
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 1

Distributed Systems Architectures

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 2

Objectives

● To explain the advantages and disadvantages of
different distributed systems architectures

● To discuss client-server and distributed object
architectures

● To describe object request brokers and the
principles underlying the CORBA standards

● To introduce peer-to-peer and service-oriented
architectures as new models of distributed
computing.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 3

Topics covered

● Multiprocessor architectures

● Client-server architectures

● Distributed object architectures

● Inter-organisational computing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 4

Distributed systems

● Virtually all large computer-based systems
are now distributed systems.

● Information processing is distributed over
several computers rather than confined to a
single machine.

● Distributed software engineering is therefore
very important for enterprise computing
systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 5

System types

● Personal systems that are not distributed and that
are designed to run on a personal computer or
workstation.

● Embedded systems that run on a single processor
or on an integrated group of processors.

● Distributed systems where the system software runs
on a loosely integrated group of cooperating
processors linked by a network.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 6

Distributed system characteristics

● Resource sharing
• Sharing of hardware and software resources.

● Openness
• Use of equipment and software from different vendors.

● Concurrency
• Concurrent processing to enhance performance.

● Scalability
• Increased throughput by adding new resources.

● Fault tolerance
• The ability to continue in operation after a fault has

occurred.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 7

Distributed system disadvantages

● Complexity
• Typically, distributed systems are more complex than

centralised systems.

● Security
• More susceptible to external attack.

● Manageability
• More effort required for system management.

● Unpredictability
• Unpredictable responses depending on the system

organisation and network load.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 8

Distributed systems architectures

● Client-server architectures
• Distributed services which are called on by

clients. Servers that provide services are treated
differently from clients that use services.

● Distributed object architectures
• No distinction between clients and servers. Any

object on the system may provide and use
services from other objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 9

Middleware

● Software that manages and supports the different
components of a distributed system. In essence, it
sits in the middle of the system.

● Middleware is usually off-the-shelf rather than
specially written software.

● Examples
• Transaction processing monitors;

• Data converters;

• Communication controllers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 10

Multiprocessor architectures

● Simplest distributed system model.
● System composed of multiple processes

which may (but need not) execute on
different processors.

● Architectural model of many large real-time
systems.

● Distribution of process to processor may be
pre-ordered or may be under the control of a
dispatcher.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 11

A multiprocessor traffic control system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 12

Client-server architectures

● The application is modelled as a set of
services that are provided by servers and a
set of clients that use these services.

● Clients know of servers but servers need not
know of clients.

● Clients and servers are logical processes

● The mapping of processors to processes is
not necessarily 1 : 1.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 13

A client-server system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 14

Computers in a C/S network

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 15

Layered application architecture

● Presentation layer
• Concerned with presenting the results of a computation to

system users and with collecting user inputs.

● Application processing layer
• Concerned with providing application specific functionality

e.g., in a banking system, banking functions such as open
account, close account, etc.

● Data management layer
• Concerned with managing the system databases.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 16

Application layers

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 17

Thin and fat clients

● Thin-client model
• In a thin-client model, all of the application

processing and data management is carried out
on the server. The client is simply responsible
for running the presentation software.

● Fat-client model
• In this model, the server is only responsible for

data management. The software on the client
implements the application logic and the
interactions with the system user.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 18

Thin and fat clients

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 19

Thin client model

● Used when legacy systems are migrated to
client server architectures.
• The legacy system acts as a server in its own

right with a graphical interface implemented on
a client.

● A major disadvantage is that it places a
heavy processing load on both the server
and the network.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 20

Fat client model

● More processing is delegated to the client as
the application processing is locally
executed.

● Most suitable for new C/S systems where the
capabilities of the client system are known in
advance.

● More complex than a thin client model
especially for management. New versions of
the application have to be installed on all
clients.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 21

A client-server ATM system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 22

Three-tier architectures

● In a three-tier architecture, each of the
application architecture layers may execute
on a separate processor.

● Allows for better performance than a thin-
client approach and is simpler to manage
than a fat-client approach.

● A more scalable architecture - as demands
increase, extra servers can be added.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 23

A 3-tier C/S architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 24

An internet banking system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 25

Use of C/S architectures

Architecture Applications
Two-tier C/S
architecture with
thin clients

Legacy system applications where separating application processing and
data management is impractical.
Computationally-intensive applications such as compilers with little or
no data management.
Data-intensive applications (browsing and querying) with little or no
application processing.

Two-tier C/S
architecture with
fat clients

Applications where application processing is provided by off-the-shelf
software (e.g. Microsoft Excel) on the client.
Applications where computationally-intensive processing of data (e.g.
data visualisation) is required.
Applications with relatively stable end-user functionality used in an
environment with well-established system management.

Three-tier or
multi-tier C/S
architecture

Large scale applications with hundreds or thousands of clients
Applications where both the data and the application are volatile.
Applications where data from multiple sources are integrated.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 26

Distributed object architectures

● There is no distinction in a distributed object
architectures between clients and servers.

● Each distributable entity is an object that provides
services to other objects and receives services from
other objects.

● Object communication is through a middleware
system called an object request broker.

● However, distributed object architectures are more
complex to design than C/S systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 27

Distributed object architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 28

Advantages of distributed object architecture

● It allows the system designer to delay decisions on
where and how services should be provided.

● It is a very open system architecture that allows new
resources to be added to it as required.

● The system is flexible and scaleable.

● It is possible to reconfigure the system dynamically
with objects migrating across the network as
required.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 29

Uses of distributed object architecture

● As a logical model that allows you to structure and
organise the system. In this case, you think about
how to provide application functionality solely in
terms of services and combinations of services.

