
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 1

Software Reuse

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 2

Objectives

● To explain the benefits of software reuse and
some reuse problems

● To discuss several different ways to
implement software reuse

● To explain how reusable concepts can be
represented as patterns or embedded in
program generators

● To discuss COTS reuse
● To describe the development of software

product lines

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 3

Topics covered

● The reuse landscape

● Design patterns

● Generator based reuse

● Application frameworks

● Application system reuse

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 4

Software reuse

● In most engineering disciplines, systems are
designed by composing existing components
that have been used in other systems.

● Software engineering has been more focused
on original development but it is now
recognised that to achieve better software,
more quickly and at lower cost, we need to
adopt a design process that is based on
systematic software reuse.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 5

Reuse-based software engineering

● Application system reuse
• The whole of an application system may be reused

either by incorporating it without change into other
systems (COTS reuse) or by developing application
families.

● Component reuse
• Components of an application from sub-systems to

single objects may be reused. Covered in Chapter 19.

● Object and function reuse
• Software components that implement a single well-

defined object or function may be reused.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 6

Reuse benefits 1

Increased dependability Reused software, that has been tried and tested in working systems,
should be m ore dependable than new software. The initial use of the
software reveals any design and implementation faults. These are then
fixed, thus reducing the number of failures when the software is reused.

Reduced process risk If software exists, there is less uncertainty in the costs of reusing that
software than in the costs of development. This is an important factor
for project management as it reduces the margin of error in project cost
estimation. This is particularly true when relatively large software
components such as sub-systems are reused.

Effective use of specialists Instead of application specialists doing the same work on different
projects, these specialists can develop reusable software that
encapsulate their knowledge.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 7

Reuse benefits 2

Standards compliance Some standards, such as user interface standards, can be
implemented as a set of standard reusable components. For
example, if menus in a user interfaces are implemented using
reusable components, all applications present the same menu
formats to users. The use of standard user interfaces improves
dependability as users are less likely to make mistakes when
presented with a familiar interface.

Accelerated development Bringing a system to market as early as possible is o ften more
important than overall development costs. Reusing software can
speed up system production because both development and
validation time should be reduced.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 8

Reuse problems 1

Increased maintenance
costs

If the source code of a reused software system or component is n ot
available then maintenance costs may be increased as the reused
elements of the system may become increasingly incompatible with
system changes.

Lack of tool support CASE toolsets may not support development with reuse. It may be
difficult or impossible to integrate these tools with a component
library system. The software process assumed by these tools may not
take reuse into account.

Not-invented-here
syndrome

Some software engineers sometimes prefer to re-write components as
they believe that they can improve on the reusable component. This is
partly to do with trust and partly to do with the fact that writing
original software is s een as more challenging than reusing other
people’s software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 9

Reuse problems 2

Creating and maintaining a
component library

Populating a reusable component library and ensuring the software
developers can use this library can be expensive. Our current techniques
for classifying, cataloguing and retrieving software components are
immature.

Finding, understanding and
adapting reusable components

Software components have to be discovered in a library, understood and,
sometimes, adapted to work in a n ew environment. Engineers must be
reasonably confident of finding a component in the library before they will
make routinely include a component search as part of their normal
development process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 10

The reuse landscape

● Although reuse is often simply thought of as
the reuse of system components, there are
many different approaches to reuse that may
be used.

● Reuse is possible at a range of levels from
simple functions to complete application
systems.

● The reuse landscape covers the range of
possible reuse techniques.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 11

The reuse landscape

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 12

Reuse approaches 1

Design patterns Generic abstractions that occur across applications are
represented as design patterns that show abstract and concrete
objects and interactions.

Component-based
development

Systems are developed by integrating components
(collections of objects) that conform to component-model
standards. This is covered in Chapter 19.

Application
frameworks

Collections of abstract and concrete classes that can be
adapted and extended to create application systems.

Legacy system
wrapping

Legacy systems (see Chapter 2) that can be ‘wrapped’ by
defining a set of interfaces and providing access to these
legacy systems through these interfaces.

Service-oriented
systems

Systems are developed by linking shared services that may be
externally provided.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 13

Reuse approaches 2

Application product
lines

An application type is generalised around a common
architecture so that it can be adapted in different ways for
different customers.

COTS integration Systems are developed by integrating existing application
systems.

Configurable vertical
applications

A generic system is designed so that it can be configured to
the needs of specific system customers.

