Software Processes

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 1




Objectives

To introduce software process models

To describe three generic process models and
when they may be used

To describe outline process models for
requirements engineering, software
development, testing and evolution

To explain the Rational Unified Process model

To introduce CASE technology to support
software process activities

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




Topics covered

Software process models

Process iteration

Process activities

The Rational Unified Process
Computer-aided software engineering

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 3




The software process

e A structured set of activities required to develop a
software system

e Specification;
 Design;
 Validation;
« Evolution.
A software process model is an abstract representation

of a process. It presents a description of a process
from some particular perspective.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 4




Generic software process models

The waterfall model

« Separate and distinct phases of specification and
development.

Evolutionary development

« Specification, development and validation are
Interleaved.

Component-based software engineering
 The system is assembled from existing components.

There are many variants of these models e.g. formal
development where a waterfall-like process is used but
the specification is a formal specification that is refined
through several stages to an implementable design.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 5




Waterfall model

Reguirements
definition

System and

softaare design
!

Implementation
amd unst tesling

¥ Y
integraban anc
system testing

Operatbon and

mEntenano=

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 6




Waterfall model phases

Requirements analysis and definition
System and software design
Implementation and unit testing
Integration and system testing
Operation and maintenance

The main drawback of the waterfall model is
the difficulty of accommodating change after
the process is underway. One phase has to be
complete before moving onto the next phase.

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




Waterfall model problems

Inflexible partitioning of the project into distinct stages
makes it difficult to respond to changing customer
requirements.

Therefore, this model is only appropriate when the
requirements are well-understood and changes will be
fairly limited during the design process.

Few business systems have stable requirements.

The waterfall model is mostly used for large systems
engineering projects where a system is developed at
several sites.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 8




Evolutionary development

e EXxploratory development

* Obijective is to work with customers and to evolve
a final system from an initial outline specification.
Should start with well-understood requirements
and add new features as proposed by the
customer.

e [hrow-away prototyping

* QObjective is to understand the system
requirements. Should start with poorly understood
requirements to clarify what is really needed.

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 9




Evolutionary development

Cancurre=nk
activibes

_ Initial
| >peofication NETEIIN

T

. / imt diat
Ot e I'_I-_-.--:I-'_Ipmunll) R

NETSEOMNE

desoiphan L
P L

t

_ Final
| Vabdation IJ s ]
Yy

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 10




Evolutionary development

e Problems
« Lack of process visibility;
« Systems are often poorly structured;
« Special skills (e.g. in languages for rapid
prototyping) may be required.
o Applicabllity
 For small or medium-size interactive systems;
* For parts of large systems (e.g. the user interface);
* For short-lifetime systems.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 11




Component-based software engineering

Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems.

Process stages
 Component analysis;
 Requirements modification;

« System design with reuse;
* Development and integration.

This approach is becoming increasingly used
as component standards have emerged.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 12




Reuse-oriented development

I'i".|lJIr“I'Ir"I'I|. lI'IIFL et I-r=.|u|r"|-|vnl ¢ System de ||.| A

I-_ ..|. =cfication .| "I amalys .I "I n adilicatsan -_ with reuse

¢ Dk ap — _|,_,|F-|1'|

-_ and mtegration -. validaban J
g f .l A

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 13




Process iteration

o System requirements ALWAYS evolve in the
course of a project so process iteration where
earlier stages are reworked is always part of
the process for large systems.

lteration can be applied to any of the generic
process models.

e [Two (related) approaches
* Incremental delivery;
« Spiral development.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 14




Incremental delivery

Rather than deliver the system as a single delivery, the
development and delivery is broken down into
increments with each increment delivering part of the
required functionality.

User requirements are prioritised and the highest
priority requirements are included in early increments.

Once the development of an increment is started, the
requirements are frozen though requirements for later
Increments can continue to evolve.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 15




Incremental development

" Define outline .-’ﬁ-hsign requirements -"II-.ld'E.iEI' pystem
I-. reguirerments ] - \ o increments I-. aschatechur= IJ
.-_i-

F Develop system ¢ Vabdate ¢ Integrate 7 Nabdae
I-_ Increment ] . increment increment | system ] .
™ Ty

+ sysbem
System incomplete

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 16




Incremental development advantages

Customer value can be delivered with each
increment so system functionality is available
earlier.

Early increments act as a prototype to help
elicit requirements for later increments.

Lower risk of overall project failure.

The highest priority system services tend to
receive the most testing.

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




Extreme programming

e An approach to development based on the
development and delivery of very small
increments of functionality.

Relies on constant code improvement, user
iInvolvement in the development team and
pairwise programming.

e Covered in Chapter 17

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




Spiral development

Process is represented as a spiral rather than
as a sequence of activities with backtracking.

Each loop in the spiral represents a phase In
the process.

No fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is required.

Risks are explicitly assessed and resolved
throughout the process.

