
©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 1

Service-centric Software
Engineering

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 2

Objectives

● To explain the notion of a reusable service, based on
web service standards, that provides a mechanism for
inter-organisational computing;

● To describe the service engineering process that is
intended to produce reusable web services;

● To introduce service composition as a means of
application development;

● To show how business process models may be used as
a basis for the design of service-oriented systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 3

Topics covered

● Services as reusable components
● Service engineering
● Software development with services

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 4

Service-oriented architectures

● A means of developing distributed systems
where the components are stand-alone services

● Services may execute on different computers
from different service providers

● Standard protocols have been developed to
support service communication and information
exchange

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 5

Service-oriented architectures

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 6

Benefits of SOA

● Services can be provided locally or outsourced to
external providers

● Services are language-independent
● Investment in legacy systems can be preserved
● Inter-organisational computing is facilitated

through simplified information exchange

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 7

Web service standards

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 8

Key standards

● SOAP
• A message exchange standard that supports service

communication
● WSDL (Web Service Definition Language)

• This standard allows a service interface and its bindings to be
defined

● UDDI
• Defines the components of a service specification that may be

used to discover the existence of a service
● WS-BPEL

• A standard for workflow languages used to define service
composition

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 9

Service-oriented software engineering

● Existing approaches to software engineering
have to evolve to reflect the service-oriented
approach to software development
• Service engineering. The development of

dependable, reusable services
• Software development for reuse

• Software development with services. The
development of dependable software where services
are the fundamental components
• Software development with reuse

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 10

Services as reusable components

● A service can be defined as:
• A loosely-coupled, reusable software component that

encapsulates discrete functionality which may be distributed
and programmatically accessed. A web service is a service that
is accessed using standard Internet and XML-based protocols

● A critical distinction between a service and a component
as defined in CBSE is that services are independent
• Services do not have a ‘requires’ interface
• Services rely on message-based communication with

messages expressed in XML

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 11

Synchronous interaction

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 12

An order as an XML message

<starter>
 <dish name = “soup” type = “tomato” />
 <dish name = “soup” type = “fish” />
 <dish name = “pigeon salad” />
</starter>
<main course>
 <dish name = “steak” type = “sirloin”
cooking = “medium” />
 <dish name = “steak” type = “fillet”
cooking = “rare” />
 <dish name = “sea bass”>
</main>
<accompaniment>
 <dish name = “french fries” portions =
“2” />
 <dish name = “salad” portions = “1” />
</accompaniment>

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 13

Web service description language

● The service interface is defined in a service
description expressed in WSDL. The WSDL
specification defines
• What operations the service supports and the format

of the messages that are sent and received by the
service

• How the service is accessed - that is, the binding
maps the abstract interface ontoa concrete set of
protocols

• Where the service is located. This is usually
expressed as a URI (Universal Resource Identifier)

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 14

Structure of a WSDL specification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 15

A WSDL description fragment

Define some of the types used. Assume that the namespace prefixes !ws" refers to
the namespace URI for XML schemas and the namespace prefix associated with
this definition is weathns.

<types>

 <xs: schema targetNameSpace = “http://.../weathns”

 xmlns: weathns = “http://…/weathns” >

 <xs:element name = “PlaceAndDate” type = “pdrec” />

 <xs:element name = “MaxMinTemp” type = “mmtrec” />

 <xs: element name = “InDataFault” type = “errmess” />

 <xs: complexType name = “pdrec”

 <xs: sequence>

 <xs:element name = “town” type = “xs:string”/>

 <xs:element name = “country” type = “xs:string”/>

 <xs:element name = “day” type = “xs:date” />

 </xs:complexType>

 D e f i n i t i o ns of MaxMinType and InDataFault here
 </schema>
</types>

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 16

A WSDL description fragment 2

Now define the inte rface and its operations. In this case, there is only a single
operation to return maximum and minimum temperatures

<interface name = “weatherInfo” >

 <operation name = “getMaxMinTemps” pattern = “wsdlns: in-out”>

 <input messageLabel = “In” element = “weathns: PlaceAndDate” />

 <output messageLabel = “Out” element = “weathns:MaxMinTemp” />

 <outfault messageLabel = “Out” element = “weathns:InDataFault” />

</operation>
</interface>

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 17

Service engineering

● The process of developing services for reuse in
service-oriented applications

● The service has to be designed as a reusable
abstraction that can be used in different systems

● Involves
• Service candidate identification
• Service design
• Service implementation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 18

The service engineering process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 19

Service candidate identification

● Three fundamental types of service
• Utility services that implement general functionality

used by different business processes
• Business services that are associated with a specific

business function e.g., in a university, student
registration

• Coordination services that support composite
processes such as ordering

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 20

Service classification

 Utility Business Coordination

Task Currency

convertor

Employee locator

Validate claim

form

Check credit

rating

Process expense

claim

Pay external

supplier

Entity Document style

checker

Web form to XML

converter

Expenses form

Student

application form

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 21

Service identification

● Is the service associated with a single logical entity used
in different business processes?

● Is the task one that is carried out by different people in
the organisation?

● Is the service independent?
● Does the service have to maintain state? Is a database

required?
● Could the service be used by clients outside the

organisation?
● Are different users of the service likely to have different

non-functional requirements?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 22

Catalogue services

● Created by a supplier to show which good can be
ordered from them by other companies

● Service requirements
• Specific version of catalogue should be created for each client
• Catalogue shall be downloadable
• The specification and prices of up to 6 items may be compared
• Browsing and searching facilities shall be provided
• A function shall be provided that allows the delivery date for

ordered items to be predicted
• Virtual orders shall be supported which reserve the goods for

48 hours to allow a company order to be placed

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 23

Catalogue - Non-functional requirements

● Access shall be restricted to employees of
accredited organisations

● Prices and configurations offered to each
organisation shall be confidential

● The catalogue shall be available from 0700 to
1100

● The catalogue shall be able to process up to 10
requests per second

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 24

Catalogue service operations

Operation Description

MakeCatalogue Creates a version of the catalogue tailored for a specific customer.