Program libraries Class and function libraries implementing commonly-used
abstractions are available for reuse.

Program generators A generator system embeds knowledge of a particular types
of application and can generate systems or system fragments
in that domain.

Aspect-oriented
software development

Shared components are woven into an application at different
places when the program is compiled.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 14

Reuse planning factors

● The development schedule for the software.

● The expected software lifetime.

● The background, skills and experience of the
development team.

● The criticality of the software and its non-
functional requirements.

● The application domain.

● The execution platform for the software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 15

Concept reuse

● When you reuse program or design components,
you have to follow the design decisions made by
the original developer of the component.

● This may limit the opportunities for reuse.
● However, a more abstract form of reuse is concept

reuse when a particular approach is described in
an implementation independent way and an
implementation is then developed.

● The two main approaches to concept reuse are:
• Design patterns;
• Generative programming.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 16

Design patterns

● A design pattern is a way of reusing abstract
knowledge about a problem and its solution.

● A pattern is a description of the problem and
the essence of its solution.

● It should be sufficiently abstract to be reused
in different settings.

● Patterns often rely on object characteristics
such as inheritance and polymorphism.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 17

Pattern elements

● Name
• A meaningful pattern identifier.

● Problem description.

● Solution description.
• Not a concrete design but a template for a design

solution that can be instantiated in different ways.

● Consequences
• The results and trade-offs of applying the pattern.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 18

Multiple displays

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 19

The Observer pattern

● Name
• Observer.

● Description
• Separates the display of object state from the object itself.

● Problem description
• Used when multiple displays of state are needed.

● Solution description
• See slide with UML description.

● Consequences
• Optimisations to enhance display performance are

impractical.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 20

The Observer pattern

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 21

Generator-based reuse

● Program generators involve the reuse of
standard patterns and algorithms.

● These are embedded in the generator and
parameterised by user commands. A program
is then automatically generated.

● Generator-based reuse is possible when
domain abstractions and their mapping to
executable code can be identified.

● A domain specific language is used to
compose and control these abstractions.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 22

Types of program generator

● Types of program generator
• Application generators for business data processing;
• Parser and lexical analyser generators for language

processing;
• Code generators in CASE tools.

● Generator-based reuse is very cost-effective but its
applicability is limited to a relatively small number of
application domains.

● It is easier for end-users to develop programs using
generators compared to other component-based
approaches to reuse.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 23

Reuse through program generation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 24

Aspect-oriented development

● Aspect-oriented development addresses a major
software engineering problem - the separation of
concerns.

● Concerns are often not simply associated with
application functionality but are cross-cutting - e.g. all
components may monitor their own operation, all
components may have to maintain security, etc.

● Cross-cutting concerns are implemented as aspects
and are dynamically woven into a program. The
concern code is reuse and the new system is
generated by the aspect weaver.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 25

Aspect-oriented development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 26

Application frameworks

● Frameworks are a sub-system design made
up of a collection of abstract and concrete
classes and the interfaces between them.

● The sub-system is implemented by adding
components to fill in parts of the design and by
instantiating the abstract classes in the
framework.

● Frameworks are moderately large entities that
can be reused.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 27

Framework classes

● System infrastructure frameworks
• Support the development of system infrastructures

such as communications, user interfaces and
compilers.

● Middleware integration frameworks
• Standards and classes that support component

communication and information exchange.

● Enterprise application frameworks
• Support the development of specific types of

application such as telecommunications or
financial systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 28

Extending frameworks

● Frameworks are generic and are extended to create a
more specific application or sub-system.

● Extending the framework involves
• Adding concrete classes that inherit operations from

abstract classes in the framework;

• Adding methods that are called in response to events
that are recognised by the framework.

● Problem with frameworks is their complexity which
means that it takes a long time to use them effectively.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 29

Model-view controller

● System infrastructure framework for GUI
design.

● Allows for multiple presentations of an object
and separate interactions with these
presentations.

● MVC framework involves the instantiation of a
number of patterns (as discussed earlier under
concept reuse).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 30

Model-view-controller

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 31

Application system reuse

● Involves the reuse of entire application
systems either by configuring a system
for an environment or by integrating
two or more systems to create a new
application.

● Two approaches covered here:
• COTS product integration;
• Product line development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 32

COTS product reuse

● COTS - Commercial Off-The-Shelf systems.
● COTS systems are usually complete

application systems that offer an API
(Application Programming Interface).