● As a flexible approach to the implementation of
client-server systems. The logical model of the
system is a client-server model but both clients and
servers are realised as distributed objects
communicating through a common communication
framework.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 30

A data mining system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 31

Data mining system

● The logical model of the system is not one of
service provision where there are
distinguished data management services.

● It allows the number of databases that are
accessed to be increased without disrupting
the system.

● It allows new types of relationship to be
mined by adding new integrator objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 32

CORBA

● CORBA is an international standard for an Object
Request Broker - middleware to manage
communications between distributed objects.

● Middleware for distributed computing is required at 2
levels:
• At the logical communication level, the middleware allows

objects on different computers to exchange data and
control information;

• At the component level, the middleware provides a basis
for developing compatible components. CORBA
component standards have been defined.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 33

CORBA application structure

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 34

Application structure

● Application objects.

● Standard objects, defined by the OMG, for a
specific domain e.g. insurance.

● Fundamental CORBA services such as
directories and security management.

● Horizontal (i.e. cutting across applications)
facilities such as user interface facilities.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 35

CORBA standards

● An object model for application objects
• A CORBA object is an encapsulation of state

with a well-defined, language-neutral interface
defined in an IDL (interface definition language).

● An object request broker that manages
requests for object services.

● A set of general object services of use to
many distributed applications.

● A set of common components built on top of
these services.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 36

CORBA objects

● CORBA objects are comparable, in principle, to
objects in C++ and Java.

● They MUST have a separate interface definition that
is expressed using a common language (IDL) similar
to C++.

● There is a mapping from this IDL to programming
languages (C++, Java, etc.).

● Therefore, objects written in different languages can
communicate with each other.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 37

Object request broker (ORB)

● The ORB handles object communications. It knows
of all objects in the system and their interfaces.

● Using an ORB, the calling object binds an IDL stub
that defines the interface of the called object.

● Calling this stub results in calls to the ORB which
then calls the required object through a published
IDL skeleton that links the interface to the service
implementation.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 38

ORB-based object communications

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 39

Inter-ORB communications

● ORBs are not usually separate programs but are a
set of objects in a library that are linked with an
application when it is developed.

● ORBs handle communications between objects
executing on the sane machine.

● Several ORBS may be available and each computer
in a distributed system will have its own ORB.

● Inter-ORB communications are used for distributed
object calls.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 40

Inter-ORB communications

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 41

CORBA services

● Naming and trading services
• These allow objects to discover and refer to

other objects on the network.

● Notification services
• These allow objects to notify other objects that

an event has occurred.

● Transaction services
• These support atomic transactions and rollback

on failure.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 42

Inter-organisational computing

● For security and inter-operability reasons,
most distributed computing has been
implemented at the enterprise level.

● Local standards, management and
operational processes apply.

● Newer models of distributed computing have
been designed to support inter-
organisational computing where different
nodes are located in different organisations.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 43

Peer-to-peer architectures

● Peer to peer (p2p) systems are decentralised
systems where computations may be carried out by
any node in the network.

● The overall system is designed to take advantage of
the computational power and storage of a large
number of networked computers.

● Most p2p systems have been personal systems but
there is increasing business use of this technology.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 44

P2p architectural models

● The logical network architecture
• Decentralised architectures;

• Semi-centralised architectures.

● Application architecture
• The generic organisation of components making

up a p2p application.

● Focus here on network architectures.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 45

Decentralised p2p architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 46

Semi-centralised p2p architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 47

Service-oriented architectures

● Based around the notion of externally
provided services (web services).

● A web service is a standard approach to
making a reusable component available and
accessible across the web
• A tax filing service could provide support for

users to fill in their tax forms and submit these
to the tax authorities.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 48

A generic service

● An act or performance offered by one party
to another. Although the process may be tied
to a physical product, the performance is
essentially intangible and does not normally
result in ownership of any of the factors of
production.

● Service provision is therefore independent of
the application using the service.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 49

Web services

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 50

Services and distributed objects

● Provider independence.

● Public advertising of service availability.

● Potentially, run-time service binding.

● Opportunistic construction of new services through
composition.

● Pay for use of services.

● Smaller, more compact applications.

● Reactive and adaptive applications.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 51

Services standards

● Services are based on agreed, XML-based
standards so can be provided on any
platform and written in any programming
language.

● Key standards
• SOAP - Simple Object Access Protocol;

• WSDL - Web Services Description Language;

• UDDI - Universal Description, Discovery and
Integration.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 52

Services scenario

● An in-car information system provides drivers with
information on weather, road traffic conditions, local
information etc. This is linked to car radio so that
information is delivered as a signal on a specific
radio channel.

● The car is equipped with GPS receiver to discover
its position and, based on that position, the system
accesses a range of information services.
Information may be delivered in the driver’s specified
language.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 53

Automotive system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 54

● Distributed systems support resource sharing,
openness, concurrency, scalability, fault tolerance
and transparency.

● Client-server architectures involve services being
delivered by servers to programs operating on
clients.

● User interface software always runs on the client
and data management on the server. Application
functionality may be on the client or the server.

● In a distributed object architecture, there is no
distinction between clients and servers.

Key points

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 12 Slide 55

Key points

● Distributed object systems require middleware to
handle object communications and to add and
remove system objects.

● The CORBA standards are a set of middleware
standards that support distributed object
architectures.

● Peer to peer architectures are decentralised
architectures where there is no distinction between
clients and servers.

● Service-oriented systems are created by linking
software services provided by different service
suppliers.

