
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 1

Object-oriented Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 2

Objectives

● To explain how a software design may be
represented as a set of interacting objects
that manage their own state and operations

● To describe the activities in the object-
oriented design process

● To introduce various models that can be
used to describe an object-oriented design

● To show how the UML may be used to
represent these models

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 3

Topics covered

● Objects and object classes

● An object-oriented design process

● Design evolution

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 4

Object-oriented development

● Object-oriented analysis, design and programming
are related but distinct.

● OOA is concerned with developing an object model
of the application domain.

● OOD is concerned with developing an object-
oriented system model to implement requirements.

● OOP is concerned with realising an OOD using an
OO programming language such as Java or C++.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 5

Characteristics of OOD

● Objects are abstractions of real-world or system
entities and manage themselves.

● Objects are independent and encapsulate state and
representation information.

● System functionality is expressed in terms of object
services.

● Shared data areas are eliminated. Objects
communicate by message passing.

● Objects may be distributed and may execute
sequentially or in parallel.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 6

Interacting objects

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 7

Advantages of OOD

● Easier maintenance. Objects may be
understood as stand-alone entities.

● Objects are potentially reusable components.

● For some systems, there may be an obvious
mapping from real world entities to system
objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 8

Objects and object classes

● Objects are entities in a software system
which represent instances of real-world and
system entities.

● Object classes are templates for objects.
They may be used to create objects.

● Object classes may inherit attributes and
services from other object classes.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 9

Objects and object classes

An object is an entity that has a state and a defined set of
operations which operate on that state. The state is represented as a
set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these
services when some computation is required.

Objects are created according to some object class definition. An
object class definition serves as a template for objects. It includes
declarations of all the attributes and services which should be
associated with an object of that class.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 10

The Unified Modeling Language

● Several different notations for describing object-
oriented designs were proposed in the 1980s and
1990s.

● The Unified Modeling Language is an integration of
these notations.

● It describes notations for a number of different
models that may be produced during OO analysis
and design.

● It is now a de facto standard for OO modelling.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 11

Employee object class (UML)

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 12

Object communication

● Conceptually, objects communicate by
message passing.

● Messages
• The name of the service requested by the calling object;

• Copies of the information required to execute the service
and the name of a holder for the result of the service.

● In practice, messages are often implemented
by procedure calls
• Name = procedure name;

• Information = parameter list.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 13

Message examples

// Call a method associated with a buffer
// object that returns the next value
// in the buffer

v = circularBuffer.Get () ;

// Call the method associated with a
// thermostat object that sets the
// temperature to be maintained

thermostat.setTemp (20) ;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 14

Generalisation and inheritance

● Objects are members of classes that define
attribute types and operations.

● Classes may be arranged in a class hierarchy
where one class (a super-class) is a generalisation
of one or more other classes (sub-classes).

● A sub-class inherits the attributes and
operations from its super class and may add
new methods or attributes of its own.

● Generalisation in the UML is implemented as
inheritance in OO programming languages.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 15

A generalisation hierarchy

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 16

Advantages of inheritance

● It is an abstraction mechanism which may be
used to classify entities.

● It is a reuse mechanism at both the design
and the programming level.

● The inheritance graph is a source of
organisational knowledge about domains
and systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 17

Problems with inheritance

● Object classes are not self-contained. they
cannot be understood without reference to
their super-classes.

● Designers have a tendency to reuse the
inheritance graph created during analysis.
Can lead to significant inefficiency.

● The inheritance graphs of analysis, design
and implementation have different functions
and should be separately maintained.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 18

UML associations

● Objects and object classes participate in
relationships with other objects and object classes.

● In the UML, a generalised relationship is indicated
by an association.

● Associations may be annotated with information that
describes the association.

● Associations are general but may indicate that an
attribute of an object is an associated object or that
a method relies on an associated object.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 19

An association model

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 20

Concurrent objects

● The nature of objects as self-contained
entities make them suitable for concurrent
implementation.

● The message-passing model of object
communication can be implemented directly
if objects are running on separate processors
in a distributed system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 21

Servers and active objects

● Servers.
• The object is implemented as a parallel process (server)

with entry points corresponding to object operations. If no
calls are made to it, the object suspends itself and waits
for further requests for service.