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




Spiral model of the software process

Cetermine abjectives,
altermatres and
constrainds

.-'

e

e
Risk
— — anialysis

- Risk ----"
L . anall.'m
Rlsk
/ .:n:i'.'m

Risk
j FE'..'II':':H ariabysis

Evaluate altematpies,
identify resolve rishs

e

q--

©lan Sommerville 2004

Requirements plan
Life-cycle plan
l'_'lpﬁmlnn AW

EgQu LrEmieEnts

| H-:qmr-:rnerd
ualn:'d:nn _.-

—

Integrasion LheEign B
ardd test plan Y

——"  Acceptance
Senvice B

-

Fl:lﬂLd

design Detailed i

design
Code

~ Uit best
.-H_'__ | EL

integragion
best

o

" Dewelop, werdy

riext-level produwct

Software Engineering, 7th edition. Chapter 4

Slide 20




Spiral model sectors

Objective setting
« Specific objectives for the phase are identified.
Risk assessment and reduction

 Risks are assessed and activities put in place to reduce
the key risks.

Development and validation

* A development model for the system is chosen which
can be any of the generic models.

Planning

 The project is reviewed and the next phase of the spiral
IS planned.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 21




Process activities

Software specification

Software design and implementation
Software validation

Software evolution

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 22




Software specification

The process of establishing what services are
required and the constraints on the system’s
operation and development.

Requirements engineering process
* Feasibility study;

 Requirements elicitation and analysis;
 Requirements specification;
 Requirements validation.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 23




The requirements engineering process

r Feasibility ¢ Requirements
'._ -y - =lintaban and
: o aly s

- .
{ Requirsments
\ speodfication

Feaubility /" Beguirements
el waliclatsan

User ared system
requirEments

Y
H=guirerments
dooument

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 24




Software design and implementation

The process of converting the system
specification into an executable system.

Software design

« Design a software structure that realises the
specification;

Implementation

 Translate this structure into an executable
program;

The activities of design and implementation
are closely related and may be inter-leaved.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 25




Design process activities

Architectural design
Abstract specification
Interface design
Component design
Data structure design
Algorithm design

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




The software design process

-I--— -
" Requirements
woerihicatian

[resign achvities

£ Dhata
sfructure
design

¢ Achilechors ¢ Abstract “ Irkeface ¢ Companent

| design , specihication ,  desgn | desgn

: Crala
SvsiEm Sofeanare Irgeface Companent P Algorthm
architechum smecificatian sovec ific ation sovec ific abon S s F o atinn

sovec fhoakiom

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 27




Structured methods

Systematic approaches to developing a
software design.

The design is usually documented as a set of
graphical models.

Possible models
Object model;
Sequence model;
State transition model;
Structural model;
Data-flow model.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 28




Programming and debugging

e Iranslating a design into a program and
removing errors from that program.

Programming is a personal activity - there is
NO generic programming process.

Programmers carry out some program testing
to discover faults in the program and remove
these faults in the debugging process.

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




The debugging process

Locate ¢ Design A * Pe-ppid
&Il , =ITar repair ] "" . pragram

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 30




Software validation

e Verification and validation (V & V) is intended
to show that a system conforms to its
specification and meets the requirements of
the system customer.

Involves checking and review processes and
system testing.

System testing involves executing the system
with test cases that are derived from the
specification of the real data to be processed
by the system.

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




The testing process

fComponent® \ fAcceptance

i L i B =l
,  tasting lasting

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 32




Testing stages

e Component or unit testing
* Individual components are tested independently;

« Components may be functions or objects or
coherent groupings of these entities.

e System testing

« Testing of the system as a whole. Testing of
emergent properties is particularly important.

e Acceptance testing

« Testing with customer data to check that the
system meets the customer’s needs.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 33




Testing phases

I-"" Reguirernents ¢ Syst=m i System ¢ Detailed
specdication , specfication | design ) design

System Sub-system F “Module and

integration int=gration unit cods
test plan test plan 1 and tesd

"'..lﬂ-umr.-;...-" ¢ Acoeplance ¢ System ¢ Sub-ntem
I"‘-. J_I-____ tesl , inte=gration test .___-lnlzgr-c‘.il:-u tesi

Acceptance
test plan

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 34




Software evolution

e Software is inherently flexible and can change.

e As requirements change through changing
business circumstances, the software that
supports the business must also evolve and
change.

e Although there has been a demarcation
between development and evolution
(maintenance) this is increasingly irrelevant as
fewer and fewer systems are completely new.

