(7%

{ f-"--v’?‘i&?

I

- ™~
) /) ¢

v

7

.

PR SN | \JQ :-f"LJ Luﬁﬂ

A

Frean

A3
A\

~

ad .

C. r’.;; ?Lr/gg

PTG

ARE WE REALLY SOFTWARE ENGINEERS?

Ian Sommerville

Department of Computer Science, University of Strathclyde,
Glasgow, Scotland.

1. ABSTRACT
This paper argues against the notion that the
problems encountered in large scale software
development are necessarily due to deficiencies in

the software process model. Rather, it suggests
that these problems arise because software
engineering is more akin to a craft than a modern
engineering discipline. The paper suggests that

the subject lacks secure foundations, that software

engineering education is inadequate and that
working practices which are commen in other
engineering disciplines are not adopted. A number

of proposals suggesting how this situation might be
rectified are made. These include suggestions for a
research programme to define computer science, new
educational initiatives 1In software engineering,
more effective use of software tools and the
establishment of a professional body to certify
software engineers.

The “classical’ software life cycle model views the
software development process as a sequence of
phases namely analysis, specification, design,
implementation, validation and maintenance. This
has close parallels with the development model for
other large and complex engineered structures. For
example, like a software system, a warship takes a
long time to build, is very expensive, has a long
life and its design may be radically changed after
the ship has gone into service. This process of
change is called refitting {not maintenancel!) and
is required to adapt the ship to new weapons
systems, communication systems, etc.

Although it is not uncommon for ships to be
delivered late and to cost more than originally
planned, it 1s my impression that this happens less
commonly than with software systems., Why then are
marine engineering and other engineering projects,
in general, 1less likely to "fail’ than software
engineering projects. By ‘failure’, I do not mean,
of course, that the project 1is necessarily
abandoned. Rather, the term ‘failure’ encompasses
a range of situations from 1ate delivery and
above-estimate costs through incomplete system
delivery to complete cancellation of the project.

One explanation for these fallures might be that
we have completely misunderstood the nature of the
software development process. Thus we faill because
the wview of the life cycle which we have is an
inadequate model of what really happens during

CH2044-6/84/0000/0059/$01.00 © 1984 IEEE

59

large systems development. By attempting to fit
systems development to an inadequate wmodel, we may
actually make that development much more difficulrt,
On the other hand, this model seems te be wvalid

across many engineering disciplines and diverse
projects. It is my contention, therefore, that it
is wunwise to reject this model before examining

other possible causes of the problems of software
development.

The basic premise which underlies this paper is
that current problems in developing large software
systems have arisen because we do not adopt proper
engineering practices in the develcpment of
software systems. There is nothing fundamentally
wrong with the classical model of the software life
cycle although it may benefit from some refinement
and we must be careful ahout rigerously applying
it to every project. Our problems are not simply
due to deficiencies in the meodel but are a direct
result of the fact that our approach to the
construction of large software systems has been
that of a craftsman (or perhaps a "hacker’) rather
than a wmodern engineer. Although lip-service is
paid to software engineering as a discipline, most
organisations rely on empirical or ad-hoc systems
development methods and cannot quantify any aspect
of their systems except, perhaps, the total systems
cost,

Given that the model is fundamentally sound, why
then are software projects so much mere likely ro
fail than other large engineering projects? I
believe the answer to this is that other
engineering disciplines have a sounder base than
software engineering, have a means of ensuring that
engineers are properly qualified for the tasks
which they undertake, and adopt more ’‘professional’
practices when building systems. Let us now look at
these points in more detail.

2. FOUNDATIONS OF SOFTWARE ENGINEERING

Collins English dictionary defines the term

"engineering” as follows:

The profession of applying scientific principles
to the design, construction, and maintenance of
engines, cars, machines, etc.

This definition explicitly states that engineering
is dependent on some underlying science and the
dependence of traditional engineering on the
physical sciences of physics and chewmistry is quite
clear. Without these sciences as a foundation,

modern engineering as we know it would not exist.

