
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 1

Critical Systems Specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 2

Objectives

● To explain how dependability requirements
may be identified by analysing the risks
faced by critical systems

● To explain how safety requirements are
generated from the system risk analysis

● To explain the derivation of security
requirements

● To describe metrics used for reliability
specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 3

Topics covered

● Risk-driven specification

● Safety specification

● Security specification

● Software reliability specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 4

Dependability requirements

● Functional requirements to define error
checking and recovery facilities and
protection against system failures.

● Non-functional requirements defining the
required reliability and availability of the
system.

● Excluding requirements that define states
and conditions that must not arise.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 5

Risk-driven specification

● Critical systems specification should be risk-
driven.

● This approach has been widely used in
safety and security-critical systems.

● The aim of the specification process should
be to understand the risks (safety, security,
etc.) faced by the system and to define
requirements that reduce these risks.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 6

Stages of risk-based analysis

● Risk identification
• Identify potential risks that may arise.

● Risk analysis and classification
• Assess the seriousness of each risk.

● Risk decomposition
• Decompose risks to discover their potential root causes.

● Risk reduction assessment
• Define how each risk must be taken into eliminated or

reduced when the system is designed.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 7

Risk-driven specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 8

Risk identification

● Identify the risks faced by the critical system.

● In safety-critical systems, the risks are the hazards
that can lead to accidents.

● In security-critical systems, the risks are the
potential attacks on the system.

● In risk identification, you should identify risk classes
and position risks in these classes
• Service failure;

• Electrical risks;

• …

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 9

Insulin pump risks

● Insulin overdose (service failure).
● Insulin underdose (service failure).
● Power failure due to exhausted battery (electrical).
● Electrical interference with other medical equipment

(electrical).
● Poor sensor and actuator contact (physical).
● Parts of machine break off in body (physical).
● Infection caused by introduction of machine

(biological).
● Allergic reaction to materials or insulin (biological).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 10

Risk analysis and classification

● The process is concerned with
understanding the likelihood that a risk will
arise and the potential consequences if an
accident or incident should occur.

● Risks may be categorised as:
• Intolerable. Must never arise or result in an accident
• As low as reasonably practical(ALARP). Must minimise

the possibility of risk given cost and schedule constraints
• Acceptable. The consequences of the risk are acceptable

and no extra costs should be incurred to reduce hazard
probability

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 11

Levels of risk

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 12

Social acceptability of risk

● The acceptability of a risk is determined by human,
social and political considerations.

● In most societies, the boundaries between the
regions are pushed upwards with time i.e. society is
less willing to accept risk
• For example, the costs of cleaning up pollution may be

less than the costs of preventing it but this may not be
socially acceptable.

● Risk assessment is subjective
• Risks are identified as probable, unlikely, etc. This

depends on who is making the assessment.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 13

Risk assessment

● Estimate the risk probability and the risk
severity.

● It is not normally possible to do this precisely
so relative values are used such as ‘unlikely’,
‘rare’, ‘very high’, etc.

● The aim must be to exclude risks that are
likely to arise or that have high severity.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 14

Risk assessment - insulin pump

Identified hazard Hazard
probability

Hazard
severity

Estimated
risk

Acceptability

1. Insulin overdose Medium High High Intolerable

2. Insulin underdose Medium Low Low Acceptable

3. Power failure High Low Low Acceptable

4. Machine incorrectly fitted High High High Intolerable

5. Machine breaks in patient Low High Medium ALARP

6. Machine causes infection Medium Medium Medium ALARP

7. Electrical interference Low High Medium ALARP

8. Allergic reaction Low Low Low Acceptable

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 15

Risk decomposition

● Concerned with discovering the root causes
of risks in a particular system.

● Techniques have been mostly derived from
safety-critical systems and can be
• Inductive, bottom-up techniques. Start with a

proposed system failure and assess the
hazards that could arise from that failure;

• Deductive, top-down techniques. Start with a
hazard and deduce what the causes of this
could be.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 16

Fault-tree analysis

● A deductive top-down technique.

● Put the risk or hazard at the root of the tree
and identify the system states that could lead
to that hazard.

● Where appropriate, link these with ‘and’ or
‘or’ conditions.

● A goal should be to minimise the number of
single causes of system failure.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 17

Insulin pump fault tree

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 18

Risk reduction assessment

● The aim of this process is to identify
dependability requirements that specify how
the risks should be managed and ensure that
accidents/incidents do not arise.

● Risk reduction strategies
• Risk avoidance;

• Risk detection and removal;

• Damage limitation.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 19

Strategy use

● Normally, in critical systems, a mix of risk
reduction strategies are used.

● In a chemical plant control system, the
system will include sensors to detect and
correct excess pressure in the reactor.

● However, it will also include an independent
protection system that opens a relief valve if
dangerously high pressure is detected.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 20

Insulin pump - software risks

● Arithmetic error
• A computation causes the value of a variable to

overflow or underflow;

• Maybe include an exception handler for each
type of arithmetic error.