● Building large systems by integrating COTS
systems is now a viable development
strategy for some types of system such as E-
commerce systems.

● The key benefit is faster application
development and, usually, lower
development costs.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 33

COTS design choices

● Which COTS products offer the most appropriate
functionality?
• There may be several similar products that may be

used.

● How will data be exchanged?
• Individual products use their own data structures and

formats.

● What features of the product will actually be used?
• Most products have more functionality than is needed.

You should try to deny access to unused functionality.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 34

E-procurement system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 35

COTS products reused

● On the client, standard e-mail and web
browsing programs are used.

● On the server, an e-commerce platform has to
be integrated with an existing ordering system.
• This involves writing an adaptor so that they can

exchange data.

• An e-mail system is also integrated to generate e-
mail for clients. This also requires an adaptor to
receive data from the ordering and invoicing
system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 36

COTS system integration problems

● Lack of control over functionality and performance
• COTS systems may be less effective than they appear

● Problems with COTS system inter-operability
• Different COTS systems may make different

assumptions that means integration is difficult

● No control over system evolution
• COTS vendors not system users control evolution

● Support from COTS vendors
• COTS vendors may not offer support over the lifetime

of the product

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 37

Software product lines

● Software product lines or application families are
applications with generic functionality that can be
adapted and configured for use in a specific
context.

● Adaptation may involve:
• Component and system configuration;

• Adding new components to the system;

• Selecting from a library of existing components;

• Modifying components to meet new requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 38

COTS product specialisation

● Platform specialisation
• Different versions of the application are developed for

different platforms.

● Environment specialisation
• Different versions of the application are created to

handle different operating environments e.g. different
types of communication equipment.

● Functional specialisation
• Different versions of the application are created for

customers with different requirements.

● Process specialisation
• Different versions of the application are created to

support different business processes.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 39

COTS configuration

● Deployment time configuration
• A generic system is configured by embedding

knowledge of the customer’s requirements and
business processes. The software itself is not
changed.

● Design time configuration
• A common generic code is adapted and changed

according to the requirements of particular
customers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 40

ERP system organisation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 41

ERP systems

● An Enterprise Resource Planning (ERP)
system is a generic system that supports
common business processes such as ordering
and invoicing, manufacturing, etc.

● These are very widely used in large
companies - they represent probably the most
common form of software reuse.

● The generic core is adapted by including
modules and by incorporating knowledge of
business processes and rules.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 42

Design time configuration

● Software product lines that are configured at
design time are instantiations of generic
application architectures as discussed in
Chapter 13.

● Generic products usually emerge after
experience with specific products.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 43

Product line architectures

● Architectures must be structured in such a way
to separate different sub-systems and to allow
them to be modified.

● The architecture should also separate entities
and their descriptions and the higher levels in
the system access entities through
descriptions rather than directly.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 44

A resource management system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 45

Vehicle despatching

● A specialised resource management system where the aim
is to allocate resources (vehicles) to handle incidents.

● Adaptations include:
• At the UI level, there are components for operator display

and communications;

• At the I/O management level, there are components that
handle authentication, reporting and route planning;

• At the resource management level, there are components for
vehicle location and despatch, managing vehicle status and
incident logging;

• The database includes equipment, vehicle and map
databases.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 46

A despatching system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 47

Product instance development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 48

Product instance development

● Elicit stakeholder requirements
• Use existing family member as a prototype

● Choose closest-fit family member
• Find the family member that best meets the

requirements

● Re-negotiate requirements
• Adapt requirements as necessary to capabilities of the

software

● Adapt existing system
• Develop new modules and make changes for family

member

● Deliver new family member
• Document key features for further member

development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 49

● Advantages of reuse are lower costs, faster software
development and lower risks.

● Design patterns are high-level abstractions that
document successful design solutions.

● Program generators are also concerned with software
reuse - the reusable concepts are embedded in a
generator system.

● Application frameworks are collections of concrete and
abstract objects that are designed for reuse through
specialisation.

Key points

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 50

Key points

● COTS product reuse is concerned with the reuse of
large, off-the-shelf systems.

● Problems with COTS reuse include lack of control over
functionality, performance, and evolution and problems
with inter-operation.

● ERP systems are created by configuring a generic
system with information about a customer’s business.

● Software product lines are related applications
developed around a common core of shared
functionality.