It is important to emphasise here that this is a
definition of engineering as it is now practised.
[t is not a definitiom of craftsmanship which is
not based on scienrific principles and which has
been practised for thousands of years. Whilst it
is possible to create sophisticated and well-made
systems, such as Chartres catnedral, without such
principles, this process 1is 8@ dependent on the
skill and experience of individuals, that it is
very axpensive and often unrepeatable.

1f we substitute ‘software gystems’ for
‘engines...’ in the above definition of
engineering, we should then have a definition of
software engineering. However, if we then try and
identify the ’sciemtific principles” on which
software engineering is based, we are in trouble.
There aren’t any! Software engineering is still a
craft rather than an engineering discipline.

Whilst some may Say that software engineering is
rooted in computer science, 1 believe that the name
‘computer science’ is completely misleading. There
is about as much science in this subject as there
is in astrology! If we return again to the
dictionary to find a definition of science, we find
the following:

The systematic study of the nature and behaviour
of the material and physical universe based on
observation, experiment and measurement and the
formulation of laws to describe these facts in
general terms.

0of course, the study of computers and software
systems is mnot directly analogous to the ‘material
and physical universe’ because of the man-made and
abstract nature of these systems. However, what
the above definitrion does give us is the
implication that there is such 2 thing as 2
scientific method and that the aim of a science is
the formulation of generally applicable laws.

In sciences such as physics and chemistry, A&
body of accepted knowledge has arisen through the
process ot hypothesis formation and testing using
objective experiments. Hypotheses are fornulated by
observing the physical world, applying existing
theories to these observations then deriving a
hypothesis toe explain inconsistencies Detween the
observation and the theory. Alternatively, the
hypothesis may be derived from theory. In any
case, after a hypothesis has been formulated, it is
normal practice te attempt to verify that
hypothesis by experiment, measurement and
observation and, if wverified, the hypothesis
becomes the new theory.

1f we compare this scientific method with the
activity which we call computer science, We see
that computer science is certainly nct practised as
a science like physics or chemlstry. The notion of
obiectively testing hypotheses and repeating
experiments to verify their conclusions is omne
which is almost completely allen to the computer
science community. Indeed, 2 research proposal to
repeat some other reported work is very unlikely to
bee funded.

Although 1 am supgesting here that computer
science is, or should be, considered as an
experimental science, this does not preclude
aspects of the subject being looked on as &

mathematical science. Just as applied mathematics
has a vital role in other engineering disciplines,
its role in computer science is equally important.
As well as Thelping wus understand algorithms,
mathematics should also help us to predict and
analyse experimental phenomena. Whilst the former
role has been explored in studies of program
yerification, complexity analysis, etc. there has
been relatively iittle use made of mathematics in
experimental computer science.

tme of the best exanples of this lack of
geientific method im computer sclence can be seen
ip the computer sclemnce community’s attitude to
what are sometimes termed ‘Lehman’s laws (1), I
think it is fair to say that these are mostly
unheard of in traditional computer science
departments yet they are one of the few examples of
generalised laws which may be universally
applicable to software systems.

The exact nature of these laws is not relevant
here - what is relevant is the fact that there have
been few attempts LC verify Lehman’s hypotheses or
to try and use these laws to derlve principles of
software system construction. Similarly, Halstead’s
software science (23, although 1t has been
jnvestigated for small systems with conflicting
results {3, 4), is untried for large systems and we
do not know if it is a technique which is generally
useful in the analysis and measurement of software
systems.

One consequence of this lack of elemental
knowledge 1is that salesmanship is more important
than sclence when a new technique is proposed. For
example, technigues such as modular programming,
structured programming and, the latest example,
object-oriented programming (5) have all been
hailed as significant advances. This may or may
not be the case but what all those methods have 1n
common is that their proposers did not attempt to
justify their <claims by means of comparative
experiments.

This lack of demonstrable improvement or
otherwise means that industry is naturally very
conservative in accepting new techniques - after

all, they may have succumbed to salesmanship in the

past and found the product inadequate. Conversely,

academics tend to embrace many new techniques with

fervour in the hope that they aare an improvement
ogver existing working practices. Neither attitude

ig correct — we must retain the best of the

established methods whilst replacing inadequate

methods with newer and better approaches.