● Active objects
• Objects are implemented as parallel processes and the

internal object state may be changed by the object itself
and not simply by external calls.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 22

Active transponder object

● Active objects may have their attributes
modified by operations but may also update
them autonomously using internal
operations.

● A Transponder object broadcasts an
aircraft’s position. The position may be
updated using a satellite positioning system.
The object periodically update the position by
triangulation from satellites.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 23

An active transponder object

class Transponder extends Thread {

Position currentPosition ;
Coords c1, c2 ;
Satellite sat1, sat2 ;
Navigator theNavigator ;

public Position givePosition ()
{

return currentPosition ;
}

public void run ()
{

while (true)
{

c1 = sat1.position () ;
c2 = sat2.position () ;
currentPosition = theNavigator.compute (c1, c2) ;

}

}

} //Transponder

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 24

Java threads

● Threads in Java are a simple construct for
implementing concurrent objects.

● Threads must include a method called run()
and this is started up by the Java run-time
system.

● Active objects typically include an infinite
loop so that they are always carrying out the
computation.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 25

An object-oriented design process

● Structured design processes involve
developing a number of different system
models.

● They require a lot of effort for development
and maintenance of these models and, for
small systems, this may not be cost-
effective.

● However, for large systems developed by
different groups design models are an
essential communication mechanism.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 26

Process stages

● Highlights key activities without being tied to
any proprietary process such as the RUP.
• Define the context and modes of use of the

system;

• Design the system architecture;

• Identify the principal system objects;

• Develop design models;

• Specify object interfaces.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 27

Weather system description

A weather mapping system is required to generate weather maps on a
regular basis using data collected from remote, unattended weather stations
and other data sources such as weather observers, balloons and satellites.
Weather stations transmit their data to the area computer in response to a
request from that machine.

The area computer system validates the collected data and integrates it with
the data from different sources. The integrated data is archived and, using
data from this archive and a digitised map database a set of local weather
maps is created. Maps may be printed for distribution on a special-purpose
map printer or may be displayed in a number of different formats.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 28

System context and models of use

● Develop an understanding of the relationships
between the software being designed and its
external environment

● System context
• A static model that describes other systems in the

environment. Use a subsystem model to show other
systems. Following slide shows the systems around the
weather station system.

● Model of system use
• A dynamic model that describes how the system interacts

with its environment. Use use-cases to show interactions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 29

Layered architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 30

Subsystems in the weather mapping system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 31

Use-case models

● Use-case models are used to represent each
interaction with the system.

● A use-case model shows the system
features as ellipses and the interacting entity
as a stick figure.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 32

Use-cases for the weather station

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 33

Use-case description

System Weather station
Use-case Report
Actors Weather data collection system, Weather station
Data The weather station sends a summary of the weather data that has been

collected from the instruments in the collection period to the weather data
collection system. The data sent are the maximum minimum and average
ground and air temperatures, the maximum, minimum and average air
pressures, the maximum, minimum and average wind speeds, the total
rainfall and the wind direction as sampled at 5 minute intervals.

Stimulus The weather data collection system establishes a modem link with the
weather station and requests transmission of the data.

Response The summarised data is sent to the weather data collection system
Comments Weather stations are usually asked to report once per hour but this

frequency may differ from one station to the other and may be modified in
future.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 34

Architectural design

● Once interactions between the system and its
environment have been understood, you use this
information for designing the system architecture.

● A layered architecture as discussed in Chapter 11 is
appropriate for the weather station
• Interface layer for handling communications;

• Data collection layer for managing instruments;

• Instruments layer for collecting data.

● There should normally be no more than 7 entities in
an architectural model.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 35

Weather station architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 36

Object identification

● Identifying objects (or object classes) is the
most difficult part of object oriented design.

● There is no 'magic formula' for object
identification. It relies on the skill, experience
and domain knowledge of system designers.

● Object identification is an iterative process.
You are unlikely to get it right first time.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 37

Approaches to identification

● Use a grammatical approach based on a natural
language description of the system (used in Hood
OOD method).

● Base the identification on tangible things in the
application domain.

