SPECIFIERS

As well as pattern combination and pattern qualification, other useful facilities in a
pattern matching system are the ability to match up to but not including some
specified string, the ability to refer to matching substrings using some user specified
name, and the ability to match repetitions of a given pattern. These facilities are
provided 1n our svstem by using what we call pattern specifiers.

A pattern specifier is simply a single character which may follow anyv bracketed
pattern. The specifier characters only have a special meaning when they follow a
closing bracket they need not be escaped elsewhere if they are part of a string. There
are three tvpes of specifier:

{1} "I'he repetition spectfier.

(2) The ‘break’ spectfier.

(3) "The asstgnment specifier.

A PATTERN MATCHING SYSTEM 327

I'he repetition specifier allows the user to specify that the pattern is made up of a
number of repetitions of the bracketed pattern provided. This may be an explicit
number such as 6 or it mav be specified one or more repetitions or zero or more
repetitions of the given pattern. An explicit number of repetitions is specitied simply
by following the bracketed pattern by the number. For example:

(john|fred)4

will match 4 repetitions of jokn or fred or any combination of john and fred. The
pattern:

([a =0

will match any character string of length 10 whose components are lower case letters.

One or more repetitions of the pattern is specified by following the bracketed
pattern with a plus sign(+) and zero or more repetitions by following the bracketed
pattern with a star(*). For example:

(a)+
will match a, aa, aaa, aaaa, aaaaa, etc —any sequence of one or more as,

(a)*
will match the null string or any sequence of one or more as. The system always
attempts to match as many repetitions as possible.

The ‘break’ specifier is derived from the BREaK function 1s SNOBOL4 but is more
general. Rather than simply a single character, the ‘break’ specifier allows a delimiter
pattern to be specified. 'I'he system will match any string, including the null string up
to but not including the specified pattern. Break patterns are specified by following a
bracketed pattern with an at({ } character. For example:

(fredljoe)a
will match any string up to
([a—=))a

will match anv string up to a lower case letter.

‘

fred’ or ‘joe'.

The assignment specifier allows the user to associate a name with a pattern. "T'he
substring which matches the specified pattern is associated with that name. A name
may be any string of letters and it is a read-only name local to the pattern in which the
name is used. Therefore the same name may be used in different pattern definitions.
Assignment specitiers are written by following a bracketed pattern by the character ¢,
and following ¢, with the required name. For example:

(F1N° ylenten

would associate the name fenten with the character string matched by #10.

anwe|margaret|jane|lhelen)? givisnane
g

would associate the name girfsname with whichever of the alternatives matched. Name
assignment is only valid if the pattern match succeeds. If the match fails, the effect of
name assignment is undefined.

528 TAN SOMMERVILLE

Naturally, more than one pattern specthier may be used, the only proviso being that
the specifier character must immediately follow a closing bracket. Specifiers are
evaluated in left to right order and if an assignment specifier is used, it must be the
rightmost specifier. For example:

()1 astring
matches a sequence ot 10 as and associates the name astring with that sequence.
{(()10)a Y s toastring

matches any string up to a sequence of 10 as and associates the name ‘toastring’ with
the martched string.

The combination of these features means that a powerful pattern matching
mechanism is available to the user. This can be illustrated with some further
examples:

Example 1—pattern to match trailing blanks in a string
(%3

T'his pattern uses the repetition specifier to find a run of blanks and the § pattern to
ensure that these are at the end of the object string.

Example 2—pattern to match fixed fields of a record and assign names to
these fields

(F10)7 o f1(220)0 0 f2(235) f3(352)0 f4

‘This pattern uses the rab basic pattern to break out the fields and the assignment
spectfier to name them. It will cause the name f1 to be assigned to the first 10
characters, f2 to the characters from 11 to 20 and so on.

Example 3—pattern to match all occurrences of ‘computer’ provided it is not
followed by ‘science’ or ‘svstems’

computer! (sciencelsystems)!

This pattern uses pattern qualification. Tt first matches all strings containing
computer and then attempts to match ‘science’ or ‘systems’. Tf this match succeeds, the
whole match is deemed to have failed.

Example 4—match strings which start with one or more digits and which
end with one or more ‘4’ characters. Associate the name ‘middie’ with those
characters between the last digit and the first ‘+°.

L0+ ()@)0 gmiddle(+)+ $

This pattern uses the repetition specifier to identify the first digits and final +
characters, Tt uses the break specifier to establish those characters between the last
digit and + and the assignment specifier to associate them with middle. The special
character + only has a spectal meaning after *)’ so it may be used without the escape
character in the pattern definttion,.