Part of the blame for the lack of scientific
foundation to software engineering must lie with
the scientific establishment. FProper, comparative
experiments involving large software systems are
very expensive and computer science research has
always been under—funded. However, part of the
blame also lies with those of us actively involved
in computing research. A ‘not-invented-here’
philosophy pervades university computer science and
this, combined with our distaste for proper
scientific experiments has meant that far too much
time has been spent o©On playing with computers

rather than in productive woTk.

In the conclusions to this paper, I make some
suggestlons as to how this situation might be
changed. L believe that until it 1s changed and
until some fundamental laws of software systems are

established, software engineering cannct become a
true engineering discipline.

3. SOFTWARE ENGINEERING EDUCATION

The lack of foundations which means that software
engineering is a craft rather than a science-based
engineering discipline is probably the most
fundamental reason for our failures in software
system construction., It is not the only reason
however - some of those practices which have been
developed and tested and which have proved useful
are sometimes wunknown and often unused. In short,
we are not even making the best of the limited
resources which we have,

At least part of the reason for this is that
many, if not most, of the staff involved in
developing large software systems are inadequately
educated. it s common practice for companies to
hire individuals trained in disciplines as diverse
as music and marketing to be programmers and to
give them relatively complex work to carry out.
“hilst these individuals may understand the

achanics of programming and may also understand
what is being programmed they are unlikely to
understand the reasons why particular methodelogies
are used, why programs should be readable, etc.
Would you like it if the designer of the bridge you
drove over every day was a biologist with no formal
qualifications in «civil engineering? In faet,
government regulations probably exclude this
possibility yet there is a high probability thar
you fly in aircraft whose software systems were
built by ‘amateur’ software engineers.

This situation is compounded by the fact that,
throughout most of industry, there is little or no
investment in postgraduate training except of the
most specialised kind. Staff are not given the
suppert or the opportunity tc learn of new
developments so naturally continue to use and to be
proud of their undisciplined methods. As a result,
software productivity throughout most of industry
is much lower than it ought to be and there is
constant reinvention of already known techniques.

Of course, universities and other educational
institutions are also responsible for inadequate
software engineering education. University

partments of computer science have been slow to
-ecognise that there is a qualitative difference
between large and small software systems and to
include a software engineering component in their
courses, They have teaded to concentrate on
courses in specialised topics {compiling
techniques, simulation, etc.,) rather than devote
resources to the practical study of large software
systems. In essence, we place too much emphasis on
teaching topics which allow the graduates to be
immediately productive and not enough on teaching
core knowledge which is generally applicable and
which will not rapidly go out-of-date.

I believe that there are four reasons for the
failings in many current courses in computer
science. These are as follows:

(13 Many computer science academics drifted into
the subject from mathematics and have o
appreciation of what’s involved in developing a
large goftware system. They prefer to concentrate
On aspects of the subject which appear to be more

61

tractable and which have some affinity io
mathematics. The lack of solid computer science
makes it difficult to argue against this approach.

(2 Until very recently, there were virtually no
student textbhooks whieh covered software
engineering as a coherent subject. However, this
situation has recently changed for the better and a
number of general texts are now available.

(3) Many wuniversity staff seem to be more
concerned with assessment rather than with
education. Hence, individual working which is
easier to assess 1s encouraged and group working
(or copying!)} is discouraged. This 1s in direct
contrast to the situation in most software
development projects 50 students never get
experience of anything but relatively small
programs.

(4) Industry and commerce have made and continue
to make wunreasonable demands on computer science
departments to produce graduates who are fully
productive immediately after graduation. This may
be contrasted with industry’s attitude to graduates
in other engineering disciplines where it is
assumed that the university course should provide
the foundation for further vocational training
rather than the wvocational training itself.

I discuss in the conclusions te this paper how this
situation wight be changed. However, this must be
preceded by a recognition in both industry and in
universities that software engineering is an
engineering discipline and that graduates need
practical experience and postgraduate training to
develop their skills. One point worth noting is
that other engineering disciplines have the benefit
of professional institutions, such as the Institute
of Mechanical Engineers, who maintain professional
standards. Membership of these institutions is
only awarded to those who have both academic
qualifications and sound post—qualifying vocational
experience. Membership of such institutions is an
indication that the individual is truly a
professional engineer,

Essentially, wmembership of an engineering
instirution signifies that the member has both
academric ability and qualifications and practice in
the subject. Notice that it is not expected that a
new engineering graduate should be immediately
useful and that membership of an Institution is
only granted after considerahble post—graduate
experience.