● Use a behavioural approach and identify objects
based on what participates in what behaviour.

● Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
identified.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 38

Weather station description

A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a barometer
and a rain gauge. Data is collected periodically.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data. The
summarised data is transmitted to the mapping computer when a
request is received.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 39

Weather station object classes

● Ground thermometer, Anemometer, Barometer
• Application domain objects that are ‘hardware’ objects

related to the instruments in the system.

● Weather station
• The basic interface of the weather station to its

environment. It therefore reflects the interactions
identified in the use-case model.

● Weather data
• Encapsulates the summarised data from the instruments.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 40

Weather station object classes

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 41

Further objects and object refinement

● Use domain knowledge to identify more objects and
operations
• Weather stations should have a unique identifier;

• Weather stations are remotely situated so instrument
failures have to be reported automatically. Therefore
attributes and operations for self-checking are required.

● Active or passive objects
• In this case, objects are passive and collect data on

request rather than autonomously. This introduces
flexibility at the expense of controller processing time.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 42

Design models

● Design models show the objects and object
classes and relationships between these
entities.

● Static models describe the static structure of
the system in terms of object classes and
relationships.

● Dynamic models describe the dynamic
interactions between objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 43

Examples of design models

● Sub-system models that show logical groupings of
objects into coherent subsystems.

● Sequence models that show the sequence of object
interactions.

● State machine models that show how individual
objects change their state in response to events.

● Other models include use-case models, aggregation
models, generalisation models, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 44

Subsystem models

● Shows how the design is organised into
logically related groups of objects.

● In the UML, these are shown using
packages - an encapsulation construct. This
is a logical model. The actual organisation of
objects in the system may be different.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 45

Weather station subsystems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 46

Sequence models

● Sequence models show the sequence of
object interactions that take place
• Objects are arranged horizontally across the

top;
• Time is represented vertically so models are

read top to bottom;
• Interactions are represented by labelled arrows,

Different styles of arrow represent different
types of interaction;

• A thin rectangle in an object lifeline represents
the time when the object is the controlling object
in the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 47

Data collection sequence

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 48

Statecharts

● Show how objects respond to different service
requests and the state transitions triggered by these
requests
• If object state is Shutdown then it responds to a Startup()

message;
• In the waiting state the object is waiting for further

messages;
• If reportWeather () then system moves to summarising

state;
• If calibrate () the system moves to a calibrating state;
• A collecting state is entered when a clock signal is

received.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 49

Weather station state diagram

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 50

Object interface specification

● Object interfaces have to be specified so that the
objects and other components can be designed in
parallel.

● Designers should avoid designing the interface
representation but should hide this in the object
itself.

● Objects may have several interfaces which are
viewpoints on the methods provided.

● The UML uses class diagrams for interface
specification but Java may also be used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 51

Weather station interface

interface WeatherStation {

public void WeatherStation () ;

public void startup () ;
public void startup (Instrument i) ;

public void shutdown () ;
public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;
public void test (Instrument i) ;

public void calibrate (Instrument i) ;

public int getID () ;

} //WeatherStation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 52

Design evolution

● Hiding information inside objects means that
changes made to an object do not affect other
objects in an unpredictable way.

● Assume pollution monitoring facilities are to be
added to weather stations. These sample the
air and compute the amount of different
pollutants in the atmosphere.

● Pollution readings are transmitted with weather
data.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 53

Changes required

● Add an object class called Air quality as part
of WeatherStation.

● Add an operation reportAirQuality to
WeatherStation. Modify the control software
to collect pollution readings.

● Add objects representing pollution monitoring
instruments.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 54

Pollution monitoring

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 55

● OOD is an approach to design so that design
components have their own private state and
operations.

● Objects should have constructor and inspection
operations. They provide services to other objects.

● Objects may be implemented sequentially or
concurrently.

● The Unified Modeling Language provides different
notations for defining different object models.

Key points

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 56

Key points

● A range of different models may be produced
during an object-oriented design process.
These include static and dynamic system
models.

● Object interfaces should be defined precisely
using e.g. a programming language like
Java.

● Object-oriented design potentially simplifies
system evolution.