● Algorithmic error
• Compare dose to be delivered with previous

dose or safe maximum doses. Reduce dose if
too high.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 21

Safety requirements - insulin pump

SR1: The system shall not deliver a single dose of insulin that is greater than a specified
maximum dose for a system user.

SR2: The system shall not deliver a daily cumulative dose of insulin that is greater than a
specified maximum for a system user.

SR3: The system shall include a hardware diagnostic facility that shall be executed at
least 4 times per hour.

SR4: The system shall include an exception handler for all of the exceptions that are
identified in Table 3.

SR5: The audible alarm shall be sounded when any hardware or software anomaly is
discovered and a diagnostic message as defined in Table 4 should be displayed.

SR6: In the event of an alarm in the system, insulin delivery shall be suspended until the
user has reset the system and cleared the alarm.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 22

Safety specification

● The safety requirements of a system should
be separately specified.

● These requirements should be based on an
analysis of the possible hazards and risks as
previously discussed.

● Safety requirements usually apply to the
system as a whole rather than to individual
sub-systems. In systems engineering terms,
the safety of a system is an emergent
property.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 23

IEC 61508

● An international standard for safety
management that was specifically designed
for protection systems - it is not applicable to
all safety-critical systems.

● Incorporates a model of the safety life cycle
and covers all aspects of safety
management from scope definition to system
decommissioning.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 24

Control system safety requirements

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 25©Ian Sommerville 2000 Dependable systems specification Slide 25

The safety life-cycle

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 26

Safety requirements

● Functional safety requirements
• These define the safety functions of the

protection system i.e. the define how the system
should provide protection.

● Safety integrity requirements
• These define the reliability and availability of the

protection system. They are based on expected
usage and are classified using a safety integrity
level from 1 to 4.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 27

Security specification

● Has some similarities to safety specification
• Not possible to specify security requirements

quantitatively;
• The requirements are often ‘shall not’ rather than ‘shall’

requirements.

● Differences
• No well-defined notion of a security life cycle for security

management; No standards;
• Generic threats rather than system specific hazards;
• Mature security technology (encryption, etc.). However,

there are problems in transferring this into general use;
• The dominance of a single supplier (Microsoft) means

that huge numbers of systems may be affected by
security failure.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 28

The security specification
process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 29

Stages in security specification

● Asset identification and evaluation

• The assets (data and programs) and their required
degree of protection are identified. The degree of required
protection depends on the asset value so that a password
file (say) is more valuable than a set of public web pages.

● Threat analysis and risk assessment
• Possible security threats are identified and the risks

associated with each of these threats is estimated.

● Threat assignment
• Identified threats are related to the assets so that, for

each identified asset, there is a list of associated threats.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 30

Stages in security specification

● Technology analysis
• Available security technologies and their

applicability against the identified threats are
assessed.

● Security requirements specification
• The security requirements are specified. Where

appropriate, these will explicitly identified the
security technologies that may be used to
protect against different threats to the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 31

Types of security requirement

● Identification requirements.
● Authentication requirements.
● Authorisation requirements.
● Immunity requirements.
● Integrity requirements.
● Intrusion detection requirements.
● Non-repudiation requirements.
● Privacy requirements.
● Security auditing requirements.
● System maintenance security requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 32

LIBSYS security requirements

SEC1: All system users shall be identified using their library card number and personal
password.

SEC2: Users privileges shall be as signed according to the class of user (student, staff,
library staff).

SEC3: Before execution of any command, LIBSYS shall check that the user has
sufficient privileges to access and execute that command.

SEC4: When a user orders a document, the order request shall be logged. The log data
maintained shall include the time of order, the user’s identification and the articles
ordered.

SEC5: All system data shall be backed up once per day and backups stored off-site in a
secure storage area.

SEC6: Users shall not be permitted to have more than 1 simultaneous login to LIBSYS.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 33

System reliability specification

● Hardware reliability

• What is the probability of a hardware component failing and
how long does it take to repair that component?

● Software reliability

• How likely is it that a software component will produce an
incorrect output. Software failures are different from hardware
failures in that software does not wear out. It can continue in
operation even after an incorrect result has been produced.

● Operator reliability

• How likely is it that the operator of a system will make an
error?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 34

Functional reliability requirements

● A predefined range for all values that are input by
the operator shall be defined and the system shall
check that all operator inputs fall within this
predefined range.

● The system shall check all disks for bad blocks
when it is initialised.

● The system must use N-version programming to
implement the braking control system.

● The system must be implemented in a safe subset
of Ada and checked using static analysis.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 35

● The required level of system reliability required
should be expressed quantitatively.

● Reliability is a dynamic system attribute- reliability
specifications related to the source code are
meaningless.
• No more than N faults/1000 lines;

• This is only useful for a post-delivery process analysis
where you are trying to assess how good your
development techniques are.

● An appropriate reliability metric should be chosen to
specify the overall system reliability.

Non-functional reliability specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 36

● Reliability metrics are units of measurement
of system reliability.