4. PROFESSIONAL PRACTICES

As engineering has developed, a number of standard
practices have evolved which, I believe, make an
essential contribution to systems development.
These practices are not generally adopted by
software engineers and this is partly responsible
for some of the difficulties which we encounter in
building large software systems. Consider some
practices which are the norm in other engineering
disciplines.

{1) Quantification of requirements

When a mechanical engineer needs to use a beam,
say, 1in some structure he does not specify that a
‘strong beam’ is needed. Rarher, he quantifies the
strength of the beam that is required. Software
specifications, on the other hand, are full of
‘weasel words’ like ‘easy to maintain’, ‘readily
portable’ etc. We need to express such concepts in
unambiguous terms not woolly words.

Although attempts are now being made to develop

notations to express functiomal specifications,
there seems to be little work in progress which is
concerned with the quantification of the
reliability, readability, portability, etc. of
software systems.

{2) Prototyping

When building a large and complex system, it is

unrealistic to expect a complete design of that
system toc be completed on paper. Rather it 1is
expected that a prototype or model be built to iron
put problems in specification and design. How many
organisations who develop software systems use
ptototyping as a matter of course?

It has been suggested than an evolutionary
approach to software development through more and
more sophisticated prototypes, is a better way to
attack certain software problems rather than the
traditional software process model. This may
indeed be true where the system requirements are
very difficult to define., However, engineering
prototypes are usually intended tc be throw-away
systems and 1t seems Lo me that some of the
requirements of prototype construction, such as the
requirement that a prototype should be developed
guickly, are 1likely to conflict with robustness,
performance and reliability requirements.

I thus believe that prototypes should be mostly
used as in other engineering disciplines te help
with requirements definition and design. Only in
exceptional circumstances should they be retained
and used, in their entirety, as a basis for further
development.

{3) Standardisation

When a complex system such as a warship 1s built
there are many completely new components involved
but there is still great reliance on the use of
standard components which have already been tried
and tested. The use of standard components, even
if they are not ideal, significantly reduces system
costs vet component sharing in software engineering
is a practice which tends to be informal in some
organisations and non-existent in others.

Part of the reason for this is the lack of tools
ta facilitate sharing but I believe that the root
of the problem is the “not invented here’ syndrome
which means that everyone rewrites everything every
time it is needed.

Other engineering disciplines also wuse another
level of standardisation in the notations which are
used to describe their systems. By the universal
use of blueprints, a design produced by one
engineer can be understood by more oI less any
other engineer in the same discipline.

However, there is no comzonly understood
notation for expressing a software design except,
perhaps, the now-discredited flowchart. In fact, a
recent count of software development methodologies
and their associated notations revealed about 200

different methodologies in use!

Thus, the problems
associared with the communication of software
designs are immense.

In this respect, the programming language Ada
may be very important. Although that language has
been criticised for its size and complexity, it
geems likely that ir will be generally adopted and
understood by the software engineering community.
At last we may have a common language which allows

us to talk to each other!

(4) Quality control

Quality control is bullt into large engineering
projects from the very beginning in that components
used in the system have been checked, their
materisls have been checked, and so on. In software
projects, quality control is often equated with
testing and, in many cases, is something which is
applied after a great deal of work has been done.
Quality control does not just mean assessing if the
software works but is something much broader which
evaluates the way in which the software has been
constructed as well as its correctness.

Of course, quality assurance is practised by all
organisations involved in software development .
What 1 believe, however, 1is that the qualities
tested by QA practices are only a subset of those
qualities which should be assured. For example, is
the readability of the software tested, the
functional independence of software components,
even the testability of components? These tests are
quite distinct from testing if the system ‘works’
yet have a very important bearing on overall life
cycle costs.