A PATTERN MATCHING SYSTEM 529

CONCILUSIONS

A recent paper by Griswold!'* identifies the advantages and disadvantages of pattern
matching as implemented in SNOBOL4. He argues that the complexity of pattern
matching systems is fundamentally due to the fact that they are composed of 2 distinct
languages—a basic language /., and a pattern matching language P. The basic
language I. provides control functions, declarations and program structu ring facilities
whereas P provides pattern definition and matching operations. "These 2 languages are
quite different and there is little facility for communication between them. In
developing ICON, Griswold has tackled this problem by eliminating the pattern
component P and extending the language component L.

Although the design of a special language is perhaps the most elegant solution to
problems posed by the complexity of pattern matching systems, such a task 1s a major
development effort. We required a pattern matching system which could be integrated
with our existing software, and this precluded special language development or use of
a language such as SNOBOL#4. The approach which we have taken to the develop-
ment of such a system is to recognize that there is a dichotomy between the basic
language and the pattern matching language and to implement the pattern matching
component via a library of procedures accessible from the basic language. This means
that pattern matching is available to all users without any overhead for those users
who choose not to use the svstem.

Procedural interfaces are never wholly satisfactory but we believe the convenience
of pattern matching operations embedded in an existing programming language
outweighs the slight clumsiness which is always a feature of systems based on
procedure calls. An advantage of a procedural system compared with a special pattern
matching language is that sophisticated users may extend the system by adding new
pattern matching operations. The system facilities are open ended rather than
fossilized in a language definition.

One of the disadvantages identified by Griswold in existing pattern matching
systems is the necessity for using side effects and the difficulties this imposes on
program structuring. In SNOBOL#4 for example, a pattern matching operation sets a
global variable indicating the success or otherwise of the match. It may also assigh
strings to global names if a value assignment operator is specified as part of a pattern
definition. We agree with Griswold that side effects are undesirable so one of our
fundamental design aims was that the system should never use side effects. A
consequence of this is that a number of our pattern matching functions return
structures containing values of different tvpes rather than a single value.

'The pattern definition technique relies heavily on the string handling facilities
provided by S-algol but a similar technique could be used in any language where
dynamie strings can be implemented. Defining patterns as strings means that they can
be passed as parameters, returned as results, compared, input and output without
incurring any extra overhead.

In summary therefore, the advantages of the pattern matching system which we
have developed are as follows:

(1) It provides context sensitive pattern matching capabilities.

(2) It allows patterns to be treated as data objects.

(3) Tt provides a concise and elegant pattern definition mechanism.

(4) It can be integrated with existing software systems.

Our relatively limited experience of the system in use indicates that it will be a useful

53

to
in

0 IAN SOMMERVILLE

ol in the development of information retrieval systems, in language processing and
text manipulation.

REFERENCES

A Newell (ed). Information Processing Language-V Manual { Rand Corpy, Prentice-Hall, New
Jersev, 1941,

- RUE. Griswold, J. F, Poage and 1. P. Polonsky, The SNORCGLI Programming Language, Prentice-
Hall, New Jersev, 1971,

- JF. Gimpel, *A theory of discrete patterns and their implementation in SNOBOLA', Comm. ACM,
16, 31-100 (1973).

4. I. F. Gunpel, *Nonlinear pattern theory', Aeta Informatica, 4, 91 100 (1973).

=]

A=

- ROB. K. Dewar and A, P. McCann, ‘"MACROQ-SPITROL- a SNOBOL4 compiler’ Softw. pract.
exp., T, 95-114 (1977).

. R.E. Griswold, "Ixtensible pattern matching in SNOBOLA', Proc. ACM Annual Conf., 248-252
(1973).

. R L. Griswold and DD, R. Hansen, ‘An Overview of SL3", SIGPLAN Notices, 12,(3) 40 50 (1977

- RO E. Griswold, ID. R, Hansen, . T. Korh, ‘The Lcon programming language: an overview',

SIGPLAN Natices, 14(4), 18-31 (1979,

- 13, G;. Bobrow and B. Raphael, ‘New programming languages for artificial intelligence research’,
Comput. Suri,, 6, 153 174 (1974).

- A Vo Aho, B W, Kernigan and . J. Weinberger, 'Awk- a Pattern scanning and processing
language’, Sofre, pract. exp., 9, 267 279 (1979,

- M. Richards, "A compact function for regular expression pattern matching’, Softw, pract. exp., 9,
527534 {1979).

- R Morrison, 8-Algol Reference Manual, Dept of Computational Sei, University of St Andrews,
Scotland, June 1980.

- L Sommerville, Pattern Matching in S- Algol, Dept. of Computer Science, University of Strathclyde,
Scotland, June 1980.

- RUE. Griswold and D. R. Hansen. ‘An alternative to the use of patterns in string processing’, 4\
Trans. Prog. Lang. and Svstems, 2, 153-172 (1980),