● System reliability is measured by counting
the number of operational failures and,
where appropriate, relating these to the
demands made on the system and the time
that the system has been operational.

● A long-term measurement programme is
required to assess the reliability of critical
systems.

Reliability metrics

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 37

Reliability metrics

Metric Explanation

POFOD
Probability of failure
on demand

The likelihood that the system will fail when a service request is made. A POFOD
of 0.001 means that 1 out of a thousand service requests may result in failure.

ROCOF
Rate of failure
occurrence

The frequency of occurrence with which unexpected behaviour is l ikely to occur.
A R OCOF of 2/100 means that 2 f ailures are likely to occur in each 100
operational time units. This metric is sometimes called the failure intensity.

MTTF
Mean time to failure

The average time between observed system failures. An MTTF of 500 means that
1 failure can be expected every 500 time units.

AVAIL
Availability

The probability that the system is available for use at a given time. Availability of
0.998 means that in every 1000 time units, the system is likely to be available for
998 of these.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 38

Probability of failure on demand

● This is the probability that the system will fail when a
service request is made. Useful when demands for
service are intermittent and relatively infrequent.

● Appropriate for protection systems where services
are demanded occasionally and where there are
serious consequence if the service is not delivered.

● Relevant for many safety-critical systems with
exception management components
• Emergency shutdown system in a chemical plant.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 39

Rate of fault occurrence (ROCOF)

● Reflects the rate of occurrence of failure in the
system.

● ROCOF of 0.002 means 2 failures are likely in each
1000 operational time units e.g. 2 failures per 1000
hours of operation.

● Relevant for operating systems, transaction
processing systems where the system has to
process a large number of similar requests that are
relatively frequent
• Credit card processing system, airline booking system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 40

Mean time to failure

● Measure of the time between observed failures of
the system. Is the reciprocal of ROCOF for stable
systems.

● MTTF of 500 means that the mean time between
failures is 500 time units.

● Relevant for systems with long transactions i.e.
where system processing takes a long time. MTTF
should be longer than transaction length
• Computer-aided design systems where a designer will

work on a design for several hours, word processor
systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 41

Availability

● Measure of the fraction of the time that the
system is available for use.

● Takes repair and restart time into account
● Availability of 0.998 means software is

available for 998 out of 1000 time units.
● Relevant for non-stop, continuously running

systems
• telephone switching systems, railway signalling

systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 42

Non-functional requirements spec.

● Reliability measurements do NOT take the
consequences of failure into account.

● Transient faults may have no real
consequences but other faults may cause
data loss or corruption and loss of system
service.

● May be necessary to identify different failure
classes and use different metrics for each of
these. The reliability specification must be
structured.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 43

Failure consequences

● When specifying reliability, it is not just the
number of system failures that matter but the
consequences of these failures.

● Failures that have serious consequences are
clearly more damaging than those where
repair and recovery is straightforward.

● In some cases, therefore, different reliability
specifications for different types of failure
may be defined.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 44

Failure classification

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without operator intervention

Unrecoverable Operator intervention needed to recover from failure

Non-corrupting Failure does not corrupt system state or data

Corrupting Failure corrupts system state or data

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 45

● For each sub-system, analyse the
consequences of possible system failures.

● From the system failure analysis, partition
failures into appropriate classes.

● For each failure class identified, set out the
reliability using an appropriate metric.
Different metrics may be used for different
reliability requirements.

● Identify functional reliability requirements to
reduce the chances of critical failures.

Steps to a reliability specification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 46

Bank auto-teller system

● Each machine in a network is used 300
times a day

● Bank has 1000 machines

● Lifetime of software release is 2 years

● Each machine handles about 200, 000
transactions

● About 300, 000 database transactions in
total per day

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 47

Reliability specification for an ATM

Failure class Example Reliability metric

Permanent,
non-corrupting.

The system fails to operate with any card that is
input. Software must be restarted to correct failure.

ROCOF
1 occurrence/1000 days

Transient, non-
corrupting

The magnetic stripe data cannot be read on an
undamaged card that is input.

ROCOF
1 in 1000 transactions

Transient,
corrupting

A p attern of transactions across the network causes
database corruption.

Unquantifiable! Should
never happen in the
lifetime of the system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 48

Specification validation

● It is impossible to empirically validate very
high reliability specifications.

● No database corruptions means POFOD of
less than 1 in 200 million.

● If a transaction takes 1 second, then
simulating one day’s transactions takes 3.5
days.

● It would take longer than the system’s
lifetime to test it for reliability.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 49

Key points

● Risk analysis is the basis for identifying
system reliability requirements.

● Risk analysis is concerned with assessing
the chances of a risk arising and classifying
risks according to their seriousness.

● Security requirements should identify assets
and define how these should be protected.

● Reliability requirements may be defined
quantitatively.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 9 Slide 50

Key points

● Reliability metrics include POFOD, ROCOF,
MTTF and availability.

● Non-functional reliability specifications can
lead to functional system requirements to
reduce failures or deal with their occurrence.