0f course all these points are interrelated.
Quality coatrel is difficult without standards and
standards are difficult to establish without
metrics and without some foundation knowledge about

the most appropriate techniques for systems
development. Nevertheless, the fundamental problem
is in our attitude to these practices - we make

little
however
software.

attempt to apply professional practices,
inadequate, to the development of owur

5. CONCLUSIONS

Curing the ills of seftware engineering is not a

short term process. Fortunately, perhaps,
governments have been forced into thinking about
the problem by the Japanese Fifth Generation
Project and, in the UK at least, there 1is some
evidence that a change is at hand.

As I see it, the steps which we should now be
taking are:
(1) The immediate commencement of a proper
scientific research programme whose aim is to

derive the foundations of software engineering or,
if you like, to define computer sclence. This will
objectively compare and evaluate existing
techniques and methodclogies and find out which of
these are “best’ for particular tasks. The first
priority in such a programme is to investigate how
to quantify the subject so that we can dispense
with terms 1like ‘easy—to-use’ and ‘properly
structured’ and so that we can measure and compare
different approaches to software development.

62

Some examples of experiments which immediately
spring to mind are:
An experiment to find out what notations are

suitable for prototyping particular classes of
system, This would invelve developing
prototypes in various notatious and developing a

system without prototyping. Development times,
system sizes, ease of modification, number of
requirements changes, etc. could then be

measured. The programme might be speeded up by
introducing artificial requirements changes and
extrapolating the resulrs,

An experiment to
examining a number
maintenance.

verify Lehman’s Laws by
of large systems and their

An experiment comparing Proleg and Lisp as
notations for the development of eXpert systems.
This would involve developing a number of expert
systems 1in both Prolog and Lisp and comparing

system sizes, development times, difficulties
encountered, etec,

An experiment to compare different software
development methodologies such as JSP,

Structured Design, ete., to find out which are
best suited to particular classes of system.

Such experiments would make up a very expensive
programme of research as the aim should not be to
produce working systems but to derive results.
However I sugpest that such a programme is less
expensive than research in high-energy physics or
astronomy, say, and has much greater potential
economic benefits,

The results from such a programme, could be the
basis of standards which would be demonstrably
adequate and which are likely to be adhered to by
the software development community in general.

(2} The establishment of an Institute of Software
Engineers with membership only awarded to those
with acceptable qualifications and practical
experience. This should be integrated with other
ngilneering institutions and should menitor
university courses, etec. for acceptability., It
should be the norm for practicing software
engineers to be members of this institution in the
Sawe way as practicing civil engineers are members
of the Institute of Civil Engineers.,

I do not think it 1s pessible for the existing
computing societies such as the British Computer
Society and the Association for Computing Machinery

to take over this role, They are not seen by
elther members or the industry in general as being
In the same position as the engineering

institutions and they are too well established for
this situation to change, It may however, be

possible for one of the existing engineering
institutions to embrace software engineering
although there are many problems involved in

reconciling the different qualifications involved.

(3} The development of a new approach to the

63

teaching of computer science which is oriented
towards producing people who cap design and
evaluate software. Many 1if not most current
computer science courses spend too wuech time ip
teaching commercial data processing and other
applications simply se¢ that they seem relevant to
industry. This time could be spent on more general

aspects of the subject. Both wuniversities and
industry must accept that, in the long—term, it is
better to equip university students wjth the
ability to learn new techniques than simply train
them to be immediately productive,

Ultimately, T hope that university courses in
software engineering will be established which
would have a practical bias. I am not sure that
the time is yet ripe for this because of the
insecure foundarions of the subject.

(4) The adoption of professicnal engineering
practices discussed above, Whilst this may lead to
a short—term cost increase, the wultimate benefits
will be a reduction in overall software costs,

Whilst it is true that proper professional
practices rely on secure foundations, it is not
good enough to do nothing wuntil foundations are
established, Practically any standards are better
than none, we probably have adequate notations for
Systems prototyping in languages 1like APL and
Prolog and even a qualitative evaluation of
software quality is bound to lead to overall
improvements.