Includes an o ptional parameter to create a downloadable PDF

version of the catalogue.

Compare Provides a comparison of up to 6 characteristics (e.g. price,

dimensions, processor speed, etc.) of up to 4 catalogue items for

comparison.

Lookup Displays all of the data associated with a specified catalogue item.

Search This operation takes a logical expression and searches the

catalogue according to that expression. It displays a list of all items

that match the search expression.

CheckDelivery Returns the predicted delivery date for an item if it is ordered today.

MakeVirtualOrder Reserves the number of items to be ordered by a customer and

provides item information for the customer!s own procurement

system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 25

Service interface design

● Involves thinking about the operations associated
with the service and the messages exchanged

● The number of messages exchanged to
complete a service request should normally be
minimised.

● Service state information may have to be
included in messages

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 26

Interface design stages

● Logical interface design
• Starts with the service requirements and defines the operation

names and parameters associated with the service. Exceptions
should also be defined

● Message design
• Design the structure and organisation of the input and output

messages. Notations such as the UML are a more abstract
representation than XML

● WSDL description
• The logical specification is converted to a WSDL description

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 27

Catalogue interface design
Operation Inputs Outputs Exceptions

MakeCatalogue mcI n

Company id

PDF-flag

mcOut

URL of the catalogue for that

company

mcFault

Invalid company id

Compare compIn

Company id

Entry attribute (up to 6)

Catalogue number (up to 4)

compOut

URL of page showing

comparison table

compFault

Invalid company id

Invalid catalogue number

Unknown attribute

Lookup lookIn

Company id

Catalogue number

lookOut

URL of page with the item

information

lookFault

Invalid company id

Invalid catalogue number

Search searchIn

Company id

Search string

searchOut

URL of web page with search

results

searchFault

Invalid company id

Badly-formed search string

CheckDelivery gdIn
Company id

Catalogue number

Number of items required

gdOut
Catalogue number

Expected delivery date

gdFault
Invalid company id

Invalid catalogue number

No availability

Zero items requested

PlaceOrder poIn

Company id

Number of items required

Catalogue number

poOut

Catalogue number

Number of items required

Predicted delivery date

Unit price estimate

Total price estimate

poFault

Invalid company id

Invalid catalogue number

Zero items requested

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 28

Input and output message structure

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 29

Service implementation and deployment

● Programming services using a standard
programming language or a workflow language

● Services then have to be tested by creating input
messages and checking that the output
messages produced are as expected

● Deployment involves publicising the service
using UDDI and installing it on a web server.
Current servers provide support for service
installation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 30

A UDDI description

● Details of the business providing the service
● An informal description of the functionality

provided by the service
● Information where to find the service’s WSDL

specification
● Subscription information that allows users to

register for service updates

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 31

Legacy system services

● An important application of services is to provide
access to functionality embedded in legacy
systems

● Legacy systems offer extensive functionality and
this can reduce the cost of service
implementation

● External applications can access this
functionality through the service interfaces

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 32

Legacy system access

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 33

Software development with services

● Existing services are composed and configured
to create new composite services and
applications

● The basis for service composition is often a
workflow
• Workflows are logical sequences of activities that,

together, model a coherent business process
• For example, provide a travel reservation services

which allows flights, car hire and hotel bookings to
be coordinated

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 34

Vacation package workflow

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 35

Construction by composition

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 36

Hotel booking workflow

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 37

Workflow design and implementation

● WS-BPEL is an XML-standard for workflow
specification. However, WS-BPEL descriptions
are long and unreadable

● Graphical workflow notations, such as BPMN,
are more readable and WS-BPEL can be
generated from them

● In inter-organisational systems, separate
workflows are created for each organisation and
linked through message exchange

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 38

Interacting workflows

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 39

Service testing

● Testing is intended to find defects and
demonstrate that a system meets its functional
and non-functional requirements

● Service testing is difficult as (external) services
are ‘black-boxes’. Testing techniques that rely on
the program source code cannot be used

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 40

Service testing problems

● External services may be modified by the service
provider thus invalidating tests which have been
completed

● Dynamic binding means that the service used in an
application may vary - the application tests are not,
therefore, reliable

● The non-functional behaviour of the service is
unpredictable because it depends on load

● If services have to be paid for as used, testing a service
may be expensive

● It may be difficult to invoke compensating actions in
external services as these may rely on the failure of other
services which cannot be simulated

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 41

Key points

● Service-oriented software engineering is based on the notion that
programs can be constructed by composing independent services
which encapsulate reusable functionality.

● Service interfaces are defined in WSDL. A WSDL specification
includes a definition of the interface types and operations, the
binding protocol used by the service and the service location.

● Services may be classified as utility services, business services or
coordination services.

● The service engineering process involves identifying candidate
services for implementation, defining the service interface and
implementing, testing and deploying the service.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 31 Slide 42

Key points

● Service interfaces may be defined for legacy software systems which
may then be reused in other applications.

● Software development using services involves creating programs by
composing and configuring services to create new composite
services.

● Business process models define the activities and information
exchange in business processes. Activities in the business process
may be implemented by services so the business process model
represents a service composition.

● Techniques of software testing based on source-code analysis
cannot be used in service-oriented systems that rely on externally
provided services.