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




System evolution

Y

e
{ Define system
|

L requirements

Ty

©lan Sommerville 2004

¢ fssess existing fPropose systern ¢ Modity
systems Il"'-.. changes -.__\_ sysbeEms

Eusting P ety
sysb=ms sysbem

Software Engineering, 7th edition. Chapter 4 Slide 36



The Rational Unified Process

e A modern process model derived from the
work on the UML and associated process.

e Normally described from 3 perspectives
A dynamic perspective that shows phases over
time;
A static perspective that shows process activities;

A practive perspective that suggests good
practice.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 37




RUP phase model

Phase iteration

S

lwception  Elaboration Construction Transition

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 38




RUP phases

Inception
« Establish the business case for the system.

Elaboration

* Develop an understanding of the problem domain
and the system architecture.

Construction
« System design, programming and testing.

Transition
 Deploy the system in its operating environment.

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 39




RUP good practice

Develop software iteratively

Manage requirements
Use component-based architectures

Visually model software

Verify software quality
Control changes to software

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4




Static workflows

Workflow Description
Business modelling The business processes are modelled using business use cases.

Requirements Actors who interact with the system are identified and use cases are
developed to model the system requirements.

Analysis and design A design model is created and documented using architectural
models, component models, object models and sequence models.

Implementation The components in the system are implemented and structured into
implementation sub-systems. Automatic code generation from design
models helps accelerate this process.

Testing is an iterative process that is carried out in conjunction with
implementation. System testing follows the completion of the
implementation.

Deployment A product release is created, distributed to users and installed in their
workplace.

Configuration and This supporting workflow managed changes to the system (see
change management Chapter 29).

Project management This supporting workflow manages the system development (see
Chapter 5).

Environment This workflow is concerned with making appropriate software tools
available to the software development team.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 41




Computer-aided software engineering

Computer-aided software engineering (CASE) is
software to support software development and
evolution processes.
Activity automation
« Graphical editors for system model development;
« Data dictionary to manage design entities;
« Graphical Ul builder for user interface construction;
« Debuggers to support program fault finding;

Automated translators to generate new versions of a
program.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 42




Case technology

e (Case technology has led to significant
improvements in the software process.
However, these are not the order of magnitude
Improvements that were once predicted

« Software engineering requires creative thought -
this is not readily automated,;

Software engineering is a team activity and, for
large projects, much time is spent in team
interactions. CASE technology does not really
support these.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 43




CASE classification

Classification helps us understand the different types
of CASE tools and their support for process activities.

Functional perspective
 Tools are classified according to their specific function.
Process perspective

 Tools are classified according to process activities that
are supported.

Integration perspective

« Tools are classified according to their organisation into
iIntegrated units.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 44




Functional tool classification

Tool type

Planning tools

Editing tools

Change management tools
Configuration management tools
Prototyping tools
Method-support tools
Language-processing tools
Program analysis tools
Testing tools

Debugging tools
Documentation tools

Re-engineering tools

Examples

PERT tools, estimation tools, spreadsheets

Text editors, diagram editors, word processors
Requirements traceability tools, change control systems
Version management systems, system building tools
Very high-level languages, user interface generators
Design editors, data dictionaries, code generators
Compilers, interpreters

Cross reference generators, static analysers, dynamic analysers
Test data generators, file comparators

Interactive debugging systems

Page layout programs, image editors

Cross-reference systems, program re-structuring systems

©lan Sommerville 2004

Software Engineering, 7th edition. Chapter 4

Slide 45




Activity-based tool classification

Ee-engine=rng tools
Testing tools
Debugging tools
Frogram analysis tooks

Language-processing
tools

Method suppost tools
Frototyping iools

Configuration
management tools

Change management tools
Dooumentatian tocls
Editing tools

Flannang tools

Spedfication Design Implementation  \enfication
and
Walidation

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 46




CASE integration

e JOOIs

« Support individual process tasks such as design
consistency checking, text editing, etc.

e \Workbenches

e Support a process phase such as specification or
design, Normally include a number of integrated
tools.

e EnNnvironments

« Support all or a substantial part of an entire
software process. Normally include several
iIntegrated workbenches.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 47




Tools, workbenches, environments

: File Integrated Frocess-centred
Editoes Compilers ; ;
COmparaions Enyiron menks Envirormenks
Analysis and Prograrmemin T=skin
design B g g
Multi-method Single-method General-purpose Language-spedfic
workbenches workbenches workbenches workbenches

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 48




Key points

Software processes are the activities involved in
producing and evolving a software system.

Software process models are abstract representations
of these processes.

General activities are specification, design and
Implementation, validation and evolution.

Generic process models describe the organisation of
software processes. Examples include the waterfall
model, evolutionary development and component-
based software engineering.

lterative process models describe the software process
as a cycle of activities.

©lIan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 49




Key points

Requirements engineering is the process of developing
a software specification.

Design and implementation processes transform the
specification to an executable program.

Validation involves checking that the system meets to
its specification and user needs.

Evolution is concerned with modifying the system after
it is in use.

The Rational Unified Process is a generic process
model that separates activities from phases.

CASE technology supports software process activities.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 50