(5 The
technology

adoption of the wview that software
is capital intensive rather than labour
intensive. Historically, the greatest productivity
improvements have been realised when well-trained
staff have been equipped with powerful tools. We
must build and promote the use of powerful software
tools and accept that software productivity is
likely to be improved when staff have sufficient
computer power so that software development 1is
never constrained by hardware limitations,

Fundamentally, however, we need a change in
atrtitude by software buyers, software management
and by software eungineers themselves which must
encourage and rteward professionaiism rather than
system hacking. Unless professional engineering
practices are adopted, we will continue to produce
systems which do not meet the user’s needs, are
unreliable and which cost far more than they ought
to. No amount of tinkering with process models
will compensate for the fact that we still act like
amateurs at this business!

6. REFERENCES
(1) Lehman, M.M, & Belady, L.A. 1976. A model of

large program development”. IEM Systems Journal,
15¢3), 225-52,

(2) Halstead, M.H, 1977, ‘Elements of Software
Science’. Amsterdam North-Holland.

(3) Hamer,P.G. & Frewin, G.D. 1982. M.H.
Halstead’s Software Science ~ A Critical
Examination. Proc. 6th int.Conf on Software

Engineering, pp 197-206

B., Milliman, P,
Borst, M. & Love,T. 1979, First year results from a

(4) Shepherd, 5.B., Curtis,

research program in human factors in software

engineering’. AFIPS. &4, pp 1021-10Z7

(5 Boach, G. 1983. Software Engineering with
Ada. Reading, Mass. : Addison—Wesley

DISCOSSION

1. Science and Engineering

Jackson: One of the fundamental differences
between computer science and natural science 1is
that we, the so-called computer scientists, are
ourselves free to manufacture more software,
whereas natural scientists are not free to
manufacture more of the world - that 1is some
greater power's responsibility. So the question

that always arises in theories about software 1is
whether Halstead 1s just talking about programs
that he knew of), and they may be radically
different from the ones that are going to be
written the day after his book is published, or is
he saying something general and universal? Because
if it is only the first, then perhaps we shouldn't
be paying any attention to it anyway? What is your
position on that?

Sommerville: There is nc question whatsoever that
software 1is a unique type of commodity and any
comparisons with other sciences are not 100 percent
valid - I'd be the first to accept that.

Kolence: My pesition has always been the
following: a science has the job of understanding
now things work, and an engineering discipline has
the Jjob of building something using the
understanding of how things work. There 1is a
mixture now in the field of software engineering
and computer science because we can't do our
engineering jobs if we don't know how things work
and we don't see the people 1n computer science

turning their attention to the things we need to
understand.

Sommerville: T agree with you absolutely.

Turski:z The lack of foundations - 1t causes
laughter, but ships were built long before

Archimedes discovered that principle of flotation.
Sound principles have nothing to do with the
engineering profession. hircraft fly even though
there is no satisfactory mathematical theory of
aercdynamies. Roman roads are better than some
roads are today!

Sokol: Maybe it is not possible for software these
days to be any more methodical or manageable than
highway systems, which have a great social element
in them that makes them much less tractable than if
they were mere artifacts. I wonder if your points
are possibly misdirected, in the sense that you are
trying to treat software engineering as though it
dealt with a natural artifact, whereas it may not
be.

Sommerville: Tt is more like an economic system,
you mean? That may be true, yes, I accept that.

2. Software Engineering Education

Pyle: Isn't assessment checking that people have
the ability -have acquired the necessary
professional standard? You don't want to have a
person who cannot be assured by the university that
he has achieved a professional standard. That is
assessment.

Wasserman: Do you do quality assurance on the
software industry? If T turn in a project working
for a company, don't they want to see if it has
bugs in it and if it works and decide if they want
tc promote me oOr hire me or give me a raise or
whatever? it is just a different form of
assessment, but the goals are the same.

Sommerville: I'm not arguing that assessment is a
bad thing. I'm just saying that we have courses
that are constrained by assessment. We are not

teaching the right things because they are hard to
assess.

Wasserman: I thought that statement
industry and not to the universities.

applied to

Lavi: I don't think that we have to handle very

large objects in a university in order to teach
people proper engineering - you can use small
agbjects.

Sommerville: I disagree with that entirely,

pecause it is always possible to handie small
projects in an undisiplined way, whereas I believe
for a large project, you must have discipline.

